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Introduction

Functional analysis is simply infinite-dimensional analysis.

The main objects of study in analysis are objects, equipped by compatible algebraical and
topological structures. So the main objects of study in functional analysis are infinite-dimensional
objects, equipped by compatible algebraical and topological structures: topological vector spaces,
topological groups, topological algebras etc.

The name ”functional analysis” originated from the word ”functional”. At first this term was
used for scalar functions, which had as its argument not scalars or vectors but functions. Now one
means by a functional any scalar function, that is a real- (or complex-) valued function defined on
any (in general case, infinite-dimensional) vector space. Spaces of functions (or function spaces)
are basic and typical examples of infinite-dimensional spaces.

Functional analysis (FA) marks a fundamental change in the point of view in mathematics: one
goes from study of individual functions and individual relations, connecting them, to study of sets
of such objects, viz. to study of function spaces and function transformations. So one consider, say,
differentiation and integration not as operationes, applied to individual functions, but as operators,
applied to a whole class of functions.

This change is comparable with one that occured, when it came into mathematics the notion of
a variable. At that time one went from points to functions, now (dialectics!) from functions back to
points: it is functions that are now considered as points! One goes from algebra through analysis
to geometry.

* kX%

The creation of FA was prepared by developping of ”concrete” disciplines, viz. of the calculus of
variations, where it originated the notions of functional and of variational derivative (Vito Volterra,
1887), and the theory of integral equations (Eric Ivar Fredholm, 1903), which served as a base for
working out of the ”operator approach”.

From another side, developping of set-theoretical disciplines (topology, abstract geometry) pre-
pared the ”abstract” frame for constructing FA.

As a self-depending branch of mathematics FA appeared in 1904-1910, when David Hilbert,
Frigues Riesz and Erhard Schmidt developped the theory of operators in infinite-dimensional
Hilbert spaces. These authors demonstrated an analogy of the Fredholm theory of integral equa-
tions on the one hand and the corresponding algebraic equations on the orther hand. It was Schmidt
(1908) who first introduced geometrical language into this subject.

Further there appeared normed spaces. A set of axioms, close to the axioms of a normed space,
was at first introduced by A. Bennett (1916). The axioms of a complete normed space was given
by F. Riesz in 1918, and independently by Stefan Banach, Hans Hahn and Norbert Wiener in
1922. Tt was constructed a rich theory of normed spaces (S. Banach, H. Hahn, T. H. Steinhaus,
J. Schauder). The crown of this theory and the first book on FA was ”Operations linéaires” by
S. Banach (Warszawa, 1932).

Since it was Banach, who gave the greatest contributions to the theory of such spaces, complete
normed spaces became the name ”Banach spaces”.

Then analysis in normed spaces was developped (based on the notion of Fréchet derivative,
(Maurice René Fréchet), 1925). The interest to FA grew when one found applications of FA to
theoretical physics, in particular to quantum mechanics (the theory of Hilbert spaces).

Since the frames of normed spaces appeared to be too constraint in some questions, it was
introduced a more general notion of topological vector space (TVS) (A. N. Kolmogorov, 1934;
J. von Neumann, 1935). The most important subclass of TVS’s are so-called locally convez spaces
(LCS’s). The complete metrizable TVS’s (resp. LCS’s) obtained the name F-spaces (resp. Fréchet
spaces). Banach spaces are a special case of Fréchet spaces, and Hilbert spaces are a special case
of Banach ones.
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[Notice, that afterwards yet more general spaces were introduced, viz. pseudotopological (or
convergence, or limit) vector spaces.]

* ok Xk

Since 1932 FA became an universal language of analysis. It is hardly possible now to indicate
a sharp boundary between the ”usual” analysis and FA. The latter embraces such branches of
mathematics as measure theory, convex analysis, semi-group theory, spectral theory of linear op-
erators, distribution theory (the theory of generalized functions), the theory of differential (and
pseudo-differential) operators, the ergodic theory, the theory of Banach algebras, fixed-point the-
orems, numerical approximation methods, differential calculus in TVS’s; the theory of extremal
points, the theory of extremal problems ...

* ok Xk

In this course we shall subsequently consider more and more ”concrete” spaces: at first general
TVS’s, then LCS’s, F-spaces, Banach spaces and at last Hilbert spaces, the theory becoming more
and more rich.
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1 Topological vector spaces

In this first chapter we consider rather ”poor” objects, on which we have only two structures,
algebraic one and topological one. At first we give the definition and some examples of TVS and
indicate some basic properties of such spaces. Then we prove three fundamental principles (”three
whales”) of linear functional analysis: Hahn-Banach theorem, openness principle and boundedness
principle. In this connection we study the most important subclass of TVS, viz. locally convex
spaces.

1.1 Definition, examples and basic properties

Here we give the definition and some examples of TVS, discuss elementary properties of TVS
and prove some results on properties of neighbourhoods in TVS. For that end we introduce notions
of balanced set and absorbing one. At last we prove some elementary results on linear mapping of
TVS.

1.1.1 Definition, examples and elementary properties

A topological vector space is a set, on which we have simultaneously two structures, one of
vector space and one of topological space, these structures being compatible one with another in
a natural sence. For definiteness we consider throughout vector spaces over R.

Definition. A topological vector space (TVS) is a vector space (v.s.) X, supplied with a topology
7, which is linear (or compatible with the linear structure of X) in the sence, that arithmetic
operations

+ X xX — X, (z1,22) —> z1 + 29,
Rx X — X, (t,z) —>tz

are continuous.

Instead of (X, 7) one writes usually simply X. Continuity of adding (”+”) means (below A (z)
(or Nb;) denotes the set of all neighbourhoods of z in 7) that

Vi1,89 € XVV €N (21 + 29) IV € N(21) U3 EN(22) : 21 EUr s €Uy = 21 + 22 C V.
The last implication may be written in the form
Ur+ U, CV.
Continuity of multiplying by scalar (”-”) means that
Vig € RVzg € XVV € N(tx)36 > 03U e N(xzg) : |t —to| <, 2 €U =tz e V.
The last implication may be writen in the form
(to+ I5)U CV,

where we use the notation
Is={teR|t|<d} (5>0).
It follows immediately from the definition that arithmetical operations define the following
natural homeomorphisms of TVS:

Lemma on homeomorphisms of a TVS. Let X be a TVS. Then
a) translation by any fired vector a

r—zrx+a, X —X

15 a homeomorphism; in particular, for every x a set U is a neighbourhood of 0 iff x + U 1is
a neighbourhood of x;
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b) homothetic transformation (with the center at 0) with any nonzero coefficient t
rr—te, X — X

1s a homeomorphism; in particular, the image of every neighbourhood of 0 by a nontrwial
homothetic transformation is a neighbourhood of 0.

< a)  There exists inverse mapping # — z — a, and it is continuous (as addition with a fixed
vector —a).

b)  There exists inverse mapping z — %l‘, and it is continuous (a multiplication by a fixed
scalar 1/t). >

Exercise. Let X be a TVS. Prove that Vn € N Vty,...,t, € R, the mapping

n
(t1,. s tn, 1,y T ) V> ZtiIn R?"x X" — X

=1
is continuous (that is taking linear combination with fixed number of terms is a continuous operation).

Thus, transformations of open sets are open sets and nontrivial homothetic images of open sets
are open sets (and the same is true, surely, for closed sets).

Corollary. Let X be a TVS. Each neighbourhood of # € X has the form z 4+ U, where U is
a neighbourhood of 0. Besides, if U runs over a base of neighbourhoods of 0, then x + U runs over
a base of neighbourhoods of z.

Thus, we may confine ourselves by consideration of neighbourhoods of 0.
Exercise. Prove that a TVS is Hausdorff (that is Vz1,z2, £1 # z2, 3U; € N(z1) U2 € N(z2) : Uy NUz = 0),
iff
Ve# 03U e N(0) : =z g U.

[Hint: Use the fact that VU € Nbg 3V € Nbg : V — V' C U. This latter fact follows from continuity of substraction
in TVS’s (see Exercise on p. 2).]

Examples of TVS.

1. R™ with the usual topology. [Remark. This usual topology is the unigue Hausdorff linear
topology in R™ ]

2. More generally, all normed spaces (see chapter 3), for example C([a, b]), C*([a, b]), l2.

3. R, the space of all sequences of real numbers z = (21, za,...), with the following base of

neighbourhoods of 0:
Upe = {m| |z;| < e, z':l,...,n} neNe>0

(a finite number of ”gates”).
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In orther words, it is R x R x ... with the product topology.

4. RO = F([0,1]), the space of all real-valued functions on [0, 1], with the topology of simple
(or pointwise) convergence, for which a base of neighbourhoods of 0 is formed by the sets

Uy, ot 1= {33| lz(t;)] <e,i= 1,...,71}, t1,...,t, €10,1],n € N,e > 0.

[Arbitrarily big (but finite!) number of arbitrarily small (but with nonzero width!) ”gates”.]
Again 1t is the product topology.

5. C(R), the space of all continuous function on R, with the following base of neighbourhoods

of 0:
Une = {z| |z(t)| < eVt €[-n,n]}, neNe>0.
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. D([0,1]), the space of all infinite-differenciable real-valued functions on R (sic!), which are
equal to zero outside of [0, 1], with the base of neighbourhoods of 0

Upe = {a:‘|a:(t)| <elr) <e,..., ‘a:(”)(t)‘ < gw}, n=0,1,2,..., ¢>0.

0 1 0 1 0 1
g
UOa

U1 £ U2,a

)

)

7. 8(R), the space of all infinite-differentiable real-valued functions z on R, that quickly decrease
on infinity with all their derivatives in the sense, that for every n =0,1,2,... we have

tka:(q)(t)‘ < 00,

|zl, == R sup
k,q<
telR

with the base of neighbourhoods of 0
Upe = {a:| lz], <e}.

)

)

ae v

UO,&
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Definition, examples and basic properties

Ul,a

8. Cy(R), the space of all finitary (that is, equal to zero outside some compact interval) contin-
uous real-valued functions on R (emphasize that this compact interval may depend on the
function), with the base of neighbourhoods of 0

{BLP}J

where ¢ is any everywhere positive continuous function on R, and

B, = {z € G(R) | |z(t)| < (), Vt € R}.
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Exercise. Prove that a sequence in C (R) converges to 0 iff all the functions from this sequence vanish outside

some common compact interval, and on this anterval the sequence converges to 0 uniformly.

Exercise. Verify that in all above example we obtain really TVS.

1.1.2 Balanced sets and absorbing sets

For describing of properties of neighbourhoods of 0 we need two notions.
Definition. A set A in a vector space X is caled balanced if

1A= A,

and absorbing, if

RA=X.
The set I1 A 1s called the balanced hull of A.

[Recall that, for any T C R, TA := {t:b|t eT, z¢€ A}, I =[-1,1]]

In other words, A is balanced if V¢, [t| < 1, we have tA C A; and A is absorbing if for every
z € X we have z € tA for some ¢ € R. Geometrically balanceness means that A contains with each
its point z the segment [—z, z], so in particular every balanced set is symmetric with respect to
0 (that is —A = A); and absorbingness means that A intersets at least at one nonzero point with
every straight line, passing through the origin (Yz 03t #£0 : tz € A.).

0 g
balanced set absorbing set
Exercise. Prove that I; A is balanced and coincides with the intersection of all balanced sets containing A.

In what follows we shall often use the equations

IsA = 6LA,
Is, Is,A = Is55,A.

They are immediate corollary of the formula

A= {tz| |t| < 6,2 € A}
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1.1.3 Conservation of algebraical properties by topological operations and of topo-
logical ones by algebraical ones

Continuity of arithmetic operations in TVS implies that all the properties, which can be ex-
pressed in terms of these operations, are conserved by closure. More preciously, it holds
Lemma on conservation of algebraical properties by closure. Let X be a TVS and let

AC X. Then

A € Lin(resp. Aff, Conv, Cone, Bal) => A € Lin(resp. abAff, Conv, Cone, Bal).

