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1 Preliminaries

One of the branches of contemporary mathematical physics that has been widely
investigated in the last three decades is the theory of integrable nonlinear dy-
namical systems. The infinite-dimensional systems of that type are described by
nonlinear partial differential equations with the distinguished independent vari-
able – the evolution (time) parameter. The origin of the theory dates back to the
19th century when the famous Korteweg-de Vries (KdV) equation was derived for
the description of long solitary waves in the shallow water. However, significant
progress in the development of theory was made only at the turn of the sixties
and seventies of the last century when the pioneering articles by Lax [28], Gard-
ner, Greene, Kruskal, Miura [22] and Zakharov, Shabat [53] appeared. In these
articles the inverse scattering transform method was introduced. This method is
closely related to the so-called Lax representations of integrable field and lattice
soliton systems characterized by infinite hierarchies of symmetries and conserva-
tion laws. In 1978 Magri [31] introduced a remarkable concept of bi-Hamiltonian
structures for integrable systems. From the geometrical point of view, it means
that there exists a pair of compatible Poisson tensors and on the basis of a recur-
sion chain one can generate infinite (in the infinite-dimensional case) hierarchy of
constants of motion, being in involution with respect to the above Poisson tensors
and commuting symmetries.

Nonlinear evolution equations describe many physical phenomena. However,
most of the former manifest chaotic behaviour. The study of integrable nonlin-
ear systems is of particular importance for understanding at least some aspects
of nonlinear equations. Integrable systems are interesting not only on their own
right but also because they yield exact solutions for many problems of very ad-
vanced modern mathematics and theoretical physics like topological quantum
field theories, Gromov-Witten invariants and quantum cohomology, string theory,
etc. Of course, there is feedback from these fields to the theory of integrable sys-
tems. All these fields of research have been developed for a relatively short time
and there are still many intriguing open problems. It may be worth mentioning
that Witten and Kontsevich were awarded the Fields Medals in 1990 and 1998,
respectively, for the results closely related to these problems.

1.1 Infinite-dimensional evolution systems

In these lecture notes we are going to deal with the systems of partial differential
equations (PDE’s) of the form

ut = K(u,ux,u2x, . . . ), (1.1)

where u := (u1, u2, . . . , uN)T is an N-tuple of unknown smooth functions of inde-
pendent variables x and t taking values in a field K = R or C. Here and below the
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respective subscripts denote partial derivatives, i.e.,

ux :=
∂u

∂x
u2x ≡ uxx :=

∂2u

∂x2
. . . .

We will understand the system (1.1) as an equation for the flow (or integral curve)
on some formal infinite-dimensional smooth manifold. Then the right-hand side
of (1.1) represents a vector field on this manifold and t is a formal ’evolution’
parameter (time) that belongs to some subinterval of R. In this terminology x is a
spatial variable from the space that must be appropriately specified. Hence, (1.1)
represents a (1+1)-dimensional evolution system.

We will be interested in the equations (1.1) that are nonlinear and integrable.
Nonlinearity here means that right-hand side of (1.1) depends on the variables
u,ux,u2x, . . . in a nonlinear way, i.e.

K(λu + µv, λux + µvx, . . . ) 6= λK(u,ux, . . . ) + µK(v,vx, . . . ) + . . . λ, µ ∈ K.

Notice that for the nonlinear systems the principle of linear superposition for
solutions is violated. The concept of integrability is more vague, so we will get
back to it lather.

The following Sections (1.2) and (1.3) are a formal introduction to the sub-
ject, so we assume existence of all the functions and that they are differentiable
appropriate many times.

1.2 Wave phenomena

We will now explain some notions used in the theory of integrable systems on the
basis of wave phenomena. We will restrict ourselves to the simplest case where
we have one wave amplitude u(x, t) in two-dimensional time-space.

1.2.1 Linear wave equation

The linear wave equation has the form

utt − c2uxx = 0, (1.2)

where c is the phase velocity. Eq.(1.2) has a general solution

u(x, t) = f(x− ct) + g(x+ ct)

being sum of two waves propagating to the right and left with constant speed c,
respectively. The main property of (1.2) is that the shape of wave is preserved and
that the linear superposition principle is valid. This means that the sum of two
arbitrary solutions is again a solution.

One can factorize (1.2) as

(∂t ± c∂x)(∂t ∓ c∂x)u = 0.

Then the propagation to the right is given by first order PDE

ut + ux = 0, (1.3)
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where we rescaled the independent variables in a way to have unit phase velocity,
i.e., c = 1, and then the general solution is u(x, t) = f(x − t). Nevertheless, let us
assume the solution in the form

u(x, t) = exp(i(kx− ωt)), (1.4)

where k is a so-called wave vector (in this case one-dimensional) and ω is a fre-
quency. Then, we find the so-called dispersion relation for (1.3):

ω(k) = k.

Hence, the phase velocity defined as

c :=
ω

k
= 1

is obviously constant.

1.2.2 Dissipation process

Let us consider the heat equation

ut − uxx = 0.

For the solution (1.4) one finds the dispersion relation

ω(k) = −ik2.

Hence,
u = exp(i(kx− ωt)) = exp(ikx) exp(−k2t)

is a solution with the amplitude decaying exponentially with time. This is known
as a dissipation process, physically this means that the energy is not conserved
and dissipates from the (physical) system.

1.2.3 Dispersion phenomenon

Now, let us take the Airy equation which is a third-order PDE of the form

ut + uxxx = 0.

For (1.4) we have

ut + uxxx = (iω − ik3)u = 0 ⇐⇒ ω = k3

and thus
u = exp(i(kx− k3t)).

The phase velocity c = ω
k

= k2 is nonlinear in k. This means that the waves
with different frequencies disperse with different velocities. This is known as a
dispersion.



6 Błażej M. Szablikowski

The general solution then can be given in the form of a wave packet

u(x, t) =
1

2π

∫ +∞

−∞
A(k) exp(i [kx− ω(k)t])dk,

where A(k) is a Fourier transform of u(x, 0), i.e.

A(k) =

∫ +∞

−∞
u(x, 0) exp(−ikx)dx.

The group velocity, i.e., the velocity of energy propagation, is given by

cg =
dω

dk
.

1.2.4 Wave breaking

Let us analyse the simplest possible nonlinear equation

ut = uux

and postulate the solution in the implicit form

u(x, t) = v(x+ u(x, t)t),

where v is arbitrary smooth function. Thus, we have

ut = (utt+ u)v′ ux = (1 + ux)v
′

and so
(utt+ u)v′ = u(1 + ux)v

′ ⇐⇒ ut = uux.

Hence, existence of such an implicit wave solution means that the velocity of a
point of the wave is proportional to the amplitude of this point. The higher the
amplitude is, the faster the point moves. Hence, this leads to the phenomenon
known as the ’breaking’ of the wave. Moreover, nonlinear terms in most cases
cause chaotic behavior.

1.3 Completely integrable systems

1.3.1 The Korteweg-de Vries equation

The famous Korteweg-de Vries equation (KdV) has the form

ut = u3x + 6uux. (1.5)

This is the best known and simplest example of a completely integrable (1+1)-
dimensional dispersive equation. Complete integrability means here (not quite
precisely) that it can be solve for almost all arbitrary boundary conditions. The
KdV equation was originally deduced for the description of long solitary waves,
moving in one direction, in the shallow water. Notice that the constant coeffi-
cients at u3x and 6uux in (1.5) can be made completely arbitrary using rescaling of
dependent and independent variables. However, this does not typically apply to
more general integrable equations.
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1.3.2 Solitons

We have already seen that the term u3x is responsible for the dispersion and the
nonlinear therm uux for the wave breaking phenomenon. In general when such
two effects meet then the chaotic behaviour appears. The miracle in the case of
KdV equation and similar completely integrable systems is that both of these ef-
fects, i.e., the dispersion and the wave breaking, compensate each other allowing
for the solutions describing the combination of the solitary waves.

Let us look for a traveling-wave solution for (1.5) of the form

u(x, t) = v(x+ ct) s := x+ ct.

Then, assuming rapidly decreasing boundary conditions u, u,u2x, . . . → 0 for |x| →
∞, one finds

ut − u3x + 6uux = 0 =⇒ cvs − v3s − 6vvs = 0 =⇒
vs ·
∣∣ cv − v2s − 3v2 = const = 0 =⇒ cvvs − vsv2s − 3v2vs = 0 =⇒

1

2
cv2 − 1

2
v 2
s − v3 = const = 0 =⇒ v 2

s = cv2 − 2v3 = v2(c− 2v),

where we integrated several times with respect to s. As result we reduced the
problem to an easy-to-integrate ordinary differential equation

dv

ds
= ±v

√
c− 2v =⇒ s = ∓ 2√

c
tanh−1

(√
1− 2

c
u

)
=⇒

u =
c

2

[
1− tanh2

(√
c

2
s

)]
.

Now, using the relation sech2ξ = 1 − tanh2 ξ one finds the so-called one-soliton
solution of the KdV equation

u(x, t) =
c

2
sech2

[√
c

2
(x+ ct)

]

describing the solitary wave. The solitary wave is a single hump traveling in
time, with constant speed proportional to amplitude, without changing the shape.
The KdV and similar completely integrable systems also possess the so-called N-
soliton solutions, that for t→ ±∞ decompose asymptotically into linear sum of N
solitary waves called solitons. In the finite time these solitons interact and, amaz-
ingly, they eventually recover their shape after collisions. The result of interaction
(collision) between two solitons is only the phase transition. This particle-like be-
havior is responsible for the name of the N-soliton solutions.
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1.3.3 Lax equations and isospectral problem

One of the most characteristic features of integrable systems is that one can
associate with them the so-called Lax equation

Lt = [A,L] (1.6)

in some algebra with a Lie bracket [·, ·].
Assume that we have two linear equations

Lψ = λψ (1.7)
ψt = Aψ, (1.8)

where L,A are linear operators in some Hilbert space and ψ is an eigenfunction,
λ (λt = 0) is an eigenvalue (spectral parameter). The first equation represents the
spectral equation for L and the second one defines the evolution of the eigenfunc-
tion ψ. Differentiating (1.7) with respect to t

Ltψ + Lψt = λψt

and applying (1.8) we have

Ltψ + LAψ = λAψ = ALψ ⇐⇒ (Lt − [A,L])ψ = 0,

where [A,L] = AL − LA is the commutator. Thus, the compatibility of the linear
equations (1.7) and (1.8) yields the Lax equation (1.6).

For the KdV equation we can take

L = ∂2
x + u (1.9)

and
A = ∂3

x +
3

2
u∂x +

3

4
ux, (1.10)

where u = u(x, t) is a smooth dynamical field. The symbol ∂x means a differential
operator whose action on arbitrary smooth function v, due to the Leibniz rule, is

∂xv = v∂x + vx.

Thus we have that
Lt = ut and [A,L] =

1

4
u3x +

3

2
uux

and hence
Lt = [A,L] ⇐⇒ ut =

1

4
u3x +

3

2
uux.

For a given system (1.1) the main objective is to solve the Cauchy problem with
well-posed boundary and/or initial conditions, so that a unique exact solution
u(x, t) exists. Of key importance in solving the Cauchy problem for completely
integrable systems that possess appropriate Lax pairs (1.7-1.8) is the so-called
inverse scattering transform method. This method is typical to particle physics
and has its origin in quantum field theory. In the case of the KdV equation the
linear problem (1.7) for (1.9) is nothing but the stationary Schrödinger equation in
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quantum mechanics, where the dynamical field u(x, t) plays a role of the potential
and λ of the energy. The method is illustrated on the following diagram.

u(x, t = 0)
direct scattering−−−−−−−−−→ ψ(x→∞, t = 0)y ytime evolution

u(x, t > 0) ←−−−−−−−−−−
inverse scattering

ψ(x→∞, t > 0)

First one has to employ (1.7) to compute the scattering data, i.e., the asymptotic
ψ(x → ∞, t = 0), for the initial potential u(x, t = 0). Then one determines from
(1.8) their time evolution ψ(x → ∞, t > 0). Finally, applying to (1.7) the inverse
scattering method (this is the difficult part), one computes the potential u(x, t > 0)
from the scattering data ψ(x → ∞, t > 0). In general the inverse scattering trans-
form method, when applicable, leads to wide classes of solutions for completely
integrable systems. Nevertheless, in practice the calculations are very complex,
even in the case of simplest equations like KdV, and one can only find restricted
classes of solutions in the explicit form. For example, the discrete spectrum of
(1.7) in the case of KdV equation leads to multi-soliton solutions.

1.3.4 Symmetries and constants of motion

Another characteristic feature of completely integrable systems is the existence of
wide classes of symmetries and constants of motion.

Informally, a symmetry of dynamical system (1.1) is a one-parameter group of
transformation φε, such that if u is an arbitrary solution then φεu is also a solution
of the same equation. In other words, this means that φε maps arbitrary integral
curve u(x, t) onto another integral curve u′(x, t) = φεu(x, t) of (1.1).

Actually we are interested in the symmetries that can be completely deter-
mined by their infinitesimal generators which in turn can be identified with the
right-hand sides of the dynamical systems of the form

uτ = σ(u,ux,u2x, . . . ). (1.11)

What does it mean that (1.1) has a symmetry of the form (1.11)? Assume that a
solution u(x, t, τ = 0) of (1.1) is an initial condition for (1.11). Solving (1.11) one
gets u(x, t, τ = δτ) at some time τ = δτ . Now, if (1.11) is a symmetry of (1.1), then
u(x, t, τ = δτ) must be another solution of (1.1).

Consider an arbitrary common initial condition u(x, t = 0, τ = 0). If (1.11) is a
symmetry of (1.1) then the following diagram

u(x, t = 0, τ = 0)
(1.1)−−−→ u(x, t = δt, τ = 0)

(1.11)

y y(1.11)

u(x, t = 0, τ = δτ)
(1.1)−−−→ u(x, t = δt, τ = δτ)

must be commutative. Thus, from the initial condition one can get to u(x, t =
δt, τ = δτ) in two ways. Passing to the case when δt, δτ are infinitesimally small
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and considering the corresponding Taylor expansions one finds that the above
diagram is commutative whenever

∂K

∂τ
=
∂σ

∂t
⇐⇒ (ut)τ = (uτ )t

holds. This means that the vector fields K and σ commute. Notice that the
symmetry relation is reflexive, so if σ is symmetry for K, then so is K for σ.

Let us show that the KdV equation ut = K = u3x + 6uux has a symmetry uτ =
σ = ux. Thus

∂K

∂τ
= (u3x + 6uux)τ = (uτ )3x + 6uτux + 6u(uτ )x = u4x + 6u2

x + 6uu2x

and

∂σ

∂t
= (ux)t = (ut)x = u4x + 6u 2

x + 6uu2x.

This means that the KdV equation is invariant under the translations of the spa-
tial variable since

σ =
dφεu

dε

∣∣∣∣
ε=0

= ux where φεu(x, t) = u(x+ ε, t).

Actually, the KdV equation possesses a hierarchy of infinitely many pairwise
commuting symmetries:

ut1 = ux

ut3 =
1

4
(u3x + 6uux)

ut5 =
1

16

(
u5x + 10uu3x + 20uxu2x + 30u2ux

)
ut7 =

1

64

(
u7x + 14uu5x + 42uxu4x + 70u2xu3x

+ 70u2u3x + 280uuxu2x + 70u 3
x + 140u3ux

)
...

(1.12)

This hierarchy is called the KdV hierarchy because of the first nontrivial member
thereof. This is a common feature of completely integrable systems: we have not
a single integrable system but a whole family of pairwise commuting completely
integrable systems.

We say that a scalar field given by the functional

F =

∫
Σ

f(u,ux,u2x, . . . ) dx

(where we assumed boundary conditions such that the integral of total derivative
with respect to x vanish) is a conserved quantity for a vector field (1.1) if

dF

dt
=

∫
Σ

df

dt
dx = 0,



Geometric aspects of integrable systems 11

where t is the evolution parameter related to (1.1). This means that F is constant
along the integral curve of (1.1). For this reason the conserved quantity is often
referred to as an integral (or a constant) of motion.

In addition to the above hierarchy of symmetries the KdV equation also has an
infinite hierarchy of conserved quantities:

H−1 =

∫
Σ

u dx

H1 =

∫
Σ

1

4
u2 dx

H3 =

∫
Σ

1

16

(
2u3 − u 2

x

)
dx

H5 =

∫
Σ

1

64

(
5u4 − 10uu 2

x + u 2
2x

)
dx

H7 =

∫
Σ

1

256

(
14u5 − 70u2u 2

x + 14uu 2
2x − u 2

3x

)
dx

... .

(1.13)

Actually, all the functionals from the above hierarchy are constants of motion for
all members of the KdV hierarchy.

1.3.5 Complete integrability

The notion of complete integrability is best understood in the case of finite-
dimensional dynamical systems. Consider the so-called Hamiltonian equations,
having origin in the classical mechanics,

dqi
dt

=
∂H

∂pi

dpi
dt

= −∂H
∂qi

i = 1, . . . , N, (1.14)

living in 2N-dimensional phase space, where the function H = H(p, q) is called
Hamiltonian. This systems has N degrees of freedom. Due to the classical theo-
rem of Liouville and its modern version given by Arnold [3], we say that the above
system is completely integrable if it has N functionally independent integrals of
motion H1 = H,H2, . . . , HN being in involution with respect to the canonical Pois-
son bracket. This means that the completely integrable system (1.14) can be
integrated in quadratures. Moreover, by the Noether theorem then this system
has N mutually commuting symmetries.

One can extend this notion to the field systems (1.1), like the KdV equation,
that can be interpreted as having infinitely many degrees of freedom. Thus we
say that a dynamical system (1.1) is integrable if it has a hierarchy of infinitely
many pairwise commuting symmetries and/or an infinite hierarchy of conserved
quantities. We say that a system is completely integrable if it further has infinitely
many exact solutions, for example the multi-soliton ones, or e.g. if the inverse
scattering transform method is applicable.

There are also several other different definitions of complete integrability, and
many systems simultaneously satisfy the conditions of several of these defini-
tions. The definitions in question include e.g. existence of an appropriate Lax
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pair and classical R-matrix formalism (see Chapter 3), the aforementioned in-
verse scattering transform method, existence of bi-Hamiltonian structures (see
Chapter 2), Bäcklund and Darboux transformations, or e.g. the so-called bilin-
ear Hirota equations. For the above notions of integrability, and more, see the
following already classical references [1], [4], [13], [21], [32] and [34].

1.4 Some useful algebraic concepts

1.4.1 Lie algebras

We will recall some basic definitions.

Definition 1.1 A linear (or vector) space V over the commutative field K endowed
with a bilinear product [·, ·] : V × V → V which is antisymmetric

[a, b] = − [b, a] a, b, c ∈ V

and satisfies the so-called Jacobi identity

[a, [b, c]] + [b, [c, a]] + [c, [a, b]] = 0 a, b, c ∈ V

is called a Lie algebra and the product [·, ·] is called the Lie bracket.

Notice that any algebra A endowed with associative multiplication ·, is a Lie
algebra with Lie bracket defined by the commutator:

[a, b] := a · b− b · a a, b ∈ A. (1.15)

Of course, if this multiplication is commutative, the Lie algebra structure is trivial.

1.4.2 Derivations

Definition 1.2 A derivation of an algebra A is a mapping (morphism) ∂ : A → A
such that it is linear

∂ (αa+ βb) = α∂(a) + β∂(b) α, β ∈ K a, b ∈ A

and satisfied the Leibniz rule

∂(ab) = ∂(a)b+ a∂(b) a, b ∈ A.

By DerA we will denote the space of all derivations on A. Then

Proposition 1.3 DerA is a Lie algebra with respect to the commutator

[∂1, ∂2] = ∂1∂2 − ∂2∂1 ∂1, ∂2 ∈ DerA. (1.16)

The proof is left as an exercise for the reader. Notice that the composition of
two derivations is not a derivation.
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1.4.3 The left module and the associated complex

Definition 1.4 Let V be a Lie algebra endowed with the Lie bracket [·, ·]. A left
V-module is a linear space Ω0 such that elements of V act on Ω0 as left linear
operators

V × Ω0 → Ω0 (v, f) 7→ vf

and the following requirement is satisfied

∀ v, w ∈ V ∀ f ∈ Ω0 (vw − wv) f = [v, w] f.

Notice that the Lie bracket in V does not have to be necessarily in the form of a
commutator.

Now we can define q-forms as totally antisymmetric q-linear mappings

ω : V × · · · × V → Ω0. (1.17)

The space of all forms of degree q is denoted by Ωq. Then the exterior differential
(also known as the exterior derivative) d : Ωq → Ωq+1 is defined as

dω(v1, . . . , vq+1) =
∑
i

(−1)i+1vi (ω(v1, . . . , v̂i, . . . , vq+1))

+
∑
i<j

(−1)i+jω([vi, vj] , . . . , v̂i, . . . , v̂j, . . . , vq+1).
(1.18)

The hatˆover vi means that vi is omitted. The inner product iv : Ωq+1 → Ωq is

ivω(v1, . . . , vq) = ω(v, v1, . . . , vq),

where v, v1, . . . , vq+1 ∈ V.

Proposition 1.5 The square power of the exterior differential vanish, i.e. d2 = 0.

Proof. Exercise. �

Let Ω =
⊕∞

q=0 Ωq. Then (Ω, d) is called V-complex associated with left V-module
Ω0. This complex can be equipped with a bilinear map called the exterior product

∧ : Ωp × Ωq → Ωp+q (ω, η) 7→ ω ∧ η.

It is required that this product is anti-commutative:

ω ∧ η = (−1)pqη ∧ ω ω ∈ Ωp η ∈ Ωq,

and associative
(ω ∧ η) ∧ ξ = ω ∧ (η ∧ ξ).

The action of one-forms η ∈ Ω1 on vectors v ∈ V can be given through the
bilinear duality map:

〈·, ·〉 : Ω1 × V → Ω0 (η, v) 7→ 〈η, v〉 ≡ η(v).
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Then, the generating rule for the exterior product of k one-forms γi ∈ Ω1 acting on
k vectors can be given by the determinantal formula

(γ1 ∧ · · · ∧ γk)(v1, . . . , vk) = det(〈γi, vj〉) 1 6 i, j 6 k. (1.19)

Moreover, for an arbitrary q-form ω the following relations hold:

d(ω ∧ η) = dω ∧ η + (−1)qω ∧ dη
iv(ω ∧ η) = ivω ∧ η + (−1)qω ∧ ivη,

The vector space Ω endowed with the wedge product is called an exterior algebra
over K.

Example 1.6 Consider the Lie algebra of derivations on an algebra A, so let V =
DerA. Then it is clear that Ω0 = A is a V-left module, and hence according to
the above procedure we can construct complex (Ω, d) completely determined by a
given algebra A.

Later in these lecture notes we will be interested in the linear operators θ : V →
Ω1 and π : Ω1 → V. The so-called adjoint representations of these operators with
respect to the duality map are given through θ† : V → Ω1 and π† : Ω1 → V such that
the following equalities hold〈

θ†v,w
〉

= 〈θw,v〉 v,w ∈ V〈
α, π†β

〉
= 〈β, πα〉 α, β ∈ Ω1.

Then the operators satisfying θ† = −θ (or respectively π† = −π) are called skew-
adjoint operators.

Remark 1.7 In practice it is rather difficult to work with all linear functionals
acting on some infinite-dimensional linear vector space. Thus, applying the above
scheme we do not assume that Ωq contains all linear functionals (1.17) but we
require that the spaces Ωq are rich enough. Therefore, we require that

(i) the duality map is nondegenerate, i.e.,

∀ η ∈ Ω1 η 6= 0 ∃ v ∈ V such that 〈η, v〉 6= 0

∀ v ∈ V v 6= 0 ∃ η ∈ Ω1 such that 〈η, v〉 6= 0;

(ii) and the images of the exterior differential and the inner product remain
within the appropriate spaces, i.e., d(Ωq) ⊂ Ωq+1 and iv(Ω

q+1) ⊂ Ωq for all
v ∈ V.

Example 1.8 The space of smooth vector fields on a smooth finite-dimensional
manifold M can be identified with the space of all derivations on the algebra of
smooth functions. Thus it is clear that this space is a left module over the Lie
algebra of vector fields. However, in the case of the well-known de Rham complex
on smooth manifold the space of differential one-forms Ω1 is not the space of
all linear functionals on the Lie algebra of vector fields. Actually, the space Ω1

consists of smooth sections from the cotangent bundle T ?M , which is a union
of finite-dimensional cotangent vector spaces at all points of M . Accordingly, all
other differential forms are constructed as smooth sections of the appropriate
(antisymmetrized) tensor products of several copies of cotangent bundle.
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The operator
Lv = ivd+ div

on the exterior algebra given by complex Ω will be called the Lie derivative along
the vector (field) v ∈ V. Thus, it is immediate from the definitions of the exterior
differential and the interior product that the Lie derivative is a linear operator
Lv : Ωq → Ωq such that

Lvη(v1, . . . , vq) = v(η(v1, . . . , vq))−
∑
i

η(v1, . . . , [v, vi] , . . . , vq), (1.20)

where v, v1, . . . , vq ∈ V. The Lie derivative is a derivation on the exterior algebra

Lv(ω ∧ η) = Lvω ∧ η + ω ∧ Lvη,

that commutes with the exterior differential

Lvd = dLv, (1.21)

for all v ∈ V.
Furthermore, from the above relations one can obtain the following one:

LvLw − LwLv = L[v,w],

where v, w ∈ V.

1.5 Exercises

1. Instead of (1.9-1.10) consider the following pair of operators

L = ∂3
x + u∂x + v A = ∂2

x + a∂x + b,

where u, v are dynamical fields and a, b are some auxiliary functions. Find
such a and b that the Lax equation (1.6) yield consistent two-component evo-
lution system. Find the system in question. This is the completely integrable
Boussinesq system which describes long waves of shallow water moving in
two directions.

2. Show that the first three dynamical systems from the KdV hierarchy (1.12)
pairwise commute.

3. Show that the first four functionals from (1.13) are integrals of motion of all
the three first symmetries from the KdV hierarchy (1.12).

4. Show that the commutator (1.15) on the algebra with associative multiplica-
tion is a well defined Lie bracket.

5. Prove Proposition 1.3.

6. Prove Proposition 1.5. It suffices to use the definition of the exterior differ-
ential (1.18).

7. Show that (1.20) holds.
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2 Theory of infinite-dimensional Hamiltonian sys-
tems

The nonlinear integrable dynamical systems can be considered as evolution vec-
tor fields on some infinite dimensional functional manifolds. Therefore, in this
chapter we present an indispensable set of definitions needed for understanding
at least part of the issues connected with the geometro-algebraic theory of the in-
tegrable systems described by the PDE’s. In particular, we introduce the concepts
of Hamiltonian and bi-Hamiltonian structures.

We assume that the reader is at least familiar with the concept of finite-
dimensional differential geometry and Lie algebras. This chapter may be con-
sidered as a compiled version of the theories presented in [37],[16],[13] and [4].
For the general theory of infinite-dimensional manifolds see e.g. [12].

2.1 Infinite-dimensional differential calculus

The construction of infinite-dimensional differential calculus, needed for the the-
ory of soliton systems using the rigorous definition of infinite-dimensional mani-
folds is a rather cumbersome task. There are two best known approaches. The
first one is presented in [37] and relies on an appropriate generalization (or pro-
longation) of finite-dimensional ideas. The second one is a (very) abstract rigorous
algebraic approach, in which the specific properties of the phase space are irrele-
vant, see [16]. Here we will try to tread between them.

2.1.1 Infinite dimensional phase space and (1+1)-dimensional vector fields

Consider a linear space U of N-tuples

u := (u1, u2, . . . , uN)T

of smooth functions
ui : Σ→ K x 7→ ui(x)

with values in a commutative field of complex or real numbers, K = C or R. We
have Σ = S1 if the boundary conditions imposed on ui are periodic, or Σ = R if the
functions ui are Schwartz functions, i.e., ui and all their derivatives rapidly vanish
as |x| → ∞.

We can introduce topology on U turning the latter into a topological linear
space, on which one can introduce differential calculus with full rigor, see for
example [52]. Nevertheless, in these lecture notes we avoid discussions related to
the issues of functional analysis, as they are irrelevant unless we consider general
classes of solutions, and we concentrate only on algebraic aspects of differential
calculus related to the theory of integrable systems.
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Introduce ’formal’ local coordinates {u,ux,u2x, . . . } on U defining our infinite-
dimensional phase space, where

uijx :=
∂jui

∂xj
j = 0, 1, 2, . . . .

We will refer to U as to an infinite-dimensional manifold but only in a rather formal
sense. Let A be an algebra of smooth differential functions

f [u] := f(u,ux,u2x, . . . )

of a finite number of the above coordinates; we consider A as an algebra over the
field K only. Notice that we do not assume explicit dependence of these functions
on x.