Here
A€ Lin <= Ais a linear subspace of X,
A €eAff <= Ais an affine subspace of X,
A€ Conv <= Ais a conver subset of X,
A € Cone <= Ais a cone in X (with vertex at 0),
A € Bal <= Ais a balanced subset at X.

< Let a, 8 € R. We have

Aelin <= Va,8: aA+ BA C A,
A€ Aff <~ Vo,8, qg+8=1": aA+ PBAC A,
A€ Conv < Va,fc€ : aA+BACA,
A€ Cone <= Va>0: aA C A,
A€eBal <<= Va, |o/<1: aA C A

[Here we use the following notation: «, ..., 3 ET;_) = a>0,...,6>0a+...+ 5= 1.]
Prove that A € Lin = A € Lin. Let A € Lin, and let «, @ be fixed real numbers. We have to show
that A+ BA C A, i.e., that

Ax Ac f~1(A), (1)
where f is the mapping
fi(x,y)y—ar+pfy, XxX—X.

By continuity of arithmetical operations in TVS’s this mapping is continuous. By the condition,
we have

Ax AcC fHA). (2)
So

General
_ _ topolo 2 Obv. = on
Ax A T2 @77 8 iy feem
whence it follows (1).
The proofs of all the rest assertions are quite analogical. >

F7H(A),

On the other hand, the property to be open is conserved by algebraical operations:
Lemma on conservation of openness by algebraical operations. Let X be a TVS and
A, B be open sets in X. Then

a) the sum A+ B is open;

b) the balanced hull I A of A is open, if A contains 0;

¢) the convexr hull coA of A is open.

< O The proof is based on two properties of TVS (see the lemma on homeomorphisms of TVS):
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1) for every nontrivial homothopy transformation the image of an open set is an open set;

2) every translation of an open set is an open set.

o A+ B= U (A+1b), so a) follows from 0°2).

beB
> If0€ Athen 1A= | tA DEA U tA, so b) follows from 0°1).
[t]<1 Mt
> coA:{naiIia}ieA,a,...,anE ,nEN}: a; A,
z; ! & a1 H ;v
nelN - i)

i) is open if a; # 0, by 0°1), and is {0} if a; = 0

ii) is open (since not all a; are 0), by ¢)

whence it follows from c). >

Remarks.

1. Balanced hull of an open set, not containing 0, may be non-open:

LHAD0

2. The property to be closed is not preserved by taking the sum and by passing to the balanced
hull (even for sets, containing zero), nor to the convex hull (see the examples below).

Example 1.

LA gCl

A4+ B=co(AUB) eI
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1.1.4 Properties of neighbourhoods of 0 in TVS

In TVS we may without loss of generality assume that an arbitrary neighbourhood of 0 is
absorbing, balanced and, as one wish, open, resp., closed:
Lemma on properties of neighbourhoods of 0. Each neighbourhood U of 0 in TVS X

a) is absorbing and, what is more, satisfies to following conditions:

NU = X; (1)

Vee X30>0: iz CU,; (2)
b) contains an open balanced neighbourhood of 0;

¢) contains a closed balanced neighbourhood of 0.

< (> The proof is based on the following facts: !

1) the definition and elementary properties of TVS;

2) the lemma on conservation of algebraic properties by closure;

3) the lemma on conservation of openness by algebraic operations.
Io Let U be a neighbourhood of 0 in X. Let us prove a). Let & € X. Since 0z = 0, and multi-
plication by scalar is continuous (by 0°1)), there exist § > 0 and V € N (z), such that I,V C U.
Hence Isz C U, and hence %CL‘ € U for some sufficiently big n € N, so that z € nU C NU.
2 Let us prove b). Since 0-0 = 0, and multiplication by a scalar is continuous (by 0°1)) there exist
d > 0and V € N(0), such that I;V C U. Without loss of generality (w.l.g.) we may assume that V
is open. Then the set 75V is an open balanced neighbourhood of 0. Inheed, I;V = (I16)V = I, (§V)
and §V is open as an image of open set by nontrivial homothetic transformation. So I5V is balanced
(as every balanced hull is) and is open (by 0°3)) as the balanced hull of an open set.
¥ Let us prove c). Since 0+0 = 0 and addition in X is continuous (by 0°1), there exists V' € A (0)
such that V 4+ V C U. By b) we may assume that V is balanced. Then by 0°2) V is also balanced.
It remains to verify that V' C U. Let # € V. Then 2 + V is a neighbourhood of # (by 0°1)) and
hence contains some point z € V. For this z

we have
rex+V = zr—2€V = 22—z V=V = zcx+VCV+VCU,

thatis, V. C U. >

” ”

ITater on we shall usually omit this phrase and write simply: ”0°1)..., 2)...” or "0° Lemmaon ...”.



10 1 TOPOLOGICAL VECTOR SPACES

1.1.5 Theorem on base of neighbourhoods of 0

The following result allows to construct TVS by claining a certain system of subsets a base of
neighbourhoods of 0:
Theorem on base of neighbourhoods of 0. For each TVS X there exists a base B of neigh-
bourhoods of 0, such that:

a) every U € B is absorbing and balanced;

b) U € B,t#0=tU € B (homothety stability);
) YU eBIVeEB:V+V CU (continuity of addition at (0,0));
d) VU,,U, € B3U € B : U C Uy NUsy (filter base property).

And Vice versa (v.v.), if in a vector space X a system B of its subsets is given, that satisfies a)-d),
then there erists (the unique) linear topology in X, for which B is a base of neighbourhoods of 0.

<1 (® Lemma on properties of neighbourhoods of 0;

o TLet X be a TVS. By 0°, we may take as B the system of all open (resp., closed) balanced
neighbourhoods of 0. Indeed, then a) is fulfilled by 0°; b) is true, since for any nontrivial homothetic
transformation the image of each open (resp., closed) neighbourhood of 0 is an open (resp., closed)
neighbourhood of 0 and the image of each set is a balanced set; c) is true by continuity of addition
in TVS (in the point (0,0)) and by the fact that each neighbourhood of 0 contains an open (resp.,
closed) balanced neighbourhood of 0 (by 09; d) follows from the same later fact.

2 Let us prove the converse assertion. Let B be a system of subset of v. s. X, satisfying a)-d).
Define a topology on X by assuming that for any z € X the sets x + U where U € B from a base
of neighbourhoods of z. In order to verify that this definition is correct, we have, as is wellknown
from topology, to show that our "neighbourhoods” z + U satisfy three conditions:

1. each "neighbourhood” of z contains z;
2. the intersection of any two ”neighbourhoods” of z contains a third ”neighbourhood” of z;

3. for every "neighbourhood” U of z there exists a "neighbourhood” U’ C U of the same point
z, such that every point y € U’ is contained in U together with some its "neighbourhood”:

VU c ”Nbx” ElU/ c ”Nbx”
Vy E UI ElU// E ”NBy” .
u'cu.

<< 1.2z € 2+ U, since U contains 0 (as every balanced set).

2. This follows from condition d).

3. Consider the typical case of z = 0. Let U € B. We may take as U’ the ”neighbourhood” V,
existence of which is asserted by c). Indeed, if y € V, then y + V is a "neighbourhood” of y and
y+VCv+VvVcCclU. o>

Thus the topology is defined correctly.

3 Let us prove that this topology is linear. Continuity of addition follows easily from c). As to
multiplication by scalars, the proof of its continuity requires some efforts.

Let & € X and # € R be fixed. Let us show that the mapping (¢, z) + tx is continuous at (Z, ).
We have to show that YV € B3 > 03U € B :

t+I)(2+U)Ctz+V,



1.1 Definition, examples and basic properties 11

or

Ist + I;U +tU C V.

Byec), 3V eB :
V4V +V CW (1)

[Indeed, by c), IV € B : V" + V" C V. Again by ¢), 3V' € B : V' + V' C V". Then
V4V V' CV 4V 4V +V CV'+ V' C V]
—_—— S~——
By b), we may look for U in the form
U=aV'" (a>0).
So we need choose o and § so that
Iz + IsaV' +taV' CV,
or, by the fact, that V' is balanced,
I3 4+ 8aV’ +taV' C V. (2)
At first we choose ¢ so that
sz CV'
(V' € Abs Bal!), then we choose a so that
da<1 and fa<I.

Then, by (1), it holds (2). >

Remark.  The converse assertion remains true if one omits the condition b) of stability of B
relative to non-trivial homothetic transformations. (The proof becomes some more complex and

uses the following generalisation of (1):VV e BIne NIV e B: V' + V' +...+ V' C V.) Butin

n times

practical situations the condition b) is ever fulfilled.

This theorem allows us to construct TVS’s by prescribing a base of neighbourhoods of 0. In
particular one may verify with the aid of the theorem that all our above examples of TVS are
really examples of TVS’s.

Further, we may construct new TVS from given ones with the aid of the following lemma:
Lemma on product and subspaces. The product X xY of two TVS’s X and Y (with the
product topology) is a TVS. Fach linear subspace Y of a TVS X (the notation: Y C X ) equipped
by the induced topology, is a TVS.

Exercise. This follows immediately from the definition.

1.1.6 Linear mappings of TVS

For TVS the key role is played by continuous linear mappings (c.l.m’.s). The set of all c.l.m’.s
from a TVS X into a TVS Y is denoted by £(X,Y) (the set of all linear mapping from X into
Y is denoted by L(z,y)). For a linear mapping of TVS, in order to establish its continuity, it is
sufficient to prove continuity in any single point:

Lemma on continuity at one point. Let f: X — Y be a linear mapping of TVS’s. If [ is
continuous at any one point, it is continuous (everywhere).

< Let f be continuous at Z. Let us prove, that f is continuous. Let z € X and let f(z)+V (where
V € Nbyg) be a given neighbourhood of f(z).
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- f(:p)_l_v
x4+ U
/

Then f(z)+V will be a neighbourhood of f(z). Since f is continuous at Z there exists a neigh-
bourhood z 4+ U of & such that f(z 4+ U) C f(2) + V. Then z 4+ U will be a neighbourhood of z,
and we have by linearity of f

fle+U)=fle+i—2+U)=f(z)~ f(&)+ f(z +U) C flz) — £&T + HET+V,
that is f is continuous at x. >

* ok Xk

For linear functionals we have the following results.
Lemma on openness. Let X be a TVS, f : X — R be any nonzero linear functional and
A be any open set in X. Then f(A) is an open set in R. (In another words, any nonzero linear
functional is open.)

(Geometrically it is quite obvious!)

Emphasize that continuity of f is not supposed here.
< In TVS every neighbourhood of 0 is absorbing and contains

some balanced neighbourhood of 0.

lo Let z € A and U be aneighbourhood of 0 such that x4+U C A.
By 0°2) we may assume that U is balanced.

?  Since f # 0,3y € X such that f(y) # 0. Without loss of
generality we may assume that f(y) = 1.

3> By 0°1) 3§ > 0 such that §y € U. Since U is balanced, we
have Isy = I1éy C U.

4 By linearity of f we have f(Isy) = Isf(y) = Is, hence

f(A) D flz+U) = f(z) + f(U) D f(z) + f(Lsy) = f(=) + I,

which just means that f(A) is open. >

In particular, it follows from this lemma that a nonzero linear functional takes on any neigh-
bourhood of 0 strictly possitive and strictly negative values. It appears that if the values of a linear
functional on a TVS are bounded from above or from below on some neighbourhood of 0 then the
functional is continuous:
Lemma on continuity and boundedness from above. Let X bea TVS and f : X — R be
a linear functional. If exists a neighbourhood U of 0 and a number ¢ € R such that

flx)<e(orf(z)>¢) VzeU,
then f is continuous.

< Let, say, f(z) < eVz € U (¢ > 0). By properties of neighbourhoods of 0 in TVS exists a balanced
neighbourhood of 0
VcU.

For every € V we have —z € V and hence f(—=z) < ¢, that is f(2) > —c. Thus we have

[f(z)| <ec Yz eV,
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that is
f(V)C L.

It follows that for every & > 0
f(eV)=ef(V) Cel. = I..

Since €V is a neighbourhood of 0 together with V we may conclude that f is continuous. >

The set of all continuous linear functionals on a TVS X is denoted by X*:
X* = L(X,R).
Remarks.
1. On R", every linear functional is continuous.

2. On the TVS k (see p. 41) the linear functional z — z1 4+ 2294+ 323+... (2 = (21,22, 23, ...))
is not continuous.

The set of all linear functionals on a vector space X is denoted by X’:
X' = L(X,R).
For linear functionals it is often convenient to use the symmetric bracket notation:

(' z) :=2'(z) (¢’ € X',z e X).

1.2 Hahn-Banach theorem

In this section we consider questions connected with the notation of convexity.
1.2.1 Basic notations of convex analysis

Let X be a vector space. A set A C X is called convex if
z1,29 € A= [21,25] C A,
where [z1, 23] denotes the straight line segment, that joins the points 21 and z5:
[z1,29] := {;1:1 +it(z2 — .131)| 0<t< 1}.
It is convinient to write this equation in the following symmetric form:
[z1,29] = {alml + a2m2| a; > 0,0 > 0,01 +as = 1}.

The expression to the right of the vertical bar will be often used later, and we introduce a special
symbol for it:

(a1, as) ETA_, <= a1 > 0,as > 0,a1 +a3=1.

Examples of convex sets:



1 TOPOLOGICAL VECTOR SPACES

14

TN 4 4 -

44 11
:—\— ‘ E} é _;_%_%

( @ endpoint encluded; o endpoint excluded;
corresponding points of the boundary encluded;

corresponding points of the boundary excluded

w

R

A

in the case of R? the interpretation is left to the reader. )

An important role will be played by convex cones: A set K in a vector space is called a cone

with the vertex at 0 if
reEK, a>0= azr e K.
As a rule we shall omit the words ”with the vertex at 07, since we shall not deal with another

cones.
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Examples of convex cones:

}Rl

LSOOV

C([0,1]) M/M\A {x|x(t) > 0Vt €[0,1]} (the "non-negative” cone).
0] K

Elementary properties of convex sets. Convexness is conserved by any intersections and by
finite summation:

A, eConvVie]l] — ﬂ A, € Conv, (1)
el
Ay, Ay € Conv. — A, + As € Conv. (2)

<9 (1) Let x,y€ (A, Then z,y € A, Vs, and hence [z,y] C A, V1, that is [z,y] C A,
(2) Let z,y € A1 + Ay, and let (a+ 3) € . Then ¢ = x1 + x5, y = y1 + ya, for some
x1,y1 € Ay, T3,ys € A, and hence

ar + By = a(zr + z2) + B(y1 + y2) = (az1 + Byr) + (aza + fya) € A1 + Az, D

Remark. The balanced hull of a convex set may be nonconvex: C—=<@.

Convex combinations and convex hull. To the notions of linear combination and linear hull
there correspond in convex analysis the notions of convex combination and convex hull.

n
Recall that a linear combination of elements z1,...,2, in a linear space X is a sum Y a;z;,

=1
where a; € R. If one imposes on «; the condition > a; = 1, then we obtain an affine combination.

In the convex analysis one adds the condition of nonnegativity of «; :

and obtaines respectively convex-conic combinations and conver combinations:

conditions on the signs . . .

n @ Example. The linear combinations of

> i no Fondr ;i >0 3

= lons e €1, €9, ez cover all R”; the affine

combinations from the plane,
~ondi- lines convex-cone .
§§ Mions | combination | combination passing through eq,eq, e3; the
Ze €2 convex-conic ones form the posi-
g« €1 : .
g Tar=1 affine convex. tive octant; and the convex ones
ce ! combination | combination . ) :
form the triangle with the vertices e1, ez, e3.
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The set of all linear (resp. affine, convex-conic, convex) combinations of (arbitrary finite number
of) points of a given set A in a vector space is called the linear (resp. affine, convez-conic, conver)
hull of A and is denoted by

linA (resp. affA, cocon A, coA).

Exercise. Prove that for every set A in a vector space X
lind = ﬂ A, affd = ﬂ A, cocond = m A, coA= ﬂ A, (3)
A€Lin(X) AEAFE(X) A€Cocon(X) A€Conv(X)
ADA ADA ADA ADA

where Lin(X) (resp. Aff(X), Cocon(X), Conv(X)) denotes the set of all vector subspaces (resp. of all affine sub-

spaces, of all convex cones, containing 0, and of all convex sets) in X.

Convex functions. In the convex analysis it is convinient to consider the so called ertended real
line _
R:=RU{+o0} U {—00}.

For a function f: X — R (where X is a vector space) its domain is defined as

domf := {:EEX|f(:B);£+oo}, (4)
and its epigraph is defined by the formula
epif::{(:L‘,a)EXX]R|aZf(:E)}. (5)

A function f: X — R is called convez if its epigraph is a convex set:
f € Conv :<=> epif € Conv.
Remark. domjf C X is the projection of epif C X x R onto X.

Examples of convex functions:

1. The functions f : R — R with the following graphs:

graph § LTt At
- w

epi f

111 TW\/M
v

dom f

(The arrow dk (resp. g ”) means the value 400 (resp. —o0).)

2. The following analytically defined functions R — R:

. 2 ifr>0(8<0
e (a € R) =" (p > 1) {—|—oo if:b<0(6 )
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3. On any vector space X functions f = 400 and f = —oo (with domf = 0, resp. X, and
epif = 0, resp. X x R).

4. Every affine function (that is a linear function + constant).

5. For every convex set A its indicator function § A:

[0 ifeeA,
OA(z) "{ too ifa g A

Remark. In the "usual” analysis one means by indicator function of a set A the function that
is equal to 1 on A and 0 at all other points.

Exercises. 1. Prove that f € Conv —=> domf € Conv.
2. Verify example 5 above.

3. Prove that f € Conv = Vc € R : {x‘ flz) < c} € Conv.

The function = +oco with the empty domain is of course ”degenerate”. Convex functions, that
have (if only at one point) the value —oco, are also degenerate: they may have finite values only
on the ” boundary” of its domain. For example, typical such functions f on R are

on 7 1111 r me i Twm HI

epi f

In view of this, a function f is said to be properif f(z) is not +oco at least at one point and is —co
at no point x.

Lemma. A function f is convez iff (= if and only iff) it satisfies Jensen’s inequality

flagzy + aszs) < agf(xr) + asf(xs) Vai,xs € dom X V(aq,as) ETL_, (6)
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<] Exercise. Hint:

f(il)

arf(21) + azf(z2) I (x2) Corollary. A function f :

X — RU {400} is convex iff
it satisfies Jensen inequality for
all z1, xz5.

Ty a1x1 + asxo T2

>
Elementary properties of convex functions. Convexity of functions conserves by taking any
supremum and by summation:

f,€Conv Yeel — \/ f. € Conv, (7)
el
f,9 € Conv. — f+ g€ Conv. (8)

We use standard notation

(fvg)z) = maz{f(z),g(z)},
(fA9)(x) = min{f(z),g(x)},

(\/ £, ) (z) := supfi(z),

el el
(/\ 1. ) () = inferf.(2).
el

< (7) follows from the evident fact that
epi \/ f, = [ epif.. (9)
=y =y
As to (8), consider for simplicity the case of finite f and, g. Thus we need to verify that for f +g¢
Jensen’s inequality holds. Let 21,22 € X and (a1, a2) € . Then
(f+g9)(a1z1 + aszs) = flarzr + aszs) + g(arz1 + azzs)
< arf(zr) + aaf(x2) + org(zr) + azg(zs)
ar(f +g)(z1) + az(f + g)(22). >

Sublinear functions. An important subclass of convex functions is the class of so called ”sub-
linear” functions. The name is not good. It would be better to call them, say, ”conic” functions.
But such is the tradition.
By study of sublinear functions it is convinient to introduce once more notation:
R’ :=RU {+cc}.
A function p: X — R" (where X is a vector space) is called sublinear if epip is a convex cone:
p € Sublin(X) :<= epif € ConvCone(X x R).

Examples of sublinear functions. 1)  The functions on R with the following graphs:
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reeed TMT TTT T” \T T/ \T/

graphf

D R B

On every vector space the function = +o0o (the unique improper sublinear function).

2)
3)  Every linear functional.

Lemma. A function p: X — R’ is sublinear iff it satisfies the following two conditions:

a) plax) = ap(z) Ya>0VYze € X (positive homogeneity);

b) p(z1 + x2) < p(z1) + p(za) V1,29 € X (subadditivity).

< Exercise.  Notice that for positive homogeneous functions condition b) follows from convexity:

p(z1 + 22) = 2:0( 2—1 + 3%2) < 2( %p(m) + %p(m)) = p(z1) + p(z2). >

Thus the sublinear functions are just the positively homogeneous convex functions (having at

no point the value —co).
Elementary properties of sublinear functions. Sublinearity is conserved by taking any

supremum and by (finite) summation:

p. € SublinVe € I = \/p, € Sublin, (10)
el

p,q € Sublin = p+ ¢ € Sublin. (11)

<1 The conservation of convexity we have already proved, and the conservation of positive homo-

geneity is obvious. [>
An important example of sublinear functions is Minkowski functions of convex sets. For any
set A in a vector space X its Minkowsk: function pA is a function on X, defined by the formula

pA(z) = inf{a> 0|z €ad}
= inf{a>0|a 'z € A}

(inf0 := +00)

(As to the definition of inf0, see Remark 2 on p. 50)
Roughly speaking, pA(z) measures the distance of z from 0, measured "
by means of the ”unit” that is the ”maximal radius” of A in the direction
of  (see the picture to the left). Some typical cases are represented below

on the pictures (for X = }R2).
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Exercise. Show that
pA = /\ €y
TEA
where
eo := 6{0},

and for z # 0 the function e is defined as the unique sublinear function such that
dome, = Rtz \ {0}

and
ex(z) = 1.

In particular,

w{z} = eq.
[Hint: a7z € A & epo1,(z) = ]

So pA is called also the gauge function of A.
Elementary properties of Minkowski function.

1) For every convex A the function pA is sublinear.

2) ACB=pA>uB.

<1)  Weneed to verify positive homogeneity and subadditivity of uA. That pA(tx) = tpA(z) (¢ >
0), is true for any set A and follows at once from the definition of 4 A. Let us prove that pA(z+y) <
pA(z) + pA(y). Let o=z € A and p~1y € A for some a > 0, 3 > 0. Then

a By
atpatargp !

(@48 (z+y) =
by convexity of A. Hence pA(z + y) < a + 3, whence it follows that
pA(z +y) <infla > 0[a"'z € A} +inf{B> 0|37y € A} = pA(z) + pA(y).

2) Tt is obvious. >

Exercises.

1. Prove that for every A we have

u((0,1]4) = . (12)
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2. Let for z € R™

o] == /a2 + ...+ 22,

and let B be the unit ball
B= {x‘ lz] < 1}.

Verify that
uB = |. (13)
3. Prove that for every cone K
pK = 6K, (14)
where §K is the indicator function of K (see p. 17)

1.2.2 Hahn-Banach theorem

This is the first from the mentioned ”three whales”.
Hahn-Banach theorem. Let X be an arbitrary vector space, let Xy be a vector subspace in
X (Xo € X, ) let p be a sublinear functional on X, and let z{, be a linear functional on Xy (the
notation: zf, € X{). Assume that

2o < ply,-

Then there erxists a linear functional ' on X (&' € X') such that
/ 0
T |X0 =z,
and
' <p.

[ Recall that, say, ]0|XD denotes the restriction of p onto Xy and that, say, ' < p means that
z'(z) < p(z) for every z € X ]

One express the content of the Hahn-Banach theorem by the words: every linear functional
on a linear subspace of a vector space, which is majorized by some sublinear functional, defined
on the whole space, may be extended (or continued) onto the whole space with conserving of this
property.
<0  The proof is based on the Zorn lemma. Tt is one of the axioms of the set theory, which is
equivalent to the ariom of choice. The latter axiom says that for every set X there exists a function
¢ :P(X) = X (where P(X) denotes the set of all subsets of X), such ¢(A) € A VA € P(X).