This algebra can be extended into a differential algebra A[[∂x]]
1, where ∂x is a

linear operator of total derivative with respect to x, i.e.,

∂x : A → A f [u] 7→ ∂xf [u] =
∑
n,i

∂f

∂uinx
ui(n+1)x.

Then, each element A ∈ A[[∂x]] has the form

A =
∑
i>0

ai∂
i
x ai ∈ A.

Later we will be interested in linear differential operators

Φ : AN → AN η 7→ Φη

such that

(Φη)i =
N∑
j=1

Φijη
j i = 1, . . . , N,

and
Φij ∈ A[[∂x]].

Nevertheless, the above notion of linear differential operators is often, in particu-
lar in the case of applications, not sufficient. Thus, we allow the extension of the
above notion to

Φij ∈ A[[∂x, ∂
−1
x ]],

i.e., to the case of non-local operators. Here, ∂−1
x is a formal inverse of ∂x, which

for example could be defined as ∂−1
x f(x) :=

∫ x
−∞ f(x′)dx′. The non-local linear differ-

ential operator Φ cannot be defined on the whole N-tuple of differential functions.
Thus, in the non-local case we assume that Φ is defined on the appropriate sub-
space of AN such that it image lies within AN , see e.g. [41] and references therein
for more details. The assertions presented in the forthcoming sections will be
formulated using local linear differential operators. Nevertheless, the results pre-
sented remain valid for nonlocal operators as well.

1A[[λ, µ, . . . ]] means the ring of all polynomials in λ, µ, . . . with coefficients from A
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The scalar fields on U are functionals F : A → K:

F (u) =

∫
Σ

f [u] dx, (2.1)

where densities f [u] belong to the quotient space A/∂xA, since due to the above
boundary conditions the integrals (2.1) vanish if f [u] are total derivatives. Thus,
one can integrate by parts staying in the same equivalence class∫

Σ

fxg dx = −
∫

Σ

fgx dx.

Let us denote the space of all above functionals (2.1) by F . It is important to
mention that F is a vector space, but, unlike the finite-dimensional case, does
not have the structure of algebra due to the lack of multiplication law.

A smooth vector field on U is given by a system of partial differential equations

ut = K(u), (2.2)

of first order in some evolution parameter t ∈ I, where I is an subinterval of R and
ut := ∂u

∂t
. Coefficients of

K(u) := (K1[u], K2[u], . . . , KN [u])T

are assumed to belong to A. Then, system (2.2) represents a (1+1)-dimensional
dynamical system as we can treat t as an temporal parameter (time) and x as a
spatial coordinate. The space of smooth vector fields K(u) on U , which we will
denote by V, is a linear space over the field K and can be identified with the space
of N-tuples of differential functions AN .

Definition 2.1 A scalar field on U , i.e., a functional F (u) ∈ F , is said to be an
integral of motion (or a conserved quantity) of (2.2), if the total derivative of F with
respect to evolution parameter of (2.2) vanishes, i.e.,

dF (u)

dt
= 0.

Definition 2.2 We will refer to the vector field v ∈ V, associated with the dynam-
ical system

uτ = v(u),

as to the symmetry of (2.2), if the flows of the vector fields v and K commute, i.e.,

(ut)τ = (uτ )t. (2.3)

Lemma 2.3 All vector fields K ∈ V of the form (2.2) commute with so-called x-
translation symmetry

uτ = ux. (2.4)
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Proof. For i = 1, . . . , N we have

(uit)τ = Ki
τ =

∞∑
n=0

N∑
j=1

ujnx,τ
∂Ki

∂ujnx
=
∞∑
n=0

N∑
j=1

uj(n+1)x

∂Ki

∂ujnx
=
dKi

dx
≡ Ki

x

and (uiτ )t = uix,t = Ki
x. Hence, (uit)τ = (uiτ )t. �

2.1.2 Evolution derivations

Consider the space DerA of all derivations of the algebra of differential functions A.
This space has the Lie algebra structure given by the commutator (1.16). Then
one can show that, under certain technical assumptions, the general form of a
derivation on A is given by

∂f =
∞∑
n=0

N∑
i=1

hin
∂f

∂uinx
f ∈ A,

where also hin ∈ A, then

∂ =
∑
n,i

hin
∂

∂uinx
. (2.5)

We will skip the summation ranges whenever they are obvious. The coefficients
of (2.5) can be obtained from the action on local coordinates, i.e. hin = ∂uinx. There
is a special derivation in DerA, namely, the total derivative with respect to x

∂x =
∑
n,i

ui(n+1)x

∂

∂uinx
.

We will be interested only in the derivations from DerA that can be identified
with vector fields from V. Consider ∂ that commutes with ∂x, i.e. such that

[∂, ∂x] = 0. (2.6)

Then,

hin+1 = ∂ui(n+1)x = ∂∂xu
i
nx

by (2.6)
= ∂x∂u

i
nx = ∂xh

i
n = (hin)x.

So, all the coefficients can be calculated from hi0, i.e., hin = (hi0)nx, and thus the
general form of derivation commuting with ∂x is

∂ =
∑
n,i

(hi0)nx
∂

∂uinx
.

Now, this derivation can be identified with vector field K ∈ V upon setting hi0 = Ki.

Definition 2.4 A derivation ∂K from DerA commuting with total derivative ∂x is
called an evolution derivation, as it can be identified with a vector field K

DerA 3 ∂K =
∑
n,i

Ki
nx

∂

∂uinx
� K ∈ V .

The linear space of all evolution derivations will be denoted by DerVA ∼= V.
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Proposition 2.5 The space of all evolution derivations DerVA is a Lie subalgebra
of DerA with respect to the commutator (1.16), i.e., the commutator of two evolution
derivations is a evolution derivation.

Proof. Let ∂v =
∑

n,i v
i
nx

∂
∂uinx

and ∂w =
∑

n,iw
i
nx

∂
∂uinx

. Then we have

[∂v, ∂w] = ∂v∂w − ∂w∂v

=
∑
n,i

[
∂v(winx)

∂

∂uinx
+ winx∂v

∂

∂uinx
− ∂w(vinx)

∂

∂uinx
− vinx∂w

∂

∂uinx

]
=
∑
n,i

[
∂v(winx)− ∂w(vinx)

] ∂

∂uinx

by (2.6)
=

∑
n,i

[
∂v(wi)− ∂w(vi)

]
nx

∂

∂uinx
.

Thus, the commutator preserves the evolution form. �

Therefore, if ∂v, ∂w ∈ DerVA then

∂[v,w] := [∂v, ∂w] ,

where [v,w] ∈ V is a vector field with coefficients

[v,w]i := ∂v(wi)− ∂w(vi) i = 1, . . . , N.

Hence, the evolution derivations induce the Lie algebra structure on the vector
space V.

Moreover, we can extend the action of evolution derivatives to the functionals
F according to the rule

K(F ) :=

∫
Σ

∂Kf dx F ∈ F ,

where vector field K ∈ V is treated as a linear operator K : F → F . Important is
fact that the action of vector fields on functionals is compatible with the quotient
structure. This means that if two densities f and g differ by an exact derivative
then so do ∂Kf and ∂Kg. This is immediate from the fact that the evolution deriva-
tions commute with total derivative with respect to x. Then, the Lie bracket in V
is consequently defined as a commutator

[v,w] := v w −w v v,w ∈ V , (2.7)

as then

[v,w] (F ) =

∫
Σ

∂[v,w]f dx F ∈ F .

Notice that the composition of two vector fields v w by itself is not a well defined
vector field. Why?
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Notice that the total derivative itself is an evolution derivation and since

∂x ≡ ∂ux

it can be identified with the translational symmetry (2.4). Thus, showing that the
above Lie bracket in V is compatible with the commutation of flows one can see
that the definition of evolution derivations is consistent with Lemma 2.3.

Example 2.6 Consider two one-component vector fields v = uux and w = u2x.
Then

[v,w] = ∂v(u2x)− ∂w(uux) = 2uxu2x.

2.1.3 Variational calculus

From the previous section it is obvious that the space of functionals F on U is
a V-left module with respect to the Lie algebra of vector fields V ∼= DerVA. Thus,
let Ω0 := F . Now taking into account the requirements from Remark 1.7 we can
construct differential forms according to Section 1.4.3.

A (functional) differential q-form reads

ω =

∫
Σ

dx{
∑
i,n

ωi1,...,iqn1,...,nq
dui1n1x

∧ · · · ∧ duiqnqx}, (2.8)

where the sum is in fact over a finite number of terms (diffferent for different
forms!), ωi1,...,iqn1,...,nq ∈ A are differential functions and duinx are ’formal’ dual objects to
∂

∂ujmx
such that

duinx

(
∂

∂ujmx

)
= δi,jδn,m.

Then, the space Ωq consists of all elements of the form (2.8) for fixed q = 0, 1, 2, . . . .
A one-form η ∈ Ω1

η =

∫
Σ

dx{
∑
i,n

ηindu
i
n}

acts on an evolution derivation v ∼= ∂v =
∑

n,i v
i
nx

∂
∂uinx

as follows:

〈η,v〉 =

∫
Σ

∑
i,n

ηinv
i
nx dx =

∫
Σ

∑
i,n

(−1)n(ηin)nxv
i dx, (2.9)

where we integrated by parts. Then, an arbitrary q-form (2.8) acts on evolution
derivations according to the determinant formula (1.19). Of course, the functional
differential q-forms (2.8) act on evolution derivations within equivalence classes
of A/∂xA. This means that two such functional differential forms are equivalent
when their densities differ modulo total derivatives of x. Using (1.20) and the fact
that evolution derivatives commute with ∂x we have

L∂xη(v1, . . . ,vq) = ∂x(η(v1, . . . ,vq)).

Hence, the above equivalence classes in Ωq constitute the following quotient space
Ωq/L∂xΩ

q.
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Upon inspection of (2.9) it is clear that one can make the following identifica-
tion

∂nxdu
i ≡ duinx

and hence we can use the following integration by parts formula∫
Σ

dx{ω ∧ ∂xη} = −
∫

Σ

dx{∂xω ∧ η}.

Moreover, (2.9) implies that an arbitrary one-form η ∈ Ω1 can be represented in
the following canonical form

η =

∫
Σ

dx
∑
i

ηidu
i ηi ∈ A. (2.10)

Hence the space of differential one-forms Ω1/L∂xΩ
1 can be identified with the space

of N-tuples of differential functions AN . Then the action of an arbitrary one-
form in the canonical representation (2.10) on an arbitrary vector field v ∼= ∂v =∑

n,i v
i
nx

∂
∂uinx

is given by

〈η,v〉 =

∫
Σ

N∑
i=1

ηivi dx =

∫
Σ

ηT · v dx,

where η := (η1, η2, . . . , ηN)T.
To an arbitrary differential two-form ω ∈ Ω2 one can associate a skew-adjoint

linear operator
θ : V → Ω1 θ = (θij),

where θij ∈ A[[∂x]], such that

ω(v,w) ≡ 〈θw,v〉 = −〈θv,w〉 = −ω(w,v) v,w ∈ V .

Therefore, ω can be represented in the following canonical form

ω =
1

2

∫
Σ

{
∑
i,j

dui ∧ θij duj},

for which we have

ω(v,w) =
1

2

∫
Σ

{
∑
i,j

dui ∧ θij duj}(v,w)
by (1.19)

=

∫
Σ

∑
i,j

viθij(w
j) dx

=

∫
Σ

(θw)T · v dx ≡ 〈θw,v〉 .

The skew-adjointness in this setting means that

θ† = −θ ⇔ (θij)
† = −θji.

Thus, the space of differential two-forms Ω2/L∂xΩ
2 can be identified with the space

of the skew-adjoint differential operators whose coefficients are N ×N differential
square matrices.
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Example 2.7 Consider the one-component (N = 1) two-form

ω =

∫
Σ

dx{uxdu ∧ du2x} = −
∫

Σ

dx{(uxdu)x ∧ dux}

= −
∫

Σ

dx{u2xdu ∧ dux + uxdux ∧ dux}

=

∫
Σ

dx{du ∧ (−u2x∂x)du} =

∫
Σ

dx{du ∧ (u2x∂x)
†du}

=
1

2

∫
Σ

dx{du ∧
(
(u2x∂x)

† − u2x∂x
)
du}.

The corresponding skew-adjoint operator reads

θ = (u2x∂x)
† − u2x∂x = −∂xu2x − u2x∂x.

Proposition 2.8 The local formula for the exterior differential d : Ωq → Ωq+1 defined
by (1.18) is given by

dω =

∫
Σ

dx{
∑
i,n

∑
k,m

∂ω
i1,...,iq
n1,...,nq

∂ukmx
dukmx ∧ dui1n1x

∧ · · · ∧ duiqnqx},

where ω ∈ Ωq has the form (2.8). Moreover, it is consistent with the quotient struc-
tures in Ωq/L∂xΩ

q for all q = 0, 1, . . . .

Then, the differential (or gradient) of a functional F =
∫

Σ
f dx ∈ F , i.e., of a

zero-form, is given by

dF =

∫
Σ

dx{
∑
i,n

=

∫
Σ

dx
∂f

∂uinx
duinx}

=

∫
Σ

dx{
∑
i,n

(−∂x)n
(
∂f

∂uinx

)
dui} =:

∫
Σ

dx{
∑
i

δF

δui
dui},

where integrating by parts we brought dF ∈ Ω1 into its canonical form. Hence, dF
can be represented as an N-tuple

dF (u) =

(
δF

δu1

, . . . ,
δF

δuN

)T

,

where
δF

δui
:=
∑
n>0

(−∂x)n
∂f

∂uinx
=
∂f

∂ui
− ∂x

∂f

∂uix
+ ∂2

x

∂f

∂ui2x
− . . .

is the usual variational derivative.
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2.1.4 Directional and Lie derivatives

In general, tensor fields on U of (r, s)-type (r times contravariant and s times
covariant) are multi-linear maps

V × · · · × V︸ ︷︷ ︸
s

×Ω1 × · · · × Ω1︸ ︷︷ ︸
r

→ Ω0.

Thus, the differential q-forms are totally anti-symmetric s-covariant tensor fields.
The vector fields V are once-contravariant tensor fields. We are not going to con-
sider general theory of such tensor fields; we will focus only on the cases of inter-
est to us.