In order to formulate the Zorn lemma, we need some notions. Let (M, <) be a (partially)
ordered set. Any its subset, such that each two elements a, b of this subset are comparable (that
is either a<b or b<a), is called a chain. An element a € M is called an upper bound of a subset
M' C M, if a’<a Ya' € M’'. An element a € M is called mazimal if

a<a,a € M —= a =a.

Zorn lemma. If every chain in an ordered set M has an upper bound (in this case the ordered
set is said to be inductive), then there exists a marimal element in M.

(z,y) 2 (2" y)=z<2 y<y

Illustration:

chain the set of maximal elements
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lo If Xog = X, there is no to prove. Let X # X, and let h € X \ X. Put
Y :=lin(XoU{h}) = Xo+Rh = {z+th|z € Xo,t € R}.

We will to extend zf, from Xy onto Y so that the extended linear functional y' € Y’ still satisfy
the majorization property: ¥y’ < p|Y. It is obviously sufficient to choose a value v of 3/ at the point
h:
v = {y' h).
Then
(y,z+th)=(, z)+t{y h) = (zh,z) +ty (z € Xo,t €R).

We want to have

Ve e Xo Vt € R (zg,z) +ty < p(x + th). (1)
For ¢t = 0 this inequality is fulfilled by our assumption.
For ¢ > 0 Equation (1) means if we put t = L (a > 0) that

1
7§ap<x+—h)—a<m6,x> Va > 0Ve € Xg. (2)
a
For ¢ < 0 Eguation (1) means if we put ¢t = —1 (a > 0) that
1 , .
v > —ap :L‘—Eh +alzg,z) Ya>0VYz e X,. (3)
Tt is clear that a real number v satisfying both (2) and (3) exists iff

Va,B3>0Vz,y € Xo @ ap(z + éh) — afzy,z) > —ﬁp(y— %h) + 3z, y). (4)

But 4 is indeed true:

(ap<:v+ éh) +ﬂp<y— %h)) — (o{zp, z) + B(xo, )
p is positively homog.
= (plaz + h) +p(By — h)) = (6, ez + By)

p is subadditive
ol 5,27
> plaz + By) — (zhoz+fy) = 0.
Hence, a desirable y' exists.
Thus, we have extended z{, by one dimension”.
2  Now we apply the Zorn lemma. Put

M = {(Y,y’)|X0 CYCX,yeY y’|XD::E6,y’§p|Y},

(V¥ )=(Z,7) =Y CZy =2,

(M consists from ”partial” desirable extensions, and one such extension is ”greater” than another
one if the first one is an extension of the second one). This ordered set (M, <) is inductive. Indeed,
let {(Ya, ¥y )},ea be achainin (M, <). Put

Y::UYa

a€A
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and define y € Y/ so: if y € Y then y € Y,, for some o, and we put

W'y = (Yo, v)-

Since {(Ya, ¥, )} is a chain, it is clear that this definition does not depend on the choice of a, and
it is evident that (Y,y') is an upper bound for the chain.

3 Thus, by Zorn lemma, there exists a maximal element in (M, <), say (Z,2'). If 7 # X, then
we can, as in 19 construct an extension (Y,y') € M, such that (Z,2')<(Y,y' ) and 7 # Y. But
this contradicts to maximality of (7, z’). Hence, Z = X, and 2z’ is the desirable extension. >

1.2.3 Separation Theorem
Let X be a vector space, let A,B C X, and let 2’ € X'\ 0. We say that a hyperplane
{z e X| (z',z) = v} separates A and B if
A C {:EEX|<:L‘/,£L‘>Z’)/},
B C {‘JJEX|<(L‘/,£L‘>§’)/},

that 1s, if
(z', A) < (2, B). (1)
A
CE
Remark 1. Non-symmetry of A and B here is seeming: if we take —z’ instead of z’ then A

and B change their roles.

Recall that
(@', A) = {(o!, )] 2 € A},

and for P,QQ C R
PL<Q:<=VpePVqeQ:p<yqg.

Separation Theorem. Let X be a TVS, and let A, B be non-empty convex subsets of X without
common points, one of them, sayA, having a non-empty interior:

A, B € Conv, intA#0, B#0, ANB =0.

Then there exists a non-zero continuous linear functional z* on X (z* € X*) that separates A and

B.

Remark 2. If [ is a non-continuous linear functional on a TVS X (I € X'\ X*), so that [ # 0,
then the half-spaces
<x| (I, z) > O> and <r| (I, z) < 0>

(obviously, convex and non-empty) can be separated by no z* € X*. Prove this as an exercise.

< P
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1) Hahn-Banach Theorem;

2)  properties of neighbourhoods of 0 in TVS’s;

3) elementary properties of convex sets and the definition and properties of Minkowski
function.
lo At first we consider a special case, namely 0 € intA, B = {b}. Consider the Minkowski function
#A. We have by the definition of pA

pA < lon A, (2)
pAB) > 1 (3)
Put
Xo=Rb

and define a linear functional zj; on X, by putting
(20,6) =1, (4)
where v is any real number between 1 and pA(b) (see (3)):
1<y < pAD). 5)

(On the picture v = pA(b).) Since pA is nonnegative, we have
zy < pA on Xg.
Now, pA is sublinear (see p. 20), so, by 0°1), there exists a linear functional z* € X’ such that
33*|Xuza:6(thatis (x*,0) =~v(#£0!)) (6)

and
r* < pA. (7)

We claim that this functional z* is continuous. Indeed, it follows from (7) and (2) that z* is
bounded from above (by 1) on A, but A is a neighbourhood of 0 by our supposition. So z* is
continuous by the lemma on p. 12.

Further, since z* <1 on A, we have

(2", A) <1 <y = (2", b).
2 Now consider the general case. Let ag € intA, by € B. Put

CZ:(A—[lo)—(B—bo),CO ZZbo—[lo.
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D
A m A J,\ sums of convex sets are again convex (by

‘ J 0°3)), the so defined C' is convex. Now, since
ag € intA, we have 0 € int(A — ag) (by
0°2)), and hence 0 € C (since A —ag C C).

Further, ¢y ¢ C, otherwise we would have

@(60 co = bg — ag = (a — ag) — (b — bg) for some
a € A, b € B, which would imply a = b. But

C = (A—aog)+ (—(B — b)) AN B = 0. Thus we have case 1° for C' and
cp, so dx* € X* such that

def. of linearity

(2%, co) > (&*,C) = (& A= B4c) "= (2, A) — (z*, B) + (2%, co),

Since translations, homothetic images, and

A—ap B —b _(B - bo)

whence 1t follows that

(z*, A) < (2", B). >

Remark. The condition that A has at least one interior point, was used only by proving the
fact that z* is continuous. Since in finite-dimensional case (that is for X = R™ with the usual
metric topology) every linear functional is continuous (verify!), this condition may be omitted in
this case.

1.2.4 Locally convex spaces

The most important class of TVS’s is the class of logally convex (topological vector) spaces
(LCS’s).
Definition. A TVS (and its topology) is called locally conver, if in X there exists a base of
convex neighbourhoods of 0.

In all the above examples of TVS’s we have LCS’s in fact.
The typical examples of TVS’s; which are not LCS’s, are:
1. the space of all measurable functions on [0, 1] with the topology of convergence in measure

(see [2, p.107]);
2. the space [, por 0 < p < 1 (see [4, p. 247-248]).

Lemma on neighbourhoods of 0 in LCS’s. In any LCS there exists a base of convex balanced
open (resp., closed) neighbourhoods of 0.

< P

1. In any TVS every neighbourhood of 0 contains a balanced open (resp., closed) neighbourhood
of 0;

2. in any TVS convex hull of an open set is open (the lemma on conservation of openness);
3. in any vector space the convex hull of a balanced set is balanced (the proof is given below);

4. in any TVS the closure of a convex balanced set is a convex balanced set (the lemma on
conservation of algebraical properties).
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o Let U be an arbitrary neighbourhood of 0. By the definition of
an LCS, U contains some convex neighbourhood of 0 V. By 0°1), V
contains some balanced open neighbourhood of 0 W. Then coW is
a convex balanced open neighbourhood of 0 that is contained in U.
Indeed, coW is balanced by 0°3), is open by 0°2), and is contained
in V, since W C V and since V is convex.

2 Let again U be an arbitrary neighbourhood of 0. By 0°1), U con-
tains some closed neighbourhood of 0 V. By 1°, V' contains some con-
vex balanced neighbourhood of 0 W. Then the closure W is a convex
balanced closed neighbourhood of 0 that is contained in U. Indeed,
W is convex and closed by 0°4), and is contained in V', since W C V
and V is closed. >

1.2.5 Semi-norms and LCS’s

By study of LCS’s it is very useful the notions of norm and semi-norm:
Definition. A semi-norm in (or on) a vector space X is a function p: X — R", that is proper
and possesses the following properties:

1) p(z) > 0 Vo € X (non-negativity);

2) p(tz) = |t|p(x) ¥t € R Vo € X if the right-hand side has a sense (homogenity);

3) p(z+y) <p(z)+p(y) Ye,y € X (subadditivity).

A norm is a semi-norm, that is equal to 0 at no z # 0 and is equal to +00 nowhere.

Remarks.

1. Thus, semi-norms are none other than non-negative symmetric (with respect to 0) sublinear

functions.

2. In fact the property ) follows from ) and ).

3. For semi-norms it holds not only the ”triangle inequality” ) (as for all sublinear functions),

but also the inequality

p(z—y) > |p(z) — p(y)|

("the length of a side of a triangle is greater than or equal to the (modulus of) difference of
length of two other ones”).

< ply+ (2 —vw) <p(y) +plx —y) yields p(z — y) > p(z) — p(y); switching the roles of z and y
yields p(y — ) > p(y) — p(z); but by ) we have p(y — z) = p(z —y). >

The ”level sets”

B,(r) = {x|p(m)§r} r>0
ép(r) = {x|p(m)<r} r>0

are called respectively the (closed) ball and the open ball of the radius r (with the center at 0),
associated with a semi-norm p. For unit balls we write simply B, and Bp:

B, := By(1), B, := B,(1).
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Now for every nonempty convex balanced set B we denote by pp the Minkowski function of B:
pe(z) = puB(z) = inf{t > 0| z€tB} (z€ X)(inf0 = +o0)
It appears that the correspondances
pr— B, and B+— pp

are almost inverse one to another (”almost”, since different sets B may have one and the same
Minkowski function pp):
Theorem on the correspondence between semi-norms and balanced convex sets. Let

X be a vector space.

a) If p is a semi-norm in X, then its unit balls B, and ép are balanced conver subsets of X,
and
pB, = PB, = P-
Moreover, iof p s finite, then B, and Bp are absorbing; if p vanishes only at 0, then B, and
B, contain no (straight) line, passing through 0; hence if p is a norm, then B, and B, are
absorbing balanced convex sets, which contain no line, passing throuh 0.

b) If B is a balanced convez set, then its Minkowski function pp is a semi-norm, and
Bpy CBC By

Moreover, if B is absorbing, then pp s finite; if B contain no line, passing through 0, then
pp vanishes only at 0; hence if B 1s an absorbing balanced conver set, which contains no line,
passing through 0, then pp 1s a norm.

<1 All this follows easy from the definitions and the fact, that for any convex set A its Minkowski
function pA is sublinear (see also Exercise 3 on p. 17). >

Now bring in topology and discuss continuity of semi-norms.
Theorem on continuous semi-norms. Let X be a TVS.

a) If a semi-norm on X is continuous at 0 then it is continuous (everywhere).

b) A semi-norm p on X is continuous if its unit ball B, is a neighbourhood of 0 and only if its
open unit ball By, is a neighbourhood of 0. In this case the ball By, 1s a closed set and the ball
B, is an open set (which justifies the names "closed ball” and "open ball”).

¢) A balanced conver set B in X is a neighbourhood of 0 iff the associated semi-norm pp is
continuous. In this case it holds

o

B B.

o = intB, By,
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< 0 The above theorem on the correspondance. [ a)] This assertion follows at once from the
inequality for difference of two sides of a triangle

[p(z + h) — p(z)| < p(h)

(see Remark 3 on p. 26).

[ b)] Let p be a semi-norm on X. If p is continuous, then ép is open in X and B, is closed
in X as the pre-images of the open set (—oo, 1) and of the closed set (—oo, 1] respectivelly. Hence
Bp is in this case a neighbourhood of 0.

Vice versa, let B, is a neighbourhood of 0. Let us prove that p is continuous. By a), it is
sufficient to verify, that p is continuous at 0. Let it be given £ > 0. Then B, is a neighbourhood
of 0 together with B,, and it holds

p(eBp) =ep(By) Ceh = I,
——v
Ccl

so p is continuous at 0.

[ )] Let B a balanced convex set in X. If B is a neighbourhood of 0, then B, is also
a neighbourhood of 0, since B C Bp‘,3 by 0°. Hence by b) pp is continuous. Vlce versa, if pp is
continuous, then by b) pp 15 open in X, and therefore B is a neighbourhood of 0, since B D BpB
by 0°.

Now let us prove that if B is a balanced convex neighbourhood of 0, then B][,B = intB and
B,, = B. Since pp is in this case continuous, it follows that Bps is open and B, is closed (by

b)). So it is sufficient to show that intB C B,, and B,, C B.

Let € intB. Then B is a neighbourhood of Z. Since the mapping (¢, z) + t2 is continuous
at (1,z), there exists ¢ > 1 such that ¢tz € B. Hence, by the definition of Minkovski function,
pB( ) < 1, that is, Z € BpB
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. 0° _

Let & € B,,, that is, pg(2) < 1. If pp(2) < 1, then & € B,, C B C B.If pg(2) = 1 then by
the definition of Minkowski function there exists a sequence ¢, — 1 (¢, > 1), such that t;l;i € B.
Since, again, the multiplication by scalar is continuous at (a,#) and ¢,;1 — 1, we conclude that
tT_Ll:E — Z and hence z € B. >
——

€B
Remark 1. The continuity at 0 implies continuity (everywhere) for any sublinear function
(provel).

Summarize the two above theorems in the following diagram:

pp € SemiNorms
B ¢ BalConv =

By, C BC By

&
=
B € Absorb = pg € Flinile
B e NoLine = pp € NullKer [ & PB € Norms
p e Cont <= B, € Nbg
& |} . 0
o p is continuous at 0 B, €0,
= U
B, e Cl
SemiN { Bp,ép € BalConv
) p € SemiNorms = B, = pB, =P
n
> o
p € Finite = By, B, € Absorb
p € NullKer = B, B, € NoLines < p € Norms
pp € Cont < B €& Nbg
- (; o0
= pp 1s continuous at 0 B,, =intB
= U
BPB — B

(the notations must be clear from the above exposition.)
Remark 2.  We said above about continuity of functions p : X — R°", but we did not define
what it is! Of course, it should be understood so: we say that p is continuous at z if p is finite
at some neighbourhood U of z and the restriction p| .. is continuous at z in the usual sense. In
particular, a continuous (that is, continuous at all points) function p is everywhere finite.

* kX

The notion of semi-norm allows to give the two following examples of LCS’s:
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Example 1. Semi-normed and normed spaces. Let p be a finite semi-norm (resp., norm) in a vector
space X. We take as a base of neighbourhoods of 0 the system of all open balls B, (r), r > 0. It is
easy to verify that all the conditions of the theorem on base of neighbourhoods of 0 are fulfilled:

a) each ball Bp(r) is absorbing, since p is finite;

o

op(r) = Bp(tr);

b) tB
c) ép ( %) + ép( %) - ép(r) by convexity of p;
) By

d) B, (r1) N By(rs) = By (min (ry,73)).

Thus, the system ép(r), r > 0, defines a structure of TVS in X. Further, each our open ball is
convex, by the above theorem on p. 27. So this TVS is an LCS. Such spaces are called semi-normed
(resp., normed). Normed spaces are exactly Hausdorff semi-normed ones (verify!).

Example 2. LCS, generated by a given system of semi-norms. More generally, let (pa),cq be
any family of finite semi-norms in a vector space X. Take as a base of neighbourhoods of 0 the
balls Bpa(r), a € A, r > 0, and all their finite intersections. Just as in the above example, one
verifies that this makes from X an LCS (called the LCS, generated by the system ps).

It appears that the last example is the most general example of LCS. Viz., it holds
Theorem on generating by semi-norms. In any LCS X the topology may be generated by
a family of semi-norms. One may take as such a family the family of all continuous semi-norms
on X.

S

1. Every neighbourhood of 0 in LCS contains a convex balanced open neighbourhood of 0 (the
lemma on neighbourhoods of 0 in LCS);

2. a semi-norm p is continuous iff the ball B, is an open set (the theorem on semi-norms in

TVS);

3. if B is an open balanced convex set in a TVS, then pp is a continuous semi-norm in this
TVS and B,, = B (the same theorem).

o Consider the family P of all continuous semi-norms on X. By 0°2) the balls ép, p € P, are
open, hence all the balls B,(r) = 7B,, r > 0, p € P, and their finite intersections are open and
hence are neighbourhoods of 0. Thus, the local convex topology, generated by the family P, is
coarser than the original topology.

2 On the orther hand, let U be a neighbourhood of 0 in X. By 0°1) U contains an open balanced
convex neighbourhood of 0 B; by 0°3), the associated semi-norm pp is continuous, that is, pg € P,
and B = épB. Hence every neighbourhood of 0 in X contains a neighbourhood of 0 in the topology,
generated by P. Thus, the latter topology is finer than the original one. >

Remarks.

1. A family of semi-norms, generating the topology of LCS, is not uniquely defined. We may
add to or exclude off the family, say, the semi-norm 2p (if p belongs to the family.)

2. The locally convex topology, generated by a system P of finite semi-norms on a vector
space X, is the weakest locally convex topology on X, such that each semi-norm from P is
continuous. (Verify!)



1.2 Hahn-Banach theorem 31

1.2.6 Strict separation theorem

Let X be a vector space, let A, B C X, and let 2’ € X'. We say that 2’ strictly separated A
and B, if there exists a non-empty open interval 7 C R such that

(@', Ay < T< (&, B),
or, which is equivalent, if
sup (z', A) < inf(2’, B).

Strict Separation Theorem.

Let X be an LCS, let A be a non-empty closed convez set in X,
and let z € X \ A. Then Jz* € X* that strictly separates A and
z, that 1s,

It is clear that z* satisfying this inequality, must be non-zero.
< ¢
1. Separation theorem for TVS;

2. the fact that every non-zero linear functional is open.

T Since A is closed and & ¢ A, the complement X \ A is an open neighbourhood of Z. Since X
is an LCS, 3 a convex neighbourhood U of # such that U C X \ A, that is, UN A = 0. By 0°1),
applied to A and U, J3z* € X* \ 0, such that

(z*, A) < (2™, U),
or, equivalently,
sup (z*, A) < inf(z*,U).

2 The latter infimum is strictly less than (z*, &), since the set (z*,U) is, by 0°2), open and,
obviously, contains the point (z*, ). Hence it follows the desired inequality. >

Here is a simple corollary of Strict Separation Theorem:
Lemma on non-triviality of annihilator. Let X be an LCS, and let Xy be a closed vector
subspace of X, Xo # X. Then 3 a non-zero z* € X* such that

(z*, Xo) = 0.

(For short, we write here and below 0 instead of more correct {0}.)
For any set A C X the set

At = {2* € X*| (2", A) = 0}

is called the annihilator of A. So the lemma asserts that Xd‘ is not trivial, whence the name.
< @
1) Strict Separation Theorem;
2) the obvious fact, that a linear functional on a vector space, which is bounded from above
or from below (on the whole space), is identically equal to 0.
lo By condition 32 € X \ Xgy. Hence by 0°1) 3 a (nonzero!) z* € X* such that

sup (z*, Xo) < (2%, 2).
? Thus, z* is bounded from above on X,. So by 0°2) z* |Xu =0.>
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1.2.7 Totality of the dual space

On every Hausdorff LCS there exists ”sufficiently many” continuous linear functionals (in this
sense the space X* is "total”):
Theorem on totality of the dual space. Let X be a Hausdorff LCS, and let # € X. If
(X*,2) =0 then & = 0.

< (> Strict Separation Theorem.
o Suppose that

(X* &) =0, (1)

but # # 0. Then & ¢ {0}, and we can apply 0° to {0} and # (since in a Hausdorff topological
space every point is a closed set). We conclude that Jz* € X*:

v 0°
0% (2*,0) < (2%, 8) € 0. >

Remark. For non-LCS’s X it may be X* = {0} [2, p. 107].

1.3 Openness principle

This is the second ”whale”.
We shall prove this principle for so called F-spaces.
1.3.1 Definition and examples of F-spaces

Definition. A TVS X is called an F-space if:

1) its topology is generated by some metrics g, which is invariant relative to translations in the
sense that

o(z,y) = o(x —y,0) Va,yeX;

2) the metric space (X, g) is complete.

[It may be shown that the property to be complete doesn’t depend on the choice of such
a metric.]

We shall oft write simply ”invariant” instead of ”invariant relative to translations”.

Usually one deals with locally-convex F-spaces; such spaces are called Fréchet spaces (whence
the letter ”F” comes).

Example. Every Banach space, that is, complete normed space, is a Fréchet space.

It a TVS satisfies the condition 1) above, we say, that this TVS is metrizable.

Thus, each F-space is metrizable. Here is an important general example of metrizable LCS’s:
Example. Every LCS, generated by a countable systems of semi-norms (such LCS’s are called
countably normed), is metrizable, and the corresponding metrics may be chosen to be invariant.
Viz., one may take the metric

= —-n pn(r—y)
z,y) = 27—
o(zy) ,; L+ pn(z —v)

where {p,} is the generating system of semi-norms.
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1.3.2 Opennes principle: Banach theorem on open mapping.

There is a number of versions of the openness principle. One of them is the Banach theorem
on open mapping;:
Banach theorem on open mapping Let X and Y be F-spaces, and let A : X — Y be
a continuous linear operator onto Y (that is, a surjective operator). Then A is an open mapping
(that is, the image by A of every open set is an open set).

< P

1) The Baire theorem: No complete metric space can be represented as the union of a countable
family of nowhere-dense sets. (see [1, p. 69]);

2) in TVS A+ B D A+ B (the closure of a sum contains the sum of the closures) [prove this
as an exercise and give an example, where the inclusion is strict];

3) in TVS the sum of two open sets is an open set (the lemma on conservation of openness);

4) the absorbtion property of neighbourhoods of 0 in TVS.
o At first we shall prove that for any neighbourhood U of 0 in X the closure AU of its image
contains some neighbourhood of 0 in Y.

Since the mapping (z1,22) — #1 — &3 is continuous at (0,0), 3 a neighbourhood U’ of 0 in X
such that U’ — U’ C U. By 0°4), we have

X = U nlU’,
n=1
and therefore -
Y =AX = | nAU".
n=1

Hence by 0°1) (applied to Y which ”is” a complete metric space) one of the sets nAU’ contains
a nonempty open set. Since the homothetic transform with the coefficient n is a homeomorphism
of Y, we conclude that AU’ contains some nonempty open set V. It follows that

— 0°2)
AU D A(U'=U"Y=AU' = AU' O AU' = AU' DV -V.

The set V —V is open by 0°3) and obviously contains 0. Thus, AU contains a neighbourhood of 0.
2 Now let us prove that for any neighbourhood U of 0 in X already its image AU itself contains
some neighbourhood of 0 in Y.

For each £ > 0 we denote by X, and Y. the closed (!) balls of radius € with the center at 0 in
X and Y respectively relative to fixed translation invariant metrics in X and Y, generating their
topologies.

Now let it be given an arbitrary € > 0. It is sufficient to verify that the image of X. contains
Y; for some § > 0. Consider the sequence of balls X., X, /s, X;/4,.. ..