The first case of interest is that of twice-contravariant tensor fields π : Ω1 ×
Ω1 → Ω0, the ones to which we can, through the duality map, associate linear
differential operators π : Ω1 → V such that

π(ξ, η) = 〈η, πξ〉 =

∫
Σ

ηT · πξ dx, (2.11)

where ξ, η ∈ Ω1. Thus, π = (πij) are N ×N matrices with coefficients from A[[∂x]] or
A[[∂x, ∂

−1
x ]] in the nonlocal case.

Definition 2.9 ([37]) A linear differential operator π : Ω1 → V is said to be degen-
erate if there exists a nonzero differential operator π̃ : V → Ω1 such that π̃ · π ≡ 0.

Therefore, for a nondegenerate linear differential operator π : Ω1 → V we can
construct its inverse π : V → Ω1, defining a twice-covariant tensor field such that

ππ−1 = π−1π = I,

where I is an N ×N identity matrix. But in general π−1 will be nonlocal.
The second case of interest are linear differential operators Φ : V → V defining

tensor fields of type (1, 1)

Φ(v, η) = 〈η,Φv〉 =

∫
Σ

ηT · Φv dx v ∈ V η ∈ Ω1. (2.12)

Definition 2.10 For an arbitrary tensor field T (u) on U its directional (or Fréchet)
derivative in the direction of a vector field K ∈ V is defined by the formula

T ′(u)[K] =
dT (u + εK)

dε

∣∣∣∣
ε=0

.

Important is fact that the directional derivative does not change the type of the
tensor field. The procedure of finding directional derivatives of T is quite simple as
it reduces to the differentiation of all coefficients of T with respect to the evolution
parameter associated with K.

Consider directional derivative of a functional F (u) =
∫

Σ
f [u] dx in the direction

of a vector field ut = K(u). Then

F ′(u)[K] ≡
∫

Σ

df

dt
dx =

∫
Σ

∑
i,n

∂f

∂uinx
(uit)nx dx =

∫
Σ

∑
i

δF

δui
Ki dx

=

∫
Σ

dFT ·K dx = 〈dF,K〉 = K(F ).

(2.13)
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Thus we see that the directional derivative of a given functional is the same as the
action of a vector field on this functional. On the other hand, the above formula
yields another method for defining the differential dF .

Moreover, if F is an integral of motion of K, the time derivative of F vanishes:

dF

dt
= F ′[K] = K(F ) = 〈dF,K〉 = 0,

as it naturally should.

Proposition 2.11 An equivalent formula for the Lie bracket (2.7) in V can be de-
fined by means of directional derivatives as follows:

[v,w] := w′[v]− v′[w], (2.14)

where v,w are arbitrary vector fields.

Proof. Left as an exercise for the reader. �

Thus we have two alternative formulas for the Lie bracket of vector fields that
have their own advantages and disadvantages. We will use both of these formulas.
When the Lie bracket of two vector fields vanish we say that these vector fields
commute. Notice that commutativity with respect to the Lie bracket is equivalent
to commutativity of the respective flows (2.3).

Using (2.14) we can rewrite the coordinate-free formula for the exterior differ-
ential (1.18) as

dω(v1, . . . , vq+1) =
∑
i

(−1)i+1ω′[vi](v1, . . . , v̂i, . . . , vq+1), (2.15)

where ω ∈ Ωq and v1, . . . , vq+1 ∈ V.

Lemma 2.12 The following relation

〈dF ′[v],w〉 = 〈dF ′[w],v〉 (2.16)

holds for arbitrary F ∈ F and v,w ∈ V.

Proof. The above result is equivalent to the vanishing of square power of the
exterior differential, i.e. d2F = 0. Hence, by (2.15) we have

0 = d2F (v,w) = dF ′[v](w)− dF ′[w](v) = 〈dF ′[v],w〉 − 〈dF ′[w],v〉

and the result follows. �

Yet another important operator is the Lie derivative. It is defined by the formula
(1.20) within the exterior algebra of functional differentials. However, it can be
uniquely extended to arbitrary tensor fields assuming that it preserves the Leibniz
rule. Now, we will calculate the formulae for the Lie derivative along the vector
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field K ∈ V for the tensor fields of interest to us. From the definition (1.20) it
follows that for an arbitrary functional F ∈ F , i.e., a zero-form, we have

LKF = K(F ) = F ′[K] = 〈dF,K〉 .

Therefore, for any v ∈ V we have

LK 〈dF,v〉 = 〈dLKF,v〉+ 〈dF, LKv〉 ,

where we used the formula (1.21). Hence,

〈dF, LKv〉 = LK 〈dF,v〉 − 〈dLKF,v〉 ⇐⇒
(LKv)(F ) = LK(v(F ))− v(LKF ) = (Kv − vK)(K)

and
LKv = [K,v] .

In a similar fashion one can show that for a linear operator π : Ω1 → V such that
(2.11) holds we have

〈η, LKπ ξ〉 = 〈η, π′[K]ξ〉 − 〈η,K′[πξ]〉 −
〈
η, π K′†[ξ]

〉
⇐⇒

LKπ = π′[K]−K′π − π K′†, (2.17)

where the adjoint directional derivative is defined through the duality map〈
K′†[ξ],v

〉
:= 〈ξ,K′[v]〉 .

For a linear differential operator Φ : V → V such that (2.12) holds we have

〈η, LKΦ v〉 = 〈η,Φ′[K]v〉+ 〈η,Φ K′[v]〉 − 〈η,K′[Φv]〉 ⇐⇒
LKΦ = Φ′[K] + Φ K′ −K′Φ. (2.18)

The Lie derivative gives us information on how the tensor fields change locally
along an integral curve of a given dynamical system. Thus the following definition
is very convenient.

Definition 2.13 A tensor field T is an invariant of a vector field K ∈ V, if

LKT = 0.

Hence, invariant scalar fields (functionals) are nothing but integrals of motion,
and invariant vector fields are symmetries. As we will see in the following sections,
invariant tensor fields play major role in the theory of integrable systems.
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2.2 Hamiltonian theory

2.2.1 Hamiltonian systems

Definition 2.14 A bilinear product {·, ·} : F × F → F such that

{H,F}π = 〈dF, πdH〉 =

∫
Σ

dFT · πdH dx F,H ∈ F , (2.19)

where π : Ω1 → V is a linear differential operator, is called a Poisson bracket, when
it defines a Lie algebra structure on F . The operator π is called a Poisson (or
Hamiltonian) operator if the bracket is a Poisson bracket.

In contrast with the usual definition of the Poisson bracket in finite-dimensional
case, the Leibniz rule is missing from the above definition. There is no counter-
part for this rule, as F no longer has an algebra structure. Because of this, some
further properties must be proved in a more sophisticated way than it is usually
done for the case of finite-dimensional manifolds. The first question is when a
given differential operator π : Ω1 → V yields a Poisson bracket.

Theorem 2.15 The bracket (2.19) defines a Lie algebra on F if

(i) π is a bi-vector, i.e., it is skew-symmetric with respect to the duality map

π† = −π ⇐⇒ 〈η, πξ〉 = −〈ξ, πη〉 η, ξ ∈ Ω1;

(ii) and for arbitrary one-forms α, β, γ ∈ Ω1 the following identity holds:

〈α, π′ [πβ] γ〉+ 〈β, π′ [πγ]α〉+ 〈γ, π′ [πα] β〉 = 0. (2.20)

Proof. The first condition is clear, as it is due to the anti-symmetry property of
the Poisson bracket. The second one follows from the Jacobi identity, as we have

{F, {G,H}}+ c.p. = 〈d {G,H} , πdF 〉+ c.p.

= {G,H}′ [πdF ] + c.p. = 〈dH, πdG〉′ [πdF ] + c.p.

= 〈dH ′ [πdF ] , πdG〉+ 〈dH, π′ [πdF ] dG〉+ 〈dH, πdG′ [πdF ]〉+ c.p.

by c.p. and (i)
= 〈dG′ [πdH] , πdF 〉+ 〈dH, π′ [πdF ] dG〉 − 〈dG′ [πdF ] , πdH〉+ c.p.

by (2.16)
= 〈dH, π′ [πdF ] dG〉+ c.p. = 0,

and from the fact that the last equality does not depend on the form of one-forms.
This can be seen upon rewriting the condition explicitly. �

To check whether a skew-adjoint differential operator satisfies (2.20) is in gen-
eral a cumbersome task. The right-hand side of (2.20) is a tri-vector; the con-
dition of vanishing of the latter can be rewritten in an explicit ’coordinate’ form,
thus simplifying the above task, see Theorem 7.8 in [37].
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Definition 2.16 A vector field K ∈ V is said to be Hamiltonian (with respect to π)
if there exists a Poisson operator π : Ω1 → V and scalar field H ∈ F such that

K = πdH.

Then, the functional H is called a Hamiltonian functional or simply a Hamiltonian
(for K), and the evolution system (2.2) is said to be Hamiltonian with respect to π
with a Hamiltonian H.

Two functionals are said to be in involution with respect to a Poisson bracket
if this Poisson bracket of these two functionals vanishes. Hence, if K is a Hamil-
tonian vector field, i.e., K = πdH, then F is an integral of motion for K if it is in
involution with Hamiltonian H, since

F ′ [K] = 〈dF,K〉 = 〈dF, πdH〉 = {H,F}π = 0.

Of course, any Hamiltonian itself is an integral of motion of the Hamiltonian
systems it generates. The following proposition is very important.

Proposition 2.17 Let
XH = πdH for H ∈ F

stand for the Hamiltonian vector fields with respect to some Poisson operator π.
Then, the linear map

πd : F → V F 7→ πdF,

being composition of the exterior differential with Poisson operator, is a Lie algebra
homomorphism, i.e.,

πd {F,G}π = [πdF, πdG] ⇐⇒ X{F,G}π = [XF , XG] .

Proof. We have
{H,F}π = 〈dF, πdH〉 = 〈dF,XH〉 = XH(F ),

and thus
{{F,G}π , H}π = X{F,G}π(H).

Then, by the Jacobi identity for the respective Poisson bracket one finds that

{{F,G}π , H}π = {F, {G,H}π}π + {G, {H,F}π}π = {F,XG(H)}π − {G,XF (H)}π
= (XFXG −XGXF ) (H) = [XF , XG] (H),

what ends the proof. �

From this proposition it follows that if two functionals are in involution then
the related Hamiltonian vector fields (and dynamical systems) commute. Thus,
if we have fixed a Hamiltonian dynamical system with respect to some Poisson
tensor π, the Lie algebra homomorphism πd : F → V maps integrals of motion into
symmetries and thus we have a Hamiltonian version of the well-known Noether
theorem. Moreover, conserved quantities and symmetries constitute Lie subalge-
bras of a suitable Poisson algebra of scalar fields and of the Lie algebra of vector
fields, respectively.
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Proposition 2.18 A given Poisson tensor π : Ω1 → V is invariant under its Hamilto-
nian vector fields K = πdH, i.e.,

LKπ = LπdHπ = 0

for all H ∈ F .

Proof. Left as an exercise for the reader. �

It often happens that we need to restrict the dynamics under study to a ’sub-
manifold’ defined trough some constraints. In such a case, a question arises
whether and how one can reduce Poisson tensors. The simplest posible case is
considered in the following lemma.

Lemma 2.19 Assume that the linear phase space U = U1⊕U2 is spanned by u1 ∈ U1

and u2 ∈ U2, i.e. u = (u1,u2)T, and let

π(u1,u2) =

(
π11(u1,u2) π12(u1,u2)
π21(u1,u2) π22(u1,u2)

)
be a Poisson operator on U . Also let π22 be nondegenerate and hence invertible.
Then, for an arbitrary constant c ∈ U2 and the constraint u2 = c the operator

πred(u1) := π11(u1, c)− π12(u1, c) · [π22(u1, c)]−1 · π21(u1, c)

is a Poisson operator on the affine space U1 + c.

We skip the proof of the above lemma as it consists of a pages of a tedious and
cumbersome, yet rather straightforward calculations, see [15].

2.2.2 Recursion operators

Definition 2.20 A linear differential operator Φ : V → V that upon acting on a
symmetry produces another symmetry of a given vector field K ∈ V is called a
recursion operator for K.

The following simple proposition holds.

Proposition 2.21 A linear differential operator Φ : V → V is a recursion operator
for K ∈ V if and only if it is invariant under K, i.e., LKΦ = 0.

Proof. Let σ ∈ V be a symmetry of K, i.e., LKσ = 0. Then

LK(Φσ) = (LKΦ)σ + Φ(LKσ) = (LKΦ)σ = 0.

Hence, Φσ is symmetry of K if and only if LKΦ = 0. �

Notice that in most cases recursion operators are nonlocal integro-differential
operators, see e.g. [41] and references therein for the discussion of the struc-
ture of corresponding nonlocalities. The most important are recursion operators
possessing the so-called heredity property.
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Definition 2.22 Let Φ : V → V be a linear (integro-)differential operator such that
for an arbitrary vector field v ∈ V

LΦvΦ = Φ LvΦ.

Then Φ is called a hereditary operator (or a regular operator, or a Nijenhuis oper-
ator).

A straightforward corollary of the definition is the following theorem.

Theorem 2.23 Let Φ : V → V be a hereditary operator and K be a vector field such
that LKΦ = 0. Let Kn = ΦnK for n = 0, 1, 2, . . . . Then

(i) Φ is invariant under Kn for all n, i.e., LKnΦ = 0;

(ii) the vector fields Kn pairwise commute, i.e.

[Km, Kn] = 0.

Proof. The first part follows from the definition of a hereditary operator and
assumptions in the theorem, thus

LKnΦ = ΦnLKΦ = 0.

For the second part we have

[Km,Kn] = LKmKn = LΦmK(ΦnK) = LΦmK(Φn)K + Φn LΦmKK

= Φm LK(Φn) K + Φm+n LKK = 0,

where we made further use of the Leibniz chain rule. �

Almost all known today recursion operators are hereditary. Thus, if we have
a dynamical system with a hereditary recursion operator which generates an in-
finite hierarchy of independent vector fields, then we can refer to this system as
to an integrable one. Actually all the systems from this hierarchy will pairwise
commute, i.e., one system will be a symmetry to another, and all these systems
will be integrable in the above sense.

2.2.3 Bi-Hamiltonian systems

The dynamical systems that can be represented as Hamiltonian ones in two dis-
tinct ways possesses important properties inherent to the completely integrable
systems. The remarkable concept of bi-Hamiltonian evolution equations was first
introduced by F. Magri [31].