XE/2
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Al‘z
Xs/4 y= Al’l Y52
XS/S Q—Aﬁl —AZL‘Q Y53
T3 Axa

By 1° the image of X,/ is dense in some Y3,, the image of X, /4 ids dense in some Yj,, etc.
Without loss of generality we may assume that d,, | 0. Let us shown that the image of X, contains
Ys, -

Let y € Y5, . Since the image of X, /5 is dense in Y5, , Jx1 € X5 such that y— Azy € V5,. Since
the image of X4 is dense in Y5,, Jxs € X4 such that (y — Azy ) — Azy € V5, ete.
[ee]
We claim that the series > 2, converges in X to some element z € X, and that Az = y.

n=1
Indeed, if we denote by |z| the distance (in our fixed invariant metric ¢ in X ) between 2 and 0

and put z, := 21 4+ ...+ z,, then

; ! € € £
|Zn]l = |21 4 ...+ 2| < | X1+ .. 4 20l < 54—2—24-...4-2—n<a (1)
and for m > n
o = #nl = lons 44 2l < Jrngal 4o ol € o <
B — Zn| = |20 R Zp et | <+ .+ =< o
+ = 1T = gnl om = 9
The market inequality are true by the triangle inequality for o(x,x+y)
metric and by the fact, that our metric is translation invariant: v Y
say, (0, z)
0 0 Yy
eyl = 00,2 +y) <o0.8)+olzzx+y) 20V

= 0(0,2)+0(0,y) = |z[ + [yl

Hence the sequence {Z,} is a Cauchy sequence in X., and therefore (by completeness of X)
converges to some point z, and we have

. TS,
|2] = lim|z,| < €
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(since any metric is continuous function relative to generated by this metric topology), so that
Z € X.. By construction we have

|g—A5?n|I|Q—AI1—ASL‘2—...—A1‘n|<5n+1, n=12,...,

so it holds
|y — Az| = lim |y — Az,| =0,

that 1s, y = Az.

Thus, we have proved that the image of X, contains Y5, .
3 1In the case where A is one-to-one, it follows at once from 2°, that A=! (which is, obviously,
a linear mapping) is continuous at 0 and hence everywhere, so that A is a homeomorphism, and
therefore A transforms open sets into open sets. In general case we argue as follows.

Let G be an arbitrary nonempty open set in X, z € G and U be a neighbourhood of 0 in X
such that z + U C G. By 2° the image of U contains some neighbourhood V of 0 in Y. Then we
have

AGD A(z+U) = Az + AU D Az 4+ V.
Thus, AG contains some neighbourhood of each its point, that is AG is open. >

1.3.3 Banach theorem on inverse mapping

Here we derive a simple corollary of Banach theorem on open mapping (note, that this corollary
was in fact proved in the process of proof of the mentioned theorem!):
Banach theorem on inverse mapping. Any continuous linear bijection of F-spaces is a home-
omorphism (that is the inverse mapping is (linear and) continuous).

< By the Banach theorem on open mapping our mapping sends open sets into open sets. But this
just means that pre-images of open sets by the inverse mapping are open sets. >

1.3.4 Theorem on closed graph

In conclusion of our discussion of the openness principle we derive from this principle the
so-called theorem on closed graph.

Definition.
A mapping f from a topological space X into a topological space YV is Y

said to be closed, if its graph /’ gr f

grf == {(=, f(x))|z € X}
1s a closed subset of X x Y. X

Example. Every continuous function is closed (verify!).

Theorem on closed graph. Fuvery closed linear mapping from one F-space onto another such
space 1s continuous.

< P

1) Banach theorem on inverse mapping;

2) any closed linear subspace of an F-space is an F-space, and the product of any two F-spaces
is an F-space (prove as an exercise!).
o Let A: X — Y be aclosed linear mapping of F-spaces. Ist graph grA is a closed linear subspace
in X x Y and hence, by 0°2), is an F-space. Denote by mx and 7y the projections of X x Y onto
X and Y respectively. The mapping

mx :(z, Az) — z, grA — X
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is a continuous linear bijection, hence by 0°1) its inverse mapping 71')_(1 is continuous. Therefore the

mapping
A=7y o 7r)_(1

1s continuous.
Y gr A

Y

X

1.4 Boundedness principle

This is the third ”whale”. At first we discuss bounded sets and bounded operators in TVS.
1.4.1 Bounded sets

Bounded sets in TVS are the sets, which can be ”absorbed” by any neighbourhood of 0:
Definition. A set A in a TVS is called bounded (the record: A € Bd) if for every neighbourhood
of 0 U 30 > 0 such that A C U.

Examples.
1. Each point in a TVS is a bounded set. Indeed, every neighbourhood of 0 is absorbing.

2. A set A in R is bounded iff if is coordinate -wise bounded, that is, if for every n € N, the
set {mn| (1,...,2pn,...) € A} of all values of the n-th coordinate of its points is bounded in

Elementary properties of bounded sets. Let X, Y be TVS, and let A, B C X. Then

a) A€ Bd, BC A— B € Bd;

b) A, B €Bd,— AU B € Bd;

A,B€Bd, = A+ B € Bd;

C

d) Ae Bd,teR—=tA € Bd;

f) A€ Bd = A € Bd;

)
)
)
)

¢) A€ Bd = I, A € Bd;
)

g) A€Bd, f€L(X,Y)=> f(A) € Bd;
)

h) if X is an LCS, then A € Bd = coA € Bd.

In orther words the property to be bounded is conserved by taking subsets, finite unions, linear
combinations, closure, balanced hull and (in LCS) convex hull.
<1 This follows at once from the fact that each TVS has a base B, of neighbourhoods of 0, consisting
from closed balanced sets such that VU €B3V €B: V + V C U, and from the fact that in each
LCS we may choose the mentioned base B to consist from convex sets. >
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According to intuition, compact sets are bounded:

Theorem on boundedness of compact sets. In a TVS every compact set is bounded.

<1 Let A be a compact set in a TVS X, and let U be a balanced neighbourhood of 0 in X. We need
to show that there exists > 0 such that d A C U. Since multiplication by scalar is continuous and
since 0z = 0 Vo € X, for every € A, 3V, € Nb,(X)3d, > 0 : I5,V, C U. These neighbourhoods
Vy form a covering of A. By the definition of compactness we can choose a finite covering, say

Vers-ooy Vo, . Then 6 := min (d,,, ..., 05, ) will be our desired ¢. Indeed,

FACLACI(Ve, U UVe, ) =IsVe, U .UV, C s, Ve, U...UIs, Vi, CU. >

Remark. In finite-dimensional spaces it holds, roughly speaking, also the inverse assertion;
namely, every bounded set is relatively compact, that is, has a compact closure:

A € RelComp <= A € Comp.

In infinite-dimensional case it is not so. E. g., in every infinite-dimensional normed space the closed
unit ball is not compact (see p. 87).

(For Iy it may be seen directly from the fact that |e, — en| = v/2 Ym,n.)

In LCS’s boundedness of a set may be cheeked with the aid of semi-norms:

Characterization of boundedness in LCS’s. Let X be an LCS and {p,} be any generating
system of semi-norms for X. Then a set A in X is bounded iff each number set p,(A) is bounded

(in R).

<1 This follows at once from the relations between neighbourhoods of 0 and generating semi-norms

in LCS. >

Remark. Boundedness is in essence a sequential notion: it is sufficient to deal with bounded
sequences, see the sequential characterization of boundedness below.

There is a close relation between bounded sequences and converging ones:

Lemma on bounded sequences and converging ones. Let X be a TVS.

a) Every converging sequence in X is bounded (that is the set of its points is bounded).

b) If a sequence {x,} in X is bounded, then t,z, — 0 for each sequence t, — 0 in R.

< a) This follows at once from the theorem on boundedness of compact sets. Here is a direct
proof. Let #, — & and let U be a given balanced neighbourhood of 0 in X. Since (¢, ) — tz is
continuous at (0, &), there axist o > 0 and a neighbourhood V of Z such that 15,V C U. A fortiori
we have 6V C U. Since z,, — %, Ing such that z, € V for all n > ng.

Further, since U is absorbing (as each neighbourhood of 0 is), 3§; > 0 such that §;z; € U, i =
1,...,n0—1. Hence for § = min(dg,d1,...,d,—1) we have dz; € U for all i. Thus, {z,} is bounded.
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Aﬁ‘ 1%

U

b) Let {z,} be bounded and let ¢,, — 0. Let us prove that ¢t,z, — 0. Let U be a given
balanced neighbourhood of 0. Since {z, } is bounded, 3 > 0 such that dz,, € U and hence Isz, C U
(by balancedness of U), n = 1,2,... Since t, — 0, we have ¢, € I5 for all sufficiently large n.
Thus, for all such n it holds

thay € Isx, CU,

that is t,z,, — 0. >

Remark. Assertion b) admits the inversion, as it follows from the following Sequential char-
acterization of boundedness. A set in a TVS is bounded iff for every seguence {z,} of its
points and every sequence {t,} of real numbers such that ¢, — 0 we have t,z, — 0.

<1 An exercise for you. >

Corollary. In a (semi-) normed space a set A is bounded iff it is bounded in the (semi-) norm,
that is, iff for some ¢ > 0 we have |z|| < e Vz € A.

Remark. In F-space boundedness in the metric doesn’t imply boundedness! Indeed, balls (with
the center at 0) in the metric, which generates the topology. are neighbourhoods of 0, and ”as
a rule” neighbourhoods of 0 are not bounded: if in a Hausdorff TVS there exists a bounded convex
neighbourhood of 0 then this space is normable (see Kolmogorov’s characterization of normable
spaces in Chapter 3).

1.4.2 Bounded operators

For linear mapping ”boundedness” means, by the definition, boundedness on bounded sets:
Definition. A linear mapping A : X — Y, where X and Y are TVS'’s, is called bounded, if the
image of every bounded set is a bounded set.

Example. If X,Y are normed spaces, then for a linear mapping A : X — Y the following
conditions are equivalent:
a) A is continuous;

b) A is bounded;

c) A is bounded on the unit ball, that is, |z| < 1 = |Az| < ¢ for some ¢ > 0.

Theorem on boundedness and continuity Let X,Y be TVS’s and A: X — Y be a linear
mapping.
a) A is continuous = A is bounded.

b) If X is a metrizable TVS, then A is bounded = A is continuous.
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<[ a)] Let A is continuous, and let B be a bounded set in X. Let us prove that AB is bounded
in Y. Let V be a given neighbourhood of 0 in Y. By continuity of A exists a neighbourhood U of
0 in X such that AU C V. By boundedness of B 3§ > 0 such that B C U. Then

d(AB) = A(6B) C AU C 'V,

that 1s, AB 1s bounded.
[ b)] Let X be a metrizable TVS, and let A be bounded. Suppose that A is not continuous.
Then there exist V' € Nbg(Y) such that for every U € Nbg(z) we have

AU ¢ V.

If we take U = %X we obtaln:

: -
VneEN'A-X, ¢V
n k3

(where X, is defined as on p. 33),
1
VnENHmnE;XL c Az, V. (1)

It is clear that nz, — 0 in X, and hence, the sequence {nz,} is bounded, by assertion a) of
Lemma on p.37. Since A is bounded, it follows that the sequence {Anz,} is also bounded. So, by
assertion b) of the some Lemma, we must have

%(An:bn) — 0. (2)

But %(An:bn) = Az, belongs to V for no n (by (1)), so (2) is impossible. The obtained contra-
diction shows that A is continuous. >

Remarks.  Assertion b) remains true for so-called bornological LCS’s X (and any LCS’s Y).
(See [Edw, p.652].)

That not every bounded linear mapping of TVS’s is continuous, is seen from the following
Example. Let, on a given vector space, there exist two different linear topologies with the same
bounded sets (in the next chapter we shall encounter such spaces). Then the identity mapping
from one of this TVS’s onto another one will be bounded, but noncontinuous. (Thus, the ”first”
TVS cannot be metrizable.)