Definition 2.24 A vector field K ∈ V is called bi-Hamiltonian with respect to Pois-
son operators π0 and π1 if there exists functionals H0, H1 ∈ F such that

K = π0dH1 = π1dH0. (2.21)



Geometric aspects of integrable systems 31

For the bi-Hamiltonian system (2.21) one can immediately construct two addi-
tional Hamiltonian vector fields, as

K0 = π0dH0 = π1d(·)
K = π0dH1 = π1dH0

K2 = π0d(·) = π1dH1,

which yield a ‘pre-beginning’ of the so-called bi-Hamiltonian chain. Of course the
Hamiltonians of (2.21) are integrals of motion of K and hence are in involution
with respect to the Poisson brackets generated by π0 and π1. Hence, by Proposi-
tion 2.17 the vector fields K0 and K2 commute with K. Now, several questions
arise. When K1 and K2 commute? When there exist Hamiltonians making them
into bi-Hamiltonian systems? And, when the above chain can be continued? The
answers are given in the following two theorems.

Definition 2.25 A pair of Poisson tensors π0 and π1 is said to be compatible if the
linear combination π0 + επ1 is also Poisson for any scalar ε.

Actually, for compatibility between two Poisson tensors it is enough to check
whether π0 + π1 is a Poisson tensor.

Theorem 2.26 Let (π0, π1) be a pair of compatible Poisson tensors. Assume that π0

is nondegenerate. Let K ∈ V be such that

LKπ0 = LKπ1 = 0.

Then

(i) the operator Φ = π1 π
−1
0 is hereditary;

(ii) all operators πn = Φnπ0, for n = 0, 1, . . . , are Poisson tensors.

Proof. For the proof of this theorem see [4]. �

Of course, π0 and π1 are invariants of bi-Hamiltonian systems (2.21) associated
with them. Hence, if the vector field K is bi-Hamiltonian with respect to two
compatible Poisson tensors, one of which (say, π0) is non-degenerate, then the
hierarchy of vectors fields

Kn = ΦnK

yields a hierarchy of pairwise commuting dynamical systems. This is the case, as
by the above theorem Φ = ππ−1

0 is a hereditary operator invariant under K since

LKΦ = LK(π1π
−1
0 ) = LKπ1 π

−1
0 − π1π

−1
0 LKπ0 π

−1
0 = 0.

Moreover, if some additional technical assumptions hold, all these systems are
bi-Hamiltonian.

The main properties of bi-Hamiltonian systems are contained in the following
theorem, whose original version is due to Magri [31], and the version given below
is the one of Olver [37].
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Theorem 2.27 Let
ut1 = K1[u] = π0dH1 = π1dH0

be a bi-Hamiltonian system of evolution equations. Assume that the operator π0 is
nondegenerate. Let

Φ := π1 π
−1
0 : V 7→ V ,

be the so-called recursion operator. Assume that for each n = 1, 2, . . . we can recur-
sively define

ut0 = K0[u] := π0dH0 =⇒ Kn = Φ Kn−1

meaning that for each n, Kn−1 lies in the image of π0. Then there exists a sequence
of functionals H0, H1, H2, . . . such that

(i) for each n > 1, the evolution equation

utn = Kn[u] = π0dHn = π1dHn−1 (2.22)

is a bi-hamiltonian system;

(ii) the corresponding evolutionary vector fields Kn all pairwise commute:

[Km,Kn] = 0 m,n > 0;

(iii) the Hamiltonian functionals Hn are all in involution with respect to both of the
Poisson brackets:

{Hm, Hn}π0
= {Hm, Hn}π1

= 0 m,n > 0,

and hence provide an infinite collection of conserved quantities for each of the
bi-Hamiltonian systems (2.22).

Notice that the assumption that Kn−1 lies in the range of π0 is essential for
the recursion procedure. In a more general setting, we should require that Kn−1

lie in the domain of definition of the recursion operator Φ for all n; see [41] and
references therein for the methods of proving this. There are known examples
of bi-Hamiltonian systems for which this assumption is violated. From the fact
that Φ is hereditary it is clear that Kn pairwise commute. But this is not the place
where one needs the assumption about the compatibility of Poisson tensors, since
the commutativity of Kn follows by Proposition 2.17 from the involutivity of the
Hamiltonians Hn. One uses the compatibility assumption to show the existence of
Hamiltonians Hn and this is the non-trivial part of this theorem. For the complete
proof see [37].

It is well known that a finite-dimensional Hamiltonian system with N degrees
of freedom is completely integrable if it has N independent integrals of motion
in involution. Likewise, in infinitely many dimensions we can consider the sys-
tem to be integrable if it has an infinite hierarchy of symmetries or independent
functionally conserved quantities. Hence, a bi-Hamiltonian system from Theo-
rem 2.27 is integrable or even completely integrable, but still one needs to show
that the Hamiltonians Hn are functionally independent. Notice also that there are
known examples of completely integrable systems that are bi-Hamiltonian with



Geometric aspects of integrable systems 33

respect to a non-compatible pair of Poisson tensors. As a closing remark, in order
to stress the importance of the bi-Hamiltonian structures for evolution systems
let us quote Dickey 2

”The existence of two compatible Poisson (or Hamiltonian) structures is
a remarkable feature of the most, if not all, integrable systems, some-
times it is considered as the essence of the integrability.”

Example 2.28 The Korteweg-de Vries equation has bi-Hamiltonian structure [31]

ut3 =
1

4
u3x +

3

2
uux = π0dH3 = π1dH1,

where the Poisson tensors

π0 = 2∂x

π1 =
1

2
∂3
x + u∂x + ∂xu

and Hamiltonians are

H1 =

∫
Σ

1

4
u2 dx

H3 =

∫
Σ

1

16

(
2u3 − u 2

x

)
dx.

Hence, the form of the (hereditary) recursion operator is

Φ = π1π
−1
0 =

1

4

(
∂2
x + 4u+ 2ux∂

−1
x

)
. (2.23)

We find the KdV hierarchy (1.12) with bi-Hamiltonian structure

utn = Φ
n−1

2 ux = π0dHn = π1dHn−2 (2.24)

given for Hamiltonians (1.13).

Example 2.29 Consider the following 2-component system(
u
v

)
t

=

(
−u2x + 2vx

−2
3
u3x + v2x − 2

3
uux

)
= π0dH1 = π1dH0.

Eliminating the field v from the above system one finds the Boussinesq equation

u2t +
1

3
(u3x + 4uux)x = 0.

The related bi-Hamiltonian structure is defined by the following Poisson tensors

π0 =

(
0 3∂x

3∂x 0

)
2[13], page 43.
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and

π1 =

(
2∂3

x + ∂xu+ u∂x −∂4
x − ∂−2

x u+ 2∂xv + v∂x
∂4
x + u∂2

x + ∂xv + 2v∂x −2
3

(∂5
x + ∂3

xu+ u∂3
x + u∂xu) + ∂2

xv − v∂2
x

)
.

The related Hamiltonians are

H0 =

∫
Σ

v dx

H1 =

∫
Σ

1

135

(
−5u3 + 45v2 − 45uxv − 15uu2x − 3u4x

)
dx.

Example 2.30 The next example is the Nonlinear Schrödinger equation

ut = iu2x + 2iu |u|2 ,

where i is the imaginary unit. Taking the complex conjugation the above equatu-
ion can be turn into bi-hamiltonian one(

u
ū

)
t

=

(
iu2x + 2iu |u|2

−iū2x − 2iū |u|2
)

= π0dH1 = π0dH0,

where

π0 =

(
0 −i
i 0

)
π1 =

(
2u∂−1

x −∂x − 2u∂−1
x ū

−∂x − 2ū∂−1
x u 2ū∂−1

x ū

)
and

H0 =

∫
Σ

i

2
(ūxu− uxū) dx

H1 =

∫
Σ

(
|ux|2 − |u|4

)
dx.

Remark 2.31 There is a very important subclass of dynamical systems that we
have not mentioned yet, namely the so-called integrable dispersionless (or equiv-
alently hydrodynamic) systems. The (1 + 1)-dimensional dispersionless systems
are described by the first-order partial differential equations of the form

uit =
∑
j

Aji (u)ujx i, j = 1, . . . , n.

The theory describing these equations belongs to the most recent ones and has
been systematically developed from the 1980’s. In the beginning the theory was
mainly developed by the Russian school, represented by such researchers as:
S. Novikov, B. Dubrovin, S. Tsarev, O. Mokhov, E. Ferapontov, M. Pavlov and
others, and presently it is developed at academic centers all over the world. In-
tensive research into integrable dispersionless systems started since S. Tsarev
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[49] proposed the technique of linearization for a certain class of dispersionless
systems, written in the so-called Riemann invariants, through the so-called gen-
eralized hodograph method, and then showed the way of finding solutions using
quadratures.

The study of the Poisson structures of dispersionless systems was initiated
by B. Dubrovin and S. Novikov [20]. They established a remarkable result that
Poisson tensors of hydrodynamic type can be generated by contravariant nonde-
generate flat Riemannian metrics. These Poisson tensors have the form (2.25)
with c = 0, where gij is a contravariant nondegenerate flat metric and Γijk are the
components of the contravariant Levi-Civita connection. This result was later
widely investigated and the general theory of Poisson tensors of hydrodynamic
type generated by Riemannian metrics of constant curvature was presented by
O. Mokhov and E. Ferapontov [33]. These Poisson tensors of hydrodynamic type
are nonlocal and have the form

πij = gij(u)∂x −
∑
k

Γijk (u)ukx + c uix∂
−1
x ujx, (2.25)

where gij is non-degenerate metric of constant curvature c. Nevertheless, the
condition of nondegeneracy of gij for the above Poisson tensors is not necessary.
The degenerate hydrodynamic Poisson tensors were considered by Grinberg [24]
and Dorfman [16].

A natural geometric setting of related bi-Hamiltonian structures (Poisson pen-
cils) is the theory of Frobenius manifolds based on the geometry of pencils of con-
travariant Riemannian metrics [19]. The Frobenius manifolds were introduced by
B. Dubrovin [18] as a coordinate-free form of the associativity equations appear-
ing in the context of deformations of 2-dimensional topological field theories (TFT)
studied in the early 90s by E. Witten, R. Dijkgraaf, E. Verlinde and H. Verlinde
[50, 14]. These equations are called the WDVV equations and can be identified
with hydrodynamic-type systems. Thus, solutions of dispersionless systems can
be understood as particular solutions of the TFT. In the same period E. Witten
formulated his famous conjecture that the free energy of 2-dimensional gravity
coincides with the τ-function of the KdV hierarchy [51]. This conjecture was later
proved by M. Kontsevich in [26]. The theory of Frobenius manifolds as well as the
WDVV equations play a major role in the quantum cohomology and the theory of
Gromov-Witten invariants [27, 19].

2.3 Exercises

1. Prove Proposition 2.8. Hint: you can use (2.15) instead of (1.18).

2. Prove Proposition 2.11. It suffices to show that

[v,w]i := w′[vi]− v′[wi] = ∂v(wi)− ∂w(vi) i = 1, . . . , N.

3. Show that the commutativity of two vector fields with respect to the Lie
bracket (2.14) (or (2.7)) is equivalent to the commutativity of the respective
flows (2.3).
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4. Show the formulae (2.17) and (2.18).

5. Prove Proposition 2.18. Hint: compute the Lie derivative along K = πdH of
the Poisson bracket (2.19) of two arbitrary functionals different from Hamil-
tonian H. Then to show the proposition first use the Leibniz rule for the Lie
derivative and then the Jacobi identity for the Poisson bracket.

6. Show by explicit computation that (2.23) is a hereditary operator.

7. Check if the bi-Hamiltonian hierarchy (2.24) agrees with the hierarchies of
symmetries (1.12) and Hamiltonians (1.13).

8. Find the recursion operators for the systems from Examples 2.29 and 2.30
and using the translational symmetry 2.4 as a starting point, construct first
three symmetries from the related hierarchies.

9. Consider Theorem 2.27. Assuming existence of functionals H0, H1, H2, . . .
show that they are pairwise in involution with respect to both Poisson brack-
ets associated with π0 and π1.

10. It is well known that one can construct integrable dispersionless systems by
taking the so-called quasi-classical or dispersionless limit (if it exists) of the
soliton systems. To go to the dispersionless limit one first has to make the
following transformation of independent variables

t 7→ 1

}
t

x 7→ 1

}
x

=⇒

∂

∂t
7→ }

∂

∂t
∂

∂x
7→ }

∂

∂x

,

where } is a deformation parameter, and then take the limit }→ 0. Find the
dispersionless limit of integrable soliton systems from Examples 2.28 and
2.29. What is the bi-Hamiltonian structure for these dispersionless systems?
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3 Classical R-matrix theory

In the theory of evolutionary systems one of the most important issues is a sys-
tematic method for construction of integrable systems. It is well known that a
very powerful tool, called the classical R-matrix formalism [39], proved to be very
fruitful in the systematic construction of the field and lattice soliton systems as
well as dispersionless systems. The crucial point of the formalism is the observa-
tion that integrable dynamical systems can be obtained from the Lax equations
on appropriate Lie algebras. The greatest advantage of this formalism, besides
the possibility of systematic construction of the integrable systems, is the con-
struction of bi-Hamiltonian structures and infinite hierarchies of symmetries and
conserved quantities.

In this chapter we will present a unified approach to the construction of in-
tegrable evolution equations together with their (multi-)Hamiltonian structures.
This approach is based on the classical R-matrix formalism that originated from
the pioneering article [23] by Gelfand and Dickey, where they presented the
construction of Hamiltonian soliton systems of KdV type by means of pseudo-
differential operators. Next, Adler [2] showed how to construct, within classical
R-matrix formalism, the bi-Hamiltonian structures for the above soliton systems.
This scheme, well-known today, is now called the Adler-Gelfand-Dickey (AGD)
scheme. Later the abstract formalism of classical R-matrices, applicable to ap-
propriate Lie algebras, was formulated in [38, 17, 39]. In [29, 36] it was shown
that there are in fact three natural Poisson brackets associated with classical R-
structures. Quite recently Li [30] considered the classical R-matrix theory on the
so-called (commutative) Poisson algebras. This approach leads to the construc-
tion of dispersionless multi-Hamiltonian systems.

In this chapter we illustrate the theory of classical R-matrices only on example
of the pseudo-differential operators algebra and the simplest Gelfand-Dickey Lax
operators with the related Lax hierarchies. For more general applications of the
theory see [4]-[11], [43]-[48] and references therein. Many important subjects
related to the theory of R-matrices like factorization problem or central extensions
are not presented here. For a nice review about these and even more see [40].

3.1 Classical R-matrix formalism

Let g be an algebra with respect to some multiplication, over a commutative field
of complex or real numbers, K = C or R. Further assume that g is equipped
with an additional bilinear product given by a Lie bracket [·, ·] : g → g, which is
skew-symmetric and satisfies the Jacobi identity.