1.4.3 Equicontinuity and equiboundedness

In order to formulate the boundedness principle we need some notions.
Definition. Let XY be TVS’s. A family of continuous linear mapping A, : X =Y, a € A, is
called:

o cequicontinuous, if for every neighbourhood V of 0 in Y exists a neighbourhood U of 0 in X

such that A, U CV Va € A;

o cquibounded (or uniformly bounded), if for every bounded set B in X exists a bounded set C
in Y such that A,B C C Va € A;

e pointwise bounded, if for every point x € X the set {Aax| a € A} is bounded in Y.

Remarks.
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1. Thus we deal, in the above definition, with aquicontinuity at 0, but for linear mappings
continuity at 0 and continuity are equivalent.

2. It holds

equi- equi- pointwise

continuity boundedness boundedness

The secont implication is evident, and the first one may be proved just as one proves that
continuity = boundedness (for linear mappings).

Example. In the case of normed spaces X and Y the following conditions on a family
{Aatyear Aa € L(X,Y), are equivalent (see Chapter 3):

a) {Ay} is equicontinuous;

a

) {An} is equibounded;
a) norms of Ay, a € A, are bounded from above: sup |A,| < .
agA

1.4.4 Boundedness principle: Banach-Steinhaus theorem

There is a number of versions of the boundedness principle. One of them is the following
Banach-Steinhaus theorem. Let X and Y be F-spaces. If a family of continuous linear map-
pings from X into Y s pointwise bounded, then it is equicontinuous.

Sometimes results of this type are called also ” equicontinuity principles”.
< (> Baire theorem.
T Again we shall use notation |a| : ¢(0,a), where g is a generating invariant metric of a given
F-space. Emphasize, that | - | is not homogeneous (|ta| # |t||a| !), but is symmetric (|—z| = |z]),
since 0(0, —z) = o(z,0) = (0, z).
2 Let a family {Aa},c4, Ao € L(X,Y), is pointwise bounded. We need to show that for an
arbitrary given € > 0 exists a neighbourhood U of 0 in X such that

Yac A AU CY.. (1)

3> Putfork=1,2,...

< %} Oby. ﬂ <%Aa)_1(YE/2).

1
Cy = {:bEX|VaEA: ‘EAOK:E
€A

This set is closed, since Y5 is, and since all operators %Aa are continuous.
4% FEach x € X lies in some C}. Indeed, by the condition, the set {Aam| @ € .A} i1s bounded, so
for some (sufficiently big) & it holds

%{Aaﬂ a €A} C Yy,

which means

Va € A : ‘—Aam
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that 1s, z € Ck. So
UJcw=x.
k=1

% By 0°, at least one Cj is dense in some ball, hence (since Cj, is closed) C} contains some ball.
Thus,

FkeNIVENbyIzeX 24+ V CCh. (2)
In particular, z € Cy. It follows that
—z € Ck. (3)
Indeed,
1 1 1o |1 z€Cr ¢
- — = |—= = |= < -
‘kAa( z) ‘ kAam kAaéL‘ < 3

6 We claim that for U := %V eq. (1) is true. Indeed, for any h € V we have

1 112;?@' 1 1
‘Aa<—h)‘ Ao ‘EAa(x+h)+ Aa(=2)

linearity
inequality

‘%Aa(m—l— h)‘+ ‘—Aa(—m) <

)

INE

wlm

Remarks.
1. The completeness of Y was not used in the proof and may be omitted in the assumptions of
the theorem; but the completeness of X is an essential condition (see the next subsection).

2. The assertion of the theorem remains true, if

1) X is "ultra-barrel” and Y is an arbitrary TVS, or if
2) X is ”barrel” and Y is an LCS (see [4, p. 636]).

3. For Banach spaces the boundedness principle takes the form of the so-called ”principle of
fixation of singularities” (see Chapter 3).

1.4.5 A counter-example

Let us give an example, showing that completeness of the ”first” space is an essential condition
for valadity of the boundedness principle.

Let k denote the space of all finitary real sequences, that is, of sequences z = (21, z2,...) with
only finite number of nonzero members (this number may be different for different sequences):

r=(z1,22,...,2,,0,0,...).

Equip k& by the supremum-norm
|z := sup ||
n

(this supremum is always finite, since we have only finite number of nonzero z,). Forn =1,2,...
define a functional f, on k by the formula

fu(z) = nxy,.
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It is clear that for each n this functional f, is a continuous linear functional on & with the norm
(see Chapter 3)
Ifnll = n.

So the sequence {f,} is not equicontinuous (see Example on p. 40). But this sequence is pointwise
bounded: for every fixed point z = (z1,...,2,,0,0,...) the set

{fn(r)|n: 1,2,...} = {z1,22s,...,72,,0} (CR)

1s a finite set and therefore is a bounded set in R.
1.4.6 ”Pointwise completeness” of L(X,Y)

As an application of the boundedness principle we prowe here that a pointwise limit of a se-
quence of continuous linear operators, acting from one F-space into another, is again a continuous
linear operator.

Theorem on ”pointwise completeness”. Let X, Y be F-spaces, and let A, € L(X,Y), n =
1,2,.... Let for every x € X the sequence Anx converges in'Y . Denote the limit by Ax

Az .= lm A, z.
The the so defined operator A is linear and continuous:

Ae L(X)Y).

< ¢

1. Boundedness principle;
2. continuity of arithmetic operations in TVS;
3. boundedness of convergent sequences.

I Linearity. For all t € R, z, 2}, 2% € X we have
A(tz) = lim A, (tz) = limt A,z = tlim A,z = tAz,

Az 4+ 2") =lim A, (2" + 2") = lim(Ap 2’ + An2”) L lim Anz’ +lim A, 2" = Az’ + A",
the marked equalities being true by continuity of multiplication by a scalar and of addition, resp.
(in ).
?  Continuity. For every z € X the sequence {A,z} is bounded by 0°3). This means that the
sequence {A,} is pointwise bounded. Then by 0°1) it is equi-continuous, that is,

Ve>036>0: |z|<d = |Apz|<e Vn.

(Here || denotes the distance from 0 in the generating invariant metric.) Since A,z — Az we
conclude by continuity of the function | - | that |Az| < ¢ if |z| < §. Thus A is continuous. >

Remark. The completeness of Y is again a superfluous condition (see Remark 1 on p. 41), but
the completeness of X is an essential condition as the following example shows.
Example. Let k& be the (noncompete!) normed space of the finite sequences from Subsection
1.4.5. Put for = (21, 29,23,...) €k

(zry,2) =21+ 222+ 323+ ...+ nay,.

Clearly 2}, € L(k,R) = k* for alln =1,2,..., and (z},2) > 1 + 223 + 323 + ... for every z € k.
The limit (linear) functional (21, z2,...) — 214+ 222+. .. is not continuous, since it is not bounded
on the unit ball in k.
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2 Duality theory

In this chapter we discuss the notions of the topological dual space and of a topology, compatible
with a given duality. In this connection we introduce so-called weak and weakened topology. At
last we prove some results of convex analysis in LCS.

2.1 Topological dual space

Here we prove that any Hausdorff LCS and its topological dual space form a dual pair, and
introduce a notion of topology, compatible with a given duality.
2.1.1 Definition and examples

We have already dealed with the space X*. Now we give to it a name
Definition. Let X be a TVS. The set

X* = L(X,R)

of all continuous linear functionals on X is called the topological dual of X. [The set of all linear
functionals on X is called the algebraical dual of X and denoted by X'.]

[In some books one used, vice vesra, the symbol X’ for the topological dual space and the
symbol X* for the algebraical one. ]

Tt is immediately verified that for any TVS’s X and Y the space £(X,Y) of all continuous
linear mappings from X into Y is a vector space with respect to natural operations of addition
and multiplication by a scalar

(A+fa)z) = fi(z)+ fa(z),
(tf)(x) = t(f(z)),

the null element of this vector space being the null functional.
We shall usually denote elements of X* by z* and write the value of a functional z* on an
element z in the symmetric form (z*, z):

Tt is clear that (-, -) is a bilinear form on X* x X:
() X"x X —R, (2%z)— (2%, 2).

This form is called the canonical pairing of X and X*.
Examples.
1. For R™ with the usual topology we have

(R*)" = (R") =R",

n
(z%,2) = wiw; (z=(v1,...,20), 2" = (z],...,2})).
i=1

The canonical pairing is here just the inner product.

2. The kernel-convex topology T, in a vector space X is the linear topology, for which a base
of neighbourhoods of 0 consists of all absorbing balanced convex sets. This topology 7x. is
Hausdorff, and is the strongest (=finest) locally convex topology on X (verify!); each linear
functional on X is continuous relative 7., that is,

(X,ch)* IX/

(Verify!).
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3. For the space lywe have
l; ~ 12

in the sense, which will be explained in Chapter 4.

2.1.2 Duality between an LCS and its topological dual space

For an arbitrary TVS’s the topological dual may be trivial ( X* = {0} ). But for Hausdorff
LCS’s the topological duals are ever sufficiently rich: X* and X form a dual pair relative to the
canonical pairing, in the following sense:

Definition. Vector spaces X and Y are said to form a dual pair relative to a given bilinear
mapping (-,-) : X x Y — R (which is called a pairing), if the following conditions of ”totality” are
fulfilled:

1) totality of X:

(z,y) =0Ve € X = y =0, or, equivalently, y #0 = Jz € X : (x,y) # 0;

item([2)] totality of Y

(z,y) =0Vy €Y = 2 =0, or, equivalently, s #0 = Iy € Y : (z,y) # 0.

We write in this case

xidy

FEach element y € Y defines an element y € X’ by the formula
y(@) = (z,9),

and by totality of X the mapping y — ¥ is injective. So we identify y and y and assume that
Y C X', and analogously, X C Y.

Theorem on duality of an LCS and its topological dual space. Let X be a Hausdorff
LCS. Then X and X* form a dual pair relarive to the canonical pairing.

<1 The totality of X holds just by definition of null functional. The totality of X* is the content
of the theorem on totality of the dual space. (p. 32). >

In view if this theorem we consider everywhere below only Hausdorff locally convex topologies,
if there 1s no special remark.

2.1.3 Topologies compatible with a given duality

In general on a given LCS there are many other locally convex topologies besides its original
one, for which the topological dual space is the same. This justifies the following
Definition. Let X,Y be a dual pair. We say that a (linear) topology 7 on X is compatible with
the duality between X and Y, if
(X,r )* =Y.

(Recall that we may assume Y C X'.)
Examples.

1. If X is a Hausdorff LCS then its topology is of course compatible with the duality X (u) X*.
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2. For every vector space X the kernel-convex topology 7x. in X is compatible with the duality

x & xr

2.2 Weak and weakened topologies

In the last example 7. is the strongest locally convex topology compatible with the duality in
question. It appeares that for a each dual pair X,Y there exist both the strongest and the weakest
locally convex topologies on X among all locally convex topologies on X, which are compatible
with the duality.

2.2.1 Definitions

The existance of the former topology (which is called the Mackey topology) is a rather fine fact
and we shall not discuss it; the existance of the latter (the weakest) topology we shall prove; it is
the so-called ”weak” topology:

Definition. Let X,Y be a dual pair. The locally convex topology on X, generated by the system
of all semi-norms of the norm |y|, y € V:

lyl (z) = [y(z)| = (=, )|
is called the weak topology in X, defined by Y, and is denoted by

o(X,Y).

Y ]

(Notice that the weak topology is Hausdorff, since for every z # 0 exists by totality of Y an
element y such that (z,y) # 0, so that for this y we have |y| (z) # 0 and hence z ¢ ¢BB), for
some ¢ > 0.)

Exercises.

1. Show that the sets of the form {z| (z,y) < oz}, y €Y, a € R ("open half-spaces”) are open in o(X,Y), and
the sets of the form {x‘ (z,y) < oz}, y €Y, a € R ("closed half-spaces”) are closed in o(X,Y).