Definition 3.1 A linear map R : g→ g such that the bracket

[a, b]R := [Ra, b] + [a,Rb] (3.1)
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is another Lie bracket on g is called the classical R-matrix.

The skew-symmetry of (3.1) is obvious. As for the Jacobi identity for (3.1) one
finds that

0 = [a, [b, c]R]R + c.p. = [Ra, [Rb, c]] + [Ra, [b, Rc]] + [a,R [b, c]R] + c.p.
= [Rb, [Rc, a]] + [Rc, [a,Rb]] + [a,R [b, c]R] + c.p.
= [a,R [b, c]R − [Rb,Rc]] + c.p., (3.2)

where c.p. stands for cyclic permutations in {a, b, c} and the last equality follows
from the Jacobi identity for [·, ·]. Hence, a sufficient condition for R to be a classical
R-matrix is to satisfy the following so-called Yang-Baxter equation, YB(α),

[Ra,Rb]−R [a, b]R + α [a, b] = 0, (3.3)

where α is some number from K. There are only two relevant cases of YB(α),
namely α 6= 0 and α = 0, as Yang-Baxter equations for α 6= 0 are equivalent
through reparameterization.

3.2 Lax hierarchy

Assume now that the Lie bracket [·, ·] is a derivation with respect to the multipli-
cation, i.e., this bracket satisfies the Leibniz rule

[a, bc] = b [a, c] + [a, b] c. (3.4)

Notice that this condition is satisfied automatically in the case of a commutative
algebra g when the Lie bracket is given by a Poisson bracket as well as in the case
of a non-commutative algebra g and the Lie bracket given by the commutator.
Then, any well-defined smooth map

X : g→ g L 7→ X(L) (3.5)

is an invariant of the Lie bracket, i.e.

[X(L), L] = 0 L ∈ g. (3.6)

Moreover, the following relation holds

dX(L) ◦ [L′, L] = [L′, X(L)] L,L′ ∈ g,

where dX is the differential of the smooth map (3.5), i.e.

dX(L) : g→ g Lt 7→ dX(L) ◦ Lt = (X(L))t .

The power functions X(L) = Ln are always well defined on g and are invariant
functions of the Lie bracket. One can consider less trivial functions, for example
the logarithmic ones, like X(L) = lnL, but only when they have proper interpreta-
tion in g.
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Example 3.2 For the power function X(L) = Ln, where n = 1, 2, . . . , which is a
smooth function, one finds that

dX(L) : g→ g L′ 7→ dX(L) ◦ L′ =
n∑
k=1

Lk−1L′Ln−k.

In the case of a commutative algebra g simply dX(L) = nLn−1 and ◦ is substituted
by a multiplication from g.

Smooth functions Xn(L) generate a hierarchy of vector fields on g of the form

Ltn = [RXn(L), L] , (3.7)

where tn are evolution parameters. These vector fields yield self-consistent evolu-
tions on g when the left- and right-hand sides of (3.7) span the same subspace of
g. So, the element L of g has to be properly chosen. The directional derivative of
a smooth function F : g→ g in the direction of (3.7) is given by

F (L)tn = dF (L) ◦ Ltn = dF (L) ◦ [RXn(L), L] = [RXn(L), F (L)] . (3.8)

There is an important issue of whether the vector fields (3.7) commute. One finds
that

(Ltm)tn − (Ltn)tm = [RXm(L), L]tn − [RXn(L), L]tm
=
[
(RXm(L))tn − (RXn(L))tm , L

]
+ [RXm(L), [RXn(L), L]]− [RXn(L), [RXm(L), L]]

=
[
(RXm(L))tn − (RXn(L))tm + [RXm(L), RXn(L)] , L

]
. (3.9)

Hence, the vector fields (3.7) mutually commute if the so-called zero-curvature
equations

(RXm(L))tn − (RXn(L))tm + [RXm(L), RXn(L)] = 0 (3.10)

are satisfied. In this case the hierarchy (3.7) is called the Lax hierarchy and L
is called the Lax operator or the Lax function depending on the nature of a given
Lie algebra g. Now we have to additionally assume that R-matrices commute with
directional derivatives and hence with the derivatives with respect to evolution
parameters, i.e.

(RL)t = RLt. (3.11)

This property is equivalent to the assumption that R commute with differentials of
smooth maps g→ g. This property is important although is not explicitly stressed
in most works on the R-matrices. Then

R (Xm(L))tn −R (Xn(L))tm + [RXm(L), RXn(L)] =

by (3.11) and (3.8)
= R [RXn(L), Xm(L)]−R [RXm(L), Xn(L)] + [RXm(L), RXn(L)]

= [RXm(L), RXn(L)]−R [Xm(L), Xn(L)]R . (3.12)

Now, if an R-matrix satisfies the Yang-Baxter equation (3.3) the last expression is
equal to −α [Xm(L), Xn(L)] = 0. Hence, the following proposition is valid.
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Proposition 3.3 The Yang-Baxter equation is a sufficient condition for the pairwise
commutativity of the vector fields from the Lax hierarchy (3.7).

It is natural to ask when the abstract Lax hierarchy (3.7) represents a ”real” hi-
erarchy of integrable evolution systems on a suitable functional space, i.e., on the
related infinite-dimensional phase space U . This occurs when one can construct
an embedding map ι from U to g, which induces the smooth manifold structure
on g such that

ι : U → g u 7→ ι(u) = L

dι : V → g ut 7→ dι(ut) = Lt,

where dι is the differential of ι. (Notices that for ι being an embedding its differ-
ential dι is an injective map.) In such a case the Lax hierarchy (3.7) can be pulled
back to the original functional space by (dι)−1. The symmetries from the Lax hier-
archy (3.7) represent consistent evolution systems when the left- and right-hand
sides of (3.7) span the same subspace of g. So, the Lax element L of g has to be
chosen in a suitable fashion.

3.3 Simplest R-matrices

Assume that the Lie algebra g from the previous section can be split into a direct
sum of Lie subalgebras g+ and g−, i.e.,

g = g+ ⊕ g− [g±, g±] ⊂ g± g+ ∩ g− = ∅.

Upon denoting the projections onto these subalgebras by P±, we define a linear
map R : g→ g as

R =
1

2
(P+ − P−). (3.13)

Using the equality P+ + P− = 1, (3.13) can be represented in the following equiva-
lent forms:

R = P+ −
1

2
=

1

2
− P−.

Let a± := P±(a) for a ∈ g. Then

[a, b]R = [a+, b+]− [a−, b−] =⇒ R [a, b]R =
1

2
[a+, b+] +

1

2
[a−, b−] (3.14)

and
[Ra,Rb] =

1

4
[a+, b+]− 1

4
[a+, b−]− 1

4
[a−, b+] +

1

4
[a−, b−] . (3.15)

Hence, the map (3.13) solves the Yang-Baxter equation (3.3) for α = 1
4

and is a
well-defined classical R-matrix. This is the simplest and most important example
of a well-defined R-matrix.

The Lax hierarchy (3.7) for the R-matrix (3.13) can be written in two equivalent
ways:

Ltn = [P+ (Xn(L)) , L] = − [P− (Xn(L)) , L] . (3.16)
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Consider now more general situation when a given Lie algebra g contains a set
of N disjoint Lie subalgebras gi ⊂ g such that their complements gi to g are also
Lie subalgebras, i.e.,

g = gi ⊕ gi [gi, gi] ⊂ gi [gi, gi] ⊂ gi gi ∩ gj = ∅ i 6= j (3.17)

for i, j ∈ {1, . . . , N}. Then g can be decomposed in the following way:

g = g⊕

(
N⊕
i=1

gi

)
,

where g stands for the complement of
(⊕N

i=1 gi

)
to g. We make here an additional

assumption that

[g, gi] ⊂ g⊕ gi [gi, gj] ⊂ gi ⊕ gj i 6= j. (3.18)

The simplest situation occurs when g = ∅. Let P , Pi be projections on g, gi, respec-
tively. Then we obviously have

1 = P +
N∑
k=1

Pk =⇒ Pi = 1− P −
∑
k 6=i

Pk. (3.19)

In view of the considerations presented earlier in this section, the linear maps

R = Pi −
1

2
i = 1, 2, . . . , N (3.20)

are well-defined classical R-matrices, and we have a family of N Lax hierarchies

Lti,n = [Pi (Xn(L)) , L] (3.21)

generated by smooth functions Xn(L). We are asking whether these Lax hierar-
chies mutually commute. Proceeding in analogy with Section 3.2, one finds that(

Lti,m
)
tj,n
−
(
Ltj,n

)
ti,m

=

= [[PiXm(L), PjXn(L)]− Pj [PiXm(L), Xn(L)]− Pi [Xm(L), PjXn(L)] , L] ,

for i 6= j. Next, it follows from (3.18) and (3.19) that

[PiXm(L), PjXn(L)] = Pi [PiXm(L), PjXn(L)] + Pj [PiXm(L), PjXn(L)]

= Pi [Xm(L), PjXn(L)] + Pj [PiXm(L), Xn(L)] i 6= j.

Hence, the following proposition is proved.

Proposition 3.4 If a given Lie algebra g contains disjoint Lie subalgebras gi that
satisfy the conditions (3.17) and (3.18), then all vector fields from all Lax hierarchies
(3.21) mutually commute.

For applications of the above proposition see [43].
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3.4 The algebra of pseudo-differential operators

We will illustrate the theory of classical R-matrices by considering the algebra of
pseudo-differential operators (PDO)

g =

{
L =

N∑
i>−∞

ui(x)∂ix

}
, (3.22)

where the smooth functions ui(x) are dynamical fields, hence ui further depend on
evolution parameters. The ∂x is operator related to the total derivative with respect
to x. Thus, the multiplication in g is defined through the so-called generalized
Leibniz rule

∂mu(x) =
∑
n>0

(
m

n

)
u(x)nx∂

m−n, (3.23)

where
(
m
n

)
stands for the standard binomial coefficient, and(

m

n

)
= (−1)n

(
−m+ n− 1

n

)
(3.24)

for m < 0. From (3.23) it follows that

∂xu = u∂x + ux

∂−1u = u∂−1
x − ∂−1

x ux∂
−1
x

= u∂−1
x − ux∂−2

x + u2x∂
−3
x − . . . ,

where u is some smooth function. The algebra (3.22) with the multiplication
defined through (3.23) is an associative and noncommutative algebra. Therefore,
we have a well-defined Lie algebra structure on g with the natural commutator

[A,B] = AB −BA A,B ∈ g.

Consider the following decomposition of g:

g = g>k ⊕ g<k :=

{∑
i>k

ui∂
i
x

}
⊕

{∑
i<k

ai∂
i
x

}
. (3.25)

Then, g>k and g<k are Lie subalgebras of g only for k = 0, 1, 2. In these cases the
classical R-matrices (3.13) are given by

R =
1

2
(P>k − P<k) = P>k −

1

2
=

1

2
− P<k, (3.26)

where P>k and P<k are projections onto g>k and g<k, respectively.
Consider an element L from g of the form

L = uN∂
N
x + uN−1∂

N−1
x + uN−2∂

N−2
x + . . . , (3.27)

where N > 0. Then its N-th root

L
1
N = a1∂x + a0 + a−1∂

−1
x + a−2∂

−2
x + . . . ,
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where coefficients ai are differential function of ui, can be constructed, solving
recursively for the functions ai, from the equality

(
L

1
N

)N
=

N︷ ︸︸ ︷
L

1
N · . . . · L

1
N = L.

Hence, we can take the fractional powers of (3.27)

L
n
N =

n︷ ︸︸ ︷
L

1
N · . . . · L

1
N ,

where n = 1, 2, . . ., for the invariants (3.6). The fractional powers of L generate the
following Lax hierarchies (3.7) related to classical R-matrices (3.26):

Ltn =
[(
L

n
N

)
>k
, L
]

= −
[(
L

n
N

)
<k
, L
]

k = 0, 1, 2. (3.28)

Nevertheless, we are interested in the construction of finite-component inte-
grable evolution systems. Hence, we need to consider some restrictions of (3.27)
yielding consistent Lax equations (3.28) such that right- and left-hand sides of
(3.28) span the same subspace of g. We will consider only the simplest case k = 0.
For the operator (3.27) one finds that

Lt = (uN)t∂
N
x + (uN−1)t∂

N−1
x + (uN−2)t∂

N−2
x + lower terms,

Lt = − [A<0, L] = −
[
γ∂−1

x + l.t., uN∂
N
x + l.t.

]
= (NuNγx + (uN)xγ) ∂N−2

x + l.t. .

Here l.t. denotes the lower-order terms. Thus, we find that the fields uN and
uN−1 must be time-independent and hence they are not dynamical fields. Without
loosing generality we can choose them to be the following constants: uN = 1 and
uN−1 = 0. On the other hand, the zero-order terms in (3.28) for N > 1 are always
present. Therefore we can restrict (3.27) to the following form:

k = 0 : L = ∂Nx + uN−2∂
N−2
x + · · ·+ u1∂x + u0. (3.29)

These are the well-known Gelfand-Dickey Lax operators [23] yielding consistent
Lax equations. The related Lax hierarchy (3.28) for k = 0 with the Lax operators of
the form (3.29) is called the Gelfand-Dickey hierarchy. Notice that the equations
from hierarchy (3.28) for (3.29) are trivial when n is a multiple of N since in this
case L

n
N ∈ g>0. More general theory of the application of the R-matrix formalism

to the algebra of pseudo-differential operators dealing with the remaining values
of k can be found in [25] or [4].

Example 3.5 Consider the N = 2 case of (3.27). Then

L = ∂2
x + u.

One finds that

L
1
2 = ∂x +

1

2
u∂−1

x −
1

4
ux∂

−2
x +

1

8
(u2x − u) ∂−3

x −
1

16
(u3x − 6uux) ∂

−4
x

+
1

32

(
u4x − 14uu2x − 11u 2

x + 2u3
)
∂−5
x + . . .
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and

L
3
2 = L · L

1
2 = ∂3 +

3

2
u∂x +

3

4
ux + (. . .)∂−1

x + . . . .

Hence (
L

3
2

)
>0

= ∂3 +
3

2
u∂x +

3

4
ux

and we recover the Lax equation for the KdV system

Lt3 =

[(
L

3
2

)
>0
, L

]
⇐⇒ ut3 =

1

4
u3x +

3

2
uux. (3.30)

The whole KdV hierarchy can be constructed in a similar fashion.

Example 3.6 The Lax operator (3.27) for N = 3 has the form

L = ∂3
x + u∂x + v.

We have

L
1
3 = ∂x +

1

3
u∂−1

x −
1

3
(ux − v) ∂−2

x +
1

9

(
2u2x − 3vx − u2

)
∂−3
x

− 1

9
(u3x − 2v2x − 4uux + 2uv) ∂−4

x

+
1

81

(
3u4x − 9v3x − 45uu2x + 36uvx − 45u 2

x + 45uxv − 9v2 + 5u3
)
∂−5
x + . . . .

Then, for (
L

2
3

)
>0

= ∂2
x +

2

3
u

one finds the Lax equation for the Boussinesq system

Lt2 =

[(
L

2
3

)
>0
, L

]
⇐⇒

(
u
v

)
t2

=

(
−u2x + 2vx

−2
3
u3x + v2x − 2

3
uux

)
. (3.31)

3.5 Lie-Poisson structures

Let g∗ be a dual of a given Lie algebra g and 〈·, ·〉 : g∗ × g → K be the usual duality
pairing. The Lie bracket [·, ·] defines the adjoint action ad of g on g:

ad : g× g→ g (a, b) 7→ adab = [a, b] .

Then the co-adjoint action ad∗ of g on g∗ is defined by the relation

〈ad∗aη, b〉+ 〈η, adab〉 = 0 ⇐⇒ 〈a � η, b〉 = 〈η, [a, b]〉 a, b ∈ g η ∈ g∗, (3.32)

where
a � η := −ad∗aη.

We will often use the above simplified notation for the co-adjoint action.
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Let this time ι : U → g∗ be the embedding of the original phase space into the
dual Lie algebra, i.e.

ι : U → g∗ u 7→ ι(u) = η

dι : V → g∗ ut 7→ dι(ut) = ηt.

Then every functional F : U → K can be extended to the smooth function on
g∗. Therefore, let F(g∗) be the space of all smooth functions on g∗ of the form
F ◦ ι−1 : g? → K, where F ∈ F . Then differentials dF (η) of F (η) ∈ F(g∗) at the point
η ∈ g∗ belong to g, because they can be computed through the relation

F (η)′[ξ] :=
dF (η + εξ)

dε

∣∣∣∣
ε=0

= 〈ξ, dF (η)〉 ξ ∈ g∗ (3.33)

being the counterpart of (2.13). We also have an analogue of the relation (2.16):

〈ξ, dF ′[η]〉 = 〈η, dF ′[ξ]〉 F ∈ F(g∗) η, ξ ∈ g∗. (3.34)

We make an additional assumption that the Lie bracket in g is such that the
directional derivative along an arbitrary ξ ∈ g? is a derivation with respect to the
Lie bracket. This means that the following relation holds

[a, b]′ [ξ] = [a′[ξ], b] + [a, b′[ξ]] a, b ∈ g. (3.35)

Theorem 3.7 On F(g∗) there exists a Poisson bracket defined as follows

{H,F} (η) := 〈η, [dF, dH]〉 η ∈ g∗ H,F ∈ F(g∗) (3.36)

This bracket is called a (natural) Lie-Poisson bracket.

Lemma 3.8 The differential of (3.36) is given by

d {H,F} = [dF, dH]− dF ′[dH � η] + dH ′[dF � η]. (3.37)

Proof. By (3.33) one finds that

{H,F}′ [ξ] = 〈η′[ξ], [dF, dH]〉+ 〈η, [dF ′[ξ], dH] + [dF, dH ′[ξ]]〉
by (3.32)

= 〈ξ, [dF, dH]〉 − 〈dH � η, dF ′[ξ]〉+ 〈dF � η, dH ′[ξ]〉
by (3.34)

= 〈ξ, [dF, dH]− dF ′[dH � η] + dH ′[dF � η]〉 ,

and the result of the lemma follows. �
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Proof of Theorem 3.7. The bilinearity and skew-symmetry of (3.36) is obvious.
So, we only have to prove the Jacobi identity:

{F, {G,H}}+ c.p. = 〈η, [d {G,H} , dH] + c.p.〉
by (3.37)

= 〈η, [[dH, dG] , dF ]− [dH ′[dG � η], dF ] + [dG′[dH � η], dF ] + c.p.〉
by (3.32)

= 〈η, [[dH, dG] , dF ]〉+ 〈dF � η, dH ′[dG � η]〉 − 〈dF � η, dG′[dH � η]〉+ c.p.

= 〈η, [[dH, dG] , dF ]〉+ 〈dF � η, dH ′[dG � η]〉 − 〈dG � η, dH ′[dF � η]〉+ c.p.

by (3.34)
= 〈η, [[dH, dG] , dF ] + c.p.〉 = 0,

where the last equality follows from the Jacobi identity for [·, ·]. �

Now assume that we have an additional Lie bracket (3.1) on g defined through
the classical R-matrix such that (3.11) is valid. Then (3.1) satisfies the condition
(3.35). As a result, on the space of scalar fields F(g∗) there is another well-defined
(by Theorem 3.7) Lie-Poisson bracket:

{H,F}R (η) := 〈η, [dF, dH]R〉 η ∈ g∗ H,F ∈ F(g∗). (3.38)

Using (3.32) one finds that the related Poisson operators at η ∈ g∗ for the above
Lie-Poisson brackets have the form

{H,F} = 〈πdH, dF 〉 ⇐⇒ π : dH 7→ ad∗dHη

{H,F}R = 〈πRdH, dF 〉 ⇐⇒ πR : dH 7→ ad∗RdHη +R∗ad∗dHη,

where the adjoint of R is defined by the relation

〈R∗η, a〉 = 〈η,Ra〉 η ∈ g∗ a ∈ g.

The Casimir functions Cn(η) ∈ F(g∗) of the natural Lie-Poisson bracket (3.36)
satisfy the following condition

∀ F ∈ F(g∗) {F,Cn} = 0 ⇐⇒ ad∗dCnη = 0,

that is, their differentials are ad∗-invariant. Hence, they are in involution with
respect to the Lie-Poisson bracket (3.38), i.e.

{Cn, Cm}R = 0.

Now, as πRd is a Lie algebra homomorphism, the related Hamiltonian vector fields
with the Casimir functions as Hamiltonians,

ηtn = πRdCn(η) = ad∗RdCnη (3.39)

pairwise commute, i.e.,
(ηtm)tn = (ηtn)tm .

Proposition 3.9 All evolution systems in the hierarchy (3.39) on g∗ generated by
the Casimir functions Cn of the natural Lie-Poisson bracket (3.36) pairwise commute
and are Hamiltonian with respect to (3.38). Moreover, any equation from (3.39)
admits all Casimir functions Cn as conserved quantities.

The construction of Casimir functions Cn and related dynamical systems (3.39)
on the dual Lie algebra g∗, contrary to (3.7), is rather difficult and quite imprac-
tical. Thus, a formulation of a similar theory on g instead on g∗ is justified. This
can be done when one can identify g∗ with g by means of a suitable scalar product.
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3.6 Ad-invariant scalar products

We restrict our further considerations to the Lie algebras g for which its dual g∗

can be identified with g through the duality map. So, we assume the existence of
a scalar product

(·, ·) : g× g→ K (3.40)

on g, and we assume this product to be symmetric,

(a, b) = (b, a) a, b ∈ g,

and non-degenerate, that is, a = 0 is the only element of g that satisfies

(a, b) = 0 ∀ b ∈ g.

Then, we can identify g∗ with g (g∗ ∼= g) by setting

〈η, b〉 = (c, b) ∀ b ∈ g,

where η ∈ g∗ is identified with c ∈ g. We also make an additional assumption that
the symmetric product (3.40) is ad-invariant, i.e.,

([a, c] , b) + (c, [a, b]) = 0 a, b, c ∈ g. (3.41)

This is a counterpart of the relation (3.32). Thus, if η ∈ g∗ is identified with c ∈ g

we have
〈ad∗aη, b〉 = ([a, c] , b) a, b ∈ g

and one identifies ad∗aη ∈ g∗ with adac ∈ g.
Now consider the case when R is a well defined classical R-matrix which does

not necessarily satisfy the Yang-Baxter equation (3.3). Let Xm(L) will be smooth
invariant maps (3.6) generating hierarchy (3.7). Then for an arbitrary L′ ∈ g we
have

(L′, [[RXm, RXn]−R [Xm, Xn]R , L])
by (3.41)

= ([L′, [RXm, RXn]−R [Xm, Xn]R] , L)

by (3.2)
= ([Xm, [RL

′, RXn]−R [L′, Xn]R] , L) + ([Xn, [RXm, RL
′]−R [Xm, L

′]R] , L)

by (3.41)
= ([RL′, RXn]−R [L′, Xn]R , [L,Xm]) + ([RXm, RL

′]−R [Xm, L
′]R , [L,Xn])

by (3.6)
= 0.

Since the symmetric product (3.40) is non-degenerate, we obtain

[[RXm, RXn]−R [Xm, Xn]R , L] = 0.

Hence, combining (3.9) and (3.12) shows that vector fields (3.7) pairwise commute.
So, if there exists a symmetric, non-degenerate and ad-invariant product on g then
the Yang-Baxter equation (3.3) is not a necessary condition for the commutativity
of vector fields from the Lax hierarchy (3.7). However, if (3.3) is not satisfied then
the zero-curvature equations (3.10) will not be satisfied as well.

In fact, by virtue of the scheme presented in the previous section all equations
from the hierarchy (3.7) are Hamiltonian. Since g∗ ∼= g, the Lie-Poisson brackets
(3.36) and (3.38) on the space of scalar fields F(g) ∼= F(g∗) at L ∈ g take the form

{H,F} = (L, [dF, dH]) = (dF, πdH) ⇐⇒ π : dH 7→ [dH,L]

{H,F}R = (L, [dF, dH]R) = (dF, πRdH) ⇐⇒ πR : dH 7→ [RdH,L] +R∗ [dH,L] ,
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where now R∗ is defined by the relation

(R∗a, b) = (a,Rb) a, b ∈ g.

Differentials of the Casimir functions Cn(L) ∈ F(g) of the natural Lie-Poisson
bracket are invariants of the Lie bracket, i.e. [dCn(L), L] = 0. The Casimir functions
of course are still in involution with respect to the second Lie-Poisson bracket de-
fined by R and generate pairwise commuting Hamiltonian vector fields of the form

Ltn = πRdCn(L) = [RdCn, L] .

The simplest way to define an appropriate scalar product on some Lie algebra
g is to use of a trace form Tr : g→ K such that the scalar product

(a, b) := Tr (ab) a, b ∈ g (3.42)

is nondegenerate. In this case the symmetry of (3.42) entails that

Tr (ab) = Tr (ba) . (3.43)

Proposition 3.10 Let Tr : g → K be a trace form defining a symmetric and nonde-
generate scalar product (3.42) such that the trace of Lie bracket vanishes, i.e.,

Tr [a, b] = 0 ∀ a, b ∈ g.

Then the condition (3.4) for a Lie bracket to be a derivation with respect to the
multiplication is a sufficient condition for (3.42) to be ad-invariant.

Proof. It is immediate, as

([a, c] , b) + (c, [a, b]) = Tr ([a, c] b+ c [a, b]) = Tr ([a, c] b+ [a, cb]− [a, c] b)

= Tr [a, cb] = 0,

where we used the assumptions from the proposition. �

Upon assuming that we have a nondegenerate trace form Tr on g, and having
defined a scalar product in the fashion described above, the most natural Casimir
functions Cq(L) ∈ F(g) are given by the traces of powers of L, i.e.,

Cq(L) =
1

q + 1
Tr
(
Lq+1

)
⇐⇒ dCq = Lq q 6= −1. (3.44)

The related differentials are calculated from the expression (3.33), which can be
now reduced to

d

dt
F (L) = (Lt, dF ) = Tr (Lt dF ) L ∈ g, (3.45)

where t is an evolution parameter related to the vector field Lt on g.
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3.7 The trace form on the PDO algebra

Let us study some properties of the Lie algebra of pseudo-differential operators
(3.22). The first observation is the existence of a symmetric, non-degenerate and
ad-invariant product on g allowing us to identify g with its dual g∗.

Lemma 3.11 Consider the scalar product on g is given by a trace form

(A,B) := Tr (AB) A,B ∈ g, (3.46)

where
TrL =

∫
Ω

resL dx, resL := u−1,

for L =
∑

i ui∂
i
x. Then (3.46) is symmetric, non-degenerate and ad-invariant.

Proof. The non-degeneracy of product (3.46) is obvious. Let A =
∑

m um∂
m
x and

B =
∑

n vn∂
n
x , then we find

(A,B) = Tr (A ·B) = Tr

(∑
m,n

um∂
m
x vn∂

n
x

)
by (3.23)

= Tr

(∑
m,n

∞∑
s=0

(
m
s

)
um(vn)sx∂

m+n−s(1−r)
x

)

=

∫
Σ

∑
n

∞∑
s=0

(
s−1−n

s

)
us−1−n(vn)sx dx

i.b.p.
=

∫
Σ

∑
n

∞∑
s=0

(−1)s
(
s−1−n

s

)
(us−1−n)sxvn dx

by (3.24)
=

∫
Σ

∑
n

∞∑
s=0

(
n
s

)
(us−1−n)sxvn dx = Tr

(∑
m,n

∞∑
s=0

(
n
s

)
(um)sxvn∂

m+n−s
x

)

= Tr

(∑
m,n

vn∂
n
xum∂

m
x

)
= Tr (B · A) = (B,A) ,

where i.b.p. means integration by parts. Hence

Tr (AB) = Tr (BA) ⇐⇒ Tr [A,B] = 0

and the ad-invariance for (3.46) follows by Proposition 3.10. �

The adjoints of (3.26) with respect to the scalar product (3.46) such that

∀A,B ∈ g (R?A,B) = (A,RB)

are
R∗ =

1

2
(P ∗>k − P ∗<k) =

1

2
− P>−k = P<−k −

1

2
k = 0, 1, 2.

Let L =
∑

i ui∂
i
x, then the vector fields Lt and the related differentials dH(L) are

conveniently parameterized by

Lt =
∑
i

(ui)t∂
i
x =⇒

dH(L) =
δH

δL
=
∑
i

∂−1−i
x

δH

δui
, (3.47)
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where δH
δui

is the variational derivative of a functional H =
∫

Σ
h(u) dx. In this case

the trace duality assumes the usual Euclidean form

(dH,Lt) = Tr (dHLt) =
∑
i

∫
Σ

δH

δui
(ui)t dx.

3.8 Hamiltonian structures on Poisson algebras

Definition 3.12 Let A be a commutative, associative algebra with unit. If there is
a Lie bracket on A such that for each element a ∈ A, the operator ada : b 7→ {a, b} is a
derivation of the multiplication, i.e. {a, bc} = {a, b}c + b{a, c}, then (A, {·, ·}) is called
a Poisson algebra and the bracket {·, ·} is a Poisson bracket.

Thus, the Poisson algebras are Lie algebras, [·, ·] := {·, ·}, with an additional struc-
ture. Of course we should not confuse the above bracket with the Poisson brack-
ets in the algebra of scalar fields. It will follow easily from the context which
bracket is used. In the case of the Poisson algebra A a classical R-matrix defines
the second Lie product on A but not the Poisson bracket; in general this would
not be possible.

Theorem 3.13 [30] Let A be a Poisson algebra with the Poisson bracket {·, ·} and
non-degenerate ad-invariant scalar product (·, ·) such that the operation of multipli-
cation is symmetric with respect to the latter, i.e., (ab, c) = (a, bc), ∀a, b, c ∈ A. Assume
that R is a classical R-matrix such that (3.11) holds, then for any integer n > 0, the
formula

{H,F}n = (L, {R(LndF ), dH}+ {dF,R(LndH)}) (3.48)

where H,F are smooth functions on A, defines a Poisson structure on A. Moreover,
all brackets {·, ·}n are compatible.

An important property that classical R-matrices commute with differentials of
smooth maps from A to A or equivalently satisfy (3.11) is used in the proof of
Theorem 4.2 of [30], although it is not explicitly stressed there. In fact, the
existence of scalar product being symmetric with respect to the multiplication,
(ab, c) = (a, bc), entails existence of a trace form on A. Setting c = 1 we have
(ab, 1) = (a, b). Thus, the trace can be defined as Tr(a) := (a, 1) = (1, a).

The Poisson operators πn related to Poisson brackets (3.48) such that {H,F}n =
(dF, πndH), are given by the following Poisson maps

πn : dH 7→ {R(LndH), L}+ LnR∗ ({dH,L}) n > 0. (3.49)

Notice that the bracket (3.48) with n = 0 is just a Lie-Poisson bracket with respect
to the second Lie bracket on A defined by a classical R-matrix. Referring to the
dependence on L, Poisson maps (3.49) are called linear for n = 0, quadratic for
n = 1 and cubic for n = 2, respectively. The Casimir functions C(L) of the natural
Lie-Poisson bracket are in involution with respect to all Poisson brackets (3.49)
and generate pairwise commuting Hamiltonian vector fields of the form

Lt = πndC = {R (LndC) , L} L ∈ A.
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Taking the most natural Casimir functions (3.44), defined by traces of powers
of L, for the Hamiltonians, one finds a hierarchy of evolution equations which are
multi-Hamiltonian dynamical systems:

Ltq = {RdCq, L} = π0dCq = π1dCq−1 = · · · = πldCq−l = . . . (3.50)

For any R-matrix any two evolution equations in the hierarchy (3.50) commute
because of the involutivity of the Casimir functions Cq. Each equation admits all
the Casimir functions as conserved quantities in involution. In this sense we will
consider (3.50) as a hierarchy of integrable evolution equations.

The theory from this section can be effectively used in the systematic construc-
tion of integrable dispersionless systems (Remark 2.31) with multi-Hamiltonian
structures, see [7, 43, 47].

3.9 Hamiltonian structures on noncommutative algebras

In this section in contrast to the previous one we will consider noncommutative
associative algebra g for which a Lie structure is defined as the commutator, i.e.

[a, b] := ab− ba a, b ∈ g.

Such Lie bracket automatically satisfies the Leibniz rule (3.4) required by us.
We further assume the existence of nondegenerate, symmetric and ad-invariant
scalar product on g. Let R be a classical R-matrix such that (3.11) is satisfied.

In this case the situation is more complex and only three explicit forms of
Poisson brackets on the space of smooth functions F(g) defined by related Poisson
tensors are known from the literature:

{H,F}n = (dF, πndH) n = 0, 1, 2.

These Poisson brackets (or related tensors) are called linear, quadratic and cubic
bracket (resp. tensors) for n = 0, 1, 2, respectively.

The linear one is simply the Lie-Poisson bracket, with respect to the second Lie
structure on g defined by R, with Poisson tensor [36]

π0 : dH 7→ [RdH,L] +R∗ [dH,L] , (3.51)

for which we need no additional assumptions.
In further considerations we have to assume that the scalar product is sym-

metric with respect to the operation of multiplication, (ab, c) = (a, bc). Note that
this property implies that the scalar product is automatically ad-invariant with
respect to the Lie bracket defined by the commutator.

The quadratic case is more delicate. A quadratic tensor [42]

π1 : dH 7→ A1(LdH)L− LA2(dHL) + S(dHL)L− LS∗(LdH) (3.52)

defines a Poisson tensor if the linear maps

A1,2 : g→ g
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are skew-symmetric,
A∗1,2 = −A1,2,

solutions of the YB(α) (3.3) for α 6= 0 and the linear map S : g → g with adjoint S∗

satisfy

S ([A2a, b] + [a,A2b]) = [Sa, Sb]

S∗ ([A1a, b] + [a,A1b]) = [S∗a, S∗b] .
(3.53)

In the special case when

R̃ :=
1

2
(R−R∗) (3.54)

satisfies the YB(α), for the same α as R, under the substitution

A1 = A2 = R−R∗ S = S∗ = R +R∗

the quadratic Poisson operator (3.52) reduces to [36]

π1 : dH 7→
[
R [dH,L]+ , L

]
+ LR∗ [dH,L] +R∗ ([dH,L])L, (3.55)

where
[a, b]+ := ab+ ba

and the conditions (3.53) are equivalent to YB(α) for R and R̃.
Another special case occurs when the maps A1,2 and S originate from the de-

composition of a given classical R-matrix satisfying YB(α) for α 6= 0

R =
1

2
(A1 + S) =

1

2
(A2 + S∗) ,

where A1,2 are skew-symmetric. Then, the conditions (3.53) imply that both A1

and A2 satisfy YB(α) for the same value of α as R, [35]. Hence, in this case we
only have to check the conditions (3.53) for (3.52) to be a Poisson operator; these
reduce to

π1 : dH 7→ 2R (LdH)L− 2LR (dHL) + S ([dH,L])L+ LS∗ [dH,L] . (3.56)

Finally, the cubic tensor π2 takes the simple form [36]

π2 : dH 7→ [R (LdHL) , L] + LR∗ ([dH,L])L

and is Poisson one without further additional assumptions.
Once again, taking the Casimir functions (3.44), defined by trace of powers

of L, for the Hamiltonians yields a hierarchy of evolution equations which are
tri-Hamiltonian dynamical systems

Ltq = {RdCq, L} = π0dCq = π1dCq−1 = π2dCq−2, (3.57)

where we assumed that π2 is given by (3.55) or (3.56). In the first case all three
Poisson tensors in (3.57) are automatically compatible. In the second case this
has to be checked separately.
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3.10 The bi-Hamiltonian structure of Gelfand-Dickey hierar-
chies

We are going to consider Hamiltonian structures of the Gelfand-Dickey hierarchy,
that is, the Lax hierarchy (3.28) for k = 0 generated by fractional powers of (3.29).
By (3.47) the differential of a given functional H =

∫
Σ
h dx has the form

dH = ∂−1
x

δH

δu0

+ ∂−2
x

δH

δu1

+ . . .+ ∂1−N
x

δH

δuN−2

.

Therefore, we have the following tri-Hamiltonian Lax hierarchy

Ltn =
[(
L

n
N

)
>0
, L
]

= π0dHn = π1dHn−N = π2dHn−2N n = 1, 2, . . . , (3.58)

where Hamiltonians are defined by

Hn(L) =
1

n
N

+ 1

∫
Σ

res
(
L

n
N

+1
)
dx n 6= −N.

The linear Poisson tensor (3.51), defined by classical R-matrix (3.26) for k = 0,
has two equivalent representations

π0dH = [(dH)>0, L]− ([dH,L])>0

= − [(dH)<0, L] + ([dH,L])<0 .

All Lax operators of the form (3.29) form a proper subspace of g with respect to
the above linear Poisson tensor, i.e., π0dH span the same subspace of g as (3.29).
Since (dH)>0 = 0, the linear Poisson tensor reduces to a simpler form

π0dH = ([L, dH])>0 . (3.59)

One finds that for k = 0 (3.54) we have R̃ = R, i.e., R̃ solves the same YB
equation as R. Hence, the quadratic bracket is given by (3.55)

π1dH =
1

2

[(
[dH,L]+

)
>0
, L
]

+
1

2

[
L, ([dH,L])>0

]+
= −1

2

[(
[dH,L]+

)
<0
, L
]
− 1

2

[
L, ([dH,L])<0

]+
,

(3.60)

where [A,B]+ := AB+BA. The quadratic Poisson bracket can be properly restricted
to the space spanned by the operators of the form

L′ = ∂Nx + u∂N−1
x + uN−2∂

N−2
x + · · ·+ u1∂x + u0.

Thus, the Dirac reduction, see Lemma 2.19, with the constraint uN−1 = 0, is
required to reduce (3.60) to the subspace of g spanned by (3.29). Let

L := L′|u=0 =⇒ L′ = L+ u∂N−1
x =⇒ dH ′ = dH + ∂−Nx

δH ′

δu
,
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where H ′ = H ′(L′) and H = H(L) = H ′(L′)|u=0. Rewriting (3.60) we have

π1dH
′ = L′ (L′dH ′)>0 − (dH ′L′)>0 L

′.

Then, the Hamiltonian flow for u is given by the coefficient at ∂N−1
x of π1dH

′. So,
under the constraint u = 0, one finds that

0 = ut|u=0 = res [dH ′, L′]|u=0

= res

[
dH + ∂−Nx

δH ′

δu
, L

]
= res [dH,L]−N

(
δH ′

δu

)
x

.
(3.61)

Solving (3.61) with respect to δH′

δu
one gets

δH ′

δu
=

1

N
∂̂−1
x res [dH,L] ,

where ∂̂−1
x is a formal inverse of the derivative with respect to x. The hat is used to

distinguish it from the pseudo-differential operator ∂−1
x . Thus δH′

δu
can be expressed

in terms of δH
δui

. This implies

πred1 dH ≡ π1dH
′|u=0 = L (LdH ′)>0 − (dH ′L)>0 L

= L

(
LdH + L∂−Nx

δH ′

δu

)
>0

−
(
dHL+ ∂−Nx

δH ′

δu
L

)
>0

L

= L (LdH)>0 − (dHL)>0 L+ L
δH ′

δu
− δH ′

δu
L.

Hence, the Dirac reduction yields the reduced quadratic Poisson tensor of the
form

πred1 dH = (LdH)>0 L− L (dHL)>0 +
1

N

[
∂̂−1
x (res [dH,L]) , L

]
. (3.62)

The Poisson tensor (3.62) is local as always res [·, ·] = (. . . )x. It is also compatible
with the linear Poisson tensor (3.59) since

πred1 (L+ ε) = πred1 (L) + ε π0(L), (3.63)

where ε is an arbitrary scalar.
The Lax operators in the form (3.29) do not span proper subspaces of g with

respect to the cubic Poisson tensor (3.9):

π2dH =
(
(LdHL)>0 , L

)
− L ([dH,L])>0 L

= −
[
(LdHL)<0 , L

]
+ L ([dH,L])<0 L.

Nevertheless, the Dirac reduction can be applied. Here, unlike the previous case,
the number of constraints depends on N , so the reduction has to be considered
separately for each Lax operator (3.29).
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Example 3.14 The N = 2 case of the Gelfand-Dickey hierarchy. One finds the
following bi-Hamiltonian structure for the KdV equation (3.30)

Lt3 =

[(
L

3
2

)
>0
, L

]
= π0dH3 = πred1 dH1,

where the Poisson tensors (3.59) and (3.62) are

π0 = 2∂x

πred1 =
1

2
∂3
x + 2u∂x + ux.

The respective Hamiltonians read

H1 =
2

3

∫
Σ

res L
3
2 dx =

∫
Σ

1

4
u2 dx

H3 =
2

5

∫
Σ

res L
5
2 dx =

∫
Σ

1

16

(
2u3 − u 2

x

)
dx.

Example 3.15 The case of N = 3. The bi-Hamiltonian structure of the Boussinesq
system (3.30) is

Lt2 =

[(
L

2
3

)
>0
, L

]
= π0dH2 = π1dH−1,

where the linear Poisson tensor (3.59) has the form

π0 =

(
0 3∂x

3∂x 0

)
and the quadratic Poisson tensor (3.62) is

πred1 =

(
2∂3

x + ∂xu+ u∂x −∂4
x − ∂2

xu+ 2∂xv + v∂x
∂4
x + u∂2

x + ∂xv + 2v∂x −2
3

(∂5
x + ∂3

xu+ u∂3
x + u∂xu) + ∂2

xv − v∂2
x

)
.

The respective Hamiltonians are

H−1 =
3

2

∫
Σ

res L
2
3 dx =

∫
Σ

v dx

H2 =
3

5

∫
Σ

res L
5
3 dx =

∫
Σ

1

135

(
−5u3 + 45v2 − 45uxv − 15uu2x − 3u4x

)
dx.

A lot of further examples of soliton systems with their bi-Hamiltonian struc-
tures, associated with the algebra of pseudo-differential operators, including the
cases of k 6= 0, can be found in [25] or [4].
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3.11 Exercises

1. Establish the relations (3.14), (3.15), and prove that (3.13) solves the Yang-
Baxter equation (3.3) for α = 1

4
.

2. Show that the subspaces g>k and g<k of g (3.25) are Lie subalgebras only for
k = 0, 1, 2.

3. Perform all the computations from Examples 3.5 and 3.14 related to the KdV
hierarchy. Find the remaining symmetries and functionals from (1.12) and
(1.13), respectively.

4. Do the same for Examples (3.6) and (3.15) connected with the Boussinesq
hierarchy. Moreover, observe that the Boussinesq hierarchy splits into two
bi-Hamiltonian hierarchies. Why?

5. Consider the Gelfand-Dickey Lax operator (3.29) for N = 3. Find the first
nontrivial system from the hierarchy (3.28). Construct related bi-Hamiltonian
structure (3.58) of this system.

6. Establish the relation (3.63). How it proves that π0 (3.59) and πred1 (3.62) are
compatible Poisson tensors?
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