2. Show that the "unit layers”
{o|@w <1} ver,

and their finite intersections form a basic of balanced convex closed neighbourhoods of 0 for ¢(X,Y) (and it
holds the analogous assertion with "closed” replaced by ”open”).
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(z,y) =1

<$,y> = -1

3. Show that o(X,Y) is the weakest linear topology in X such that all functionalsy € ¥ (C X') are continuous.
4. Show that ¢(R"™,R") is the usual topology in R™.

5. Showthat z;, =+ zing(X,Y) & Vy €Y [ {zn,y) — (z,y). (If all "test devices” say that a sequence converges,
then this sequence really converges.)

6. Show that the bounded sets in o(X,Y) are exactly the sets A such that for every y € ¥ the set (4,y) is
bounded in R:
Yy €Y sup [(4,y)] < +oo

(that is, the image y(A) of A by y is bounded in R). [Hint: use the characterization of boundedness in LCS’s
given on p. 25. ]

Now return to our dual pair X M X*.
Definition. If X is an LCS then the topology (X, X*) is called the weakened topology in X;
o (X, X*) - open sets are called weakly open sets, and the word weakly is usued in analogous manner
for another properties related to the weakened topology. The topology o(X™, X) is often called the
weak™ topology in X* (one pronounces ”weak star topology”).

The name ”weakened” is justified by the fact that the topology (X, X*) is always weaker than
the original topology of X (verify!).

2.2.2 Compatibility of the weak topology with the duality

Here 1s the mentioned above result on the weak topology:
Theorem on minimum property of the weak topology. Let X —» Y. Then o(X,Y) is the
weakest:
1) among all locally conver topologies T on X such that each functional (-,y), y €Y, is contin-
uous;

2) among all locally conver topologies T on X, that are compatible with the duality.

In other words,
YC(X, 7)) =71D20(X,Y),
(X:U(X;Y))* =Y.

< ¢
1) The theorem on generating by semi-norms;
2) the fact that a linear functional bounded on the whole space is equal to 0;
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3) Lemma on linear dependence of functionals. Let X be a vector space and f, f1, ..., fa
be linear functionals on X. Then

fElin{fl,...,fn}<:>kerfDmkerfi. (1)

i=1

Recall that lin A denote the linear hull of A, that is the set of all linear combinations of elements

of A, and that
ker f := {z| f(z) = 0}.
Let us prove this result of linear algebra:
Q< 7=" Let f = Zn:)\zfz and let = € ﬁkerfi, that is fi(z) = 0 for ¢ = 1,...,n. Then
: A

flz) = > Aifi(z) =0, tlllz‘t is z € ker f. B
7<—=" Let
ker f D ﬂker fi. (2)

Consider the linear mapping
U: X —R" z+— (filz),..., fa(z))

and define on its image imu a linear functional f by the formula

flu(z)) = f(=).

This definition is correct by (2). [Indeed, if u(z1) = u(zs2), then u(zy — z2) = 0, that is,
z1 — x93 € (ker f;, and hence, by (2), £1 — z2 € her f, that is, f(z1) = f(z2). ] Now we extend
f anyhow to obtain a linear functional on the whole R"; as each linear functional on R" this
extension has the form

Fill &)= ) N
i=1

Hence, for every z € X we have

n

fle) = fu(z)) = F(fi(x), ..., falz)) = D Xifi(z),

i=1
that is,
F=Y ANfi oo

i=1

b (X,7)" DY = 7D a(X,Y) (this implication is even stronger than the right hand one in 1).
<< If a locally convex topology 7 in X is such that (X;7)* D Y, then each functional y in Y
(recall that we may assume Y C X' 1) is continuous; hence each semi-norm |y|, y € Y, is (as the
composition of two continuous functions) continuous. This means, that ¢(X,Y’) is generated by
a part of the family of all continuous semi-norms on (X, 7). Since by 0°1) 7 is generated just by
the whole family, we conclude that 7 > ¢(X,Y). >
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2 (X,0(X,Y))" DY. << By the very definition of 0(X,Y) each element y € Y is a continuous
linear functional on (X, (X,Y)). >>
P (X, 0(X,Y)) " CY. << Letl€ (X,0(X,Y))", that is, { is a linear functional on X, which
is continuous with respect to o(X,Y). Then [ is bounded on some neighbourhood of 0 in (X, Y),
that is, 3U € Nbg(o(X,Y)):

[ is bounded on U. (3)

Since each neighbourhood of 0 in ¢(X,Y) contains some finite intersection of ”unit layers”,
Jy1,...,y, €Y such that

U5 (el el < 1}, (@

We claim that n
kerl D m kery;. (5)
i=1
Indeed,
n obv. n (4)
(kery: C () {z| Kz, w) <1} C U,

i=1 i=1

hence, by (3), ! is bounded on (] ker y;. By 0°2), we conclude that [ is equal to 0 on this intersection,

i=1
that is, (5) is true. Tt follows, by 0°3), that [ is a linear combination of y1, ..., y,, and therefore is
an element of Y. >> >

2.2.3 Some common properties of all topologies which are compatible with a given
duality

At first we shall prove a result on common properties of the weakened topology in an LCS and
of the original one:
Theorem on the weakened topology. Let X be an LCS. Then X with its original topology
and X equipped with the weakened topology o(X, X*), have the same:

a) conver closed sets;

b) bounded sets.

<1 (> Strict separation theorem.
o a) Let A be a convex closed set in X. We have to show that A is weakly closed. Let z & A.
Then, by 0°, 32* € X* such that

a:=sup(z*, A) < (z*, z).

So the half-space {m| (x*, ) > a} is a o( X, X* )-neighbourhood of Z which contains no point of
A. Thus Ais o( X, X* )-closed.
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b) We have to prove that every weakly bounded set is bounded in the original topology.
We shall show this fact later (see Chapter 3) and only for (the most important) case of normed
spaces. The proof for the general case may be found in [Edw, p.687]. >

Corollary. Let XY be adual pair. Then all locally convex topologies in X, which are compatible
with this duality, have the same

a) convex closed sets;

b) bounded sets.

< By the theorem these sets are the same ones as for ¢(X,Y). >

Remark. The weaker is a linear topology on a vector space the more it has of bounded sets
and the less it has of closed sets. So a priory in the weakened topology there are more of bounded
sets and there are less of closed sets than in the original one. And in fact, the original topology
has more of closed sets! Only the closed convex sets are the same.

Exercise. Show that in [3 the unit sphere

Sy = {z| =l =1}

is closed, but is not closed in the weakened topology (which is usually called simply "the weak topology in [").
Show, further, that weak closure of S; (that is, the closure in the weakened topology) is the unit ball By:

—Weak
5, %% = By.

2.3 Elements of convex analysis in LCS’s

The convex analysis deals with operations on convex functions and convex sets. A very fruitful
idea is to consider, side by side with objects in a given space, ”dual” objects in a space that is in
duality with the original one.

2.3.1 Operators of convex analysis

Let X M) Y be a dual pair. Each elemant X in (say) X has a dual nature: on the one side,

it is an element of X, and on the other side, it may be treated as a function (z,-) on Y (recall we
may assume that X C Y’).

So with each point in X we can bring into correspondence a “dual” object, viz. a (linear)
function on Y. V. v., with each ¢(X,Y)-continuous linear function on X (that is, continuous with
respect to o(X,Y)), we can bring into correspondence a point in Y (since (X,0(X,Y)) = Y).

This transition to dual objects may be largely extended. The operators

l: a: S, T,

which are introduced below, bring object of X (functions on X or subjects of X) into ”dual” object
of Y (functions on Y or subjects of Y):

functions on X } {functions onY |

subsets of X p subsets of YV

Operator s
This operator is a natural extension of the mapping
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which sends a point of X into a (linear) function on Y. Viz., for any set A C X we define its
support function sA : Y — R as the supremum of all linear functions corresponding to the points

of A:

sA:=\/ (z,). (1)

rEA
R JI2N
\ SA <l" >
)
0 sA(y)
x
AX (] Y
In other words
sA(y) =sup (A, y) = sup (,y). (2)

Emphasize that in (1) we take the supremum of a set of (linear) functions (z,-) on Y (indeed
by z € A), and in (2), dually, we take the supremum of a fixed (linear) function {-,y) on X (over
A).

Remarks.
1. The name ”support” is somewhat misleading.
2. By the definition,
sup 0 := —oo (3)

Notice that inf0 := +00, so that sup 0 < infQ! The point is that for a "natural” extension of
7<” from the reals to the sets of reals we have 0 < R < 0, so that sup 0 = infR = —o0, and
inf0 = sup R = +oo. This just means that such a natural extension is not an order relation.

Examples.
1.Vee X : s{z} = (2,).
2. sX = (5{0}
Exercises.
1. For the canonical duality R”? < R”
sBy = |||, (4)
where ||x||2 = z? +... 422 (z=(z1,...,2n)), and By is the closed unit ball.
2. For any non-empty 4,4, C X
S(A1+A2):S(A1)+S(A2). (5)

Operator 0
If f = sA, then, obviously, for any z € A it holds f > (z,-). So if we want to reconstruct A,
starting from sA, we have to consider all linear functions {z,-) on Y whose graphs lie below the
graph of sA, and A is just the set of the corresponding points z. This idea is the basic of the
following definition.

The subdifferential 9, f (the ”9” comes from ”differential”) of a function f: X — R at a point
z € X, where f(z) € R, is a subset of Y given by the formula

O f = {yEY|VhEXff(:v+h)Zf(x)+<h,y>}. (6)
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R

Thus, the subdifferential of f at a point z is the set of "slopes” of all ”subtangent lines” to the

(epi)graph of f at the point (z, f(z)). If such a subtangent line is unique,
that is, if there exists the tangent line to the graph, we obtain the classical
"differential” (see the pictuse to the left).

| For sublinear function it is, of course, the subdifferential at 0 that plays
key role. This subdifferential is denoted simply by 0:

0= 80.

In explicit form, for p € Sublin(X)

p:={yeY|p>(,v} (7)

(The corresponding picture is just as on p. 50.)
Exercises.

1. VyeY 8{-,y) = {y} (the "derivative” of a linear function at each point coincides with this function itself).
2. For R™ < R”
ol |l = B (8)

(notations as in Exercise 1 on p. 50).

Operator 7

For a given set in X, to construct a set in Y is a bit more complicated. And there are
here (at least) two different vari-
ants, viz. ”balanced” and ”non-
balanced”.

First of all, for a given point
z € X it is natural to take as
dual sets the following two sets
inY:

x° = {y| (z,y)y <1} ={z < 1}, (9)

2= {y| (e, y)| < 1} = {lo] < 1}. (10)

Thus, if  # 0, then 27 is a half-space in Y, and 20is a "layer”. For z = 0 we have

0" =0r=Y. (11)

Extend this duality to arbitrary sets. Consider at first the ~-case.
We say that a point z € X is a friend with a point y € Y if
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(z,y) <1 (12)

Eq. (12) means that
1) z € y7, that is, z lies in the half-space {y < 1};
X Y 2) y € z°, that is, y lies in the half-space {z < 1}.

This friendship is, obviously, a symmetric relation.
Exercises.

1. z and y are friends = each points of [0, z] ( = Ifz) is a friend with each point of [0, y].
2. y' and y" are friends with z = each point of the straight line segment [y, y"] is a friend with z.

Definition. For any set A C X, the set of all points y € Y that are friends with each points of
A, is called the one-sides polar of A and is denoted by A~ or 7A (?7” comes from "polar”):

TA=A" = {y|VazEAE(x,y>§1} @ m x°. (13)

TEA

It is clear that always 0 € A~ .
Geometrically, this definition admits two (dual one to another) interpretations, according with
two meanings of (12):

Ya=1 ya=1
A
1) A consists from all points y € Y such
that the half-space {y < 1} contains A;
n=1 ys =1
L2 x4 o
A 23 2) A is the intersection of all half-spaces
x {z <1}, z € A
3

Thus z° = {z} .
Quite analogously, theacase leads to balanced polars:

Definition. For A C X, the (balanced) polar A of A is defined as

H= {y|V:EEAE|(x,y>|§1}: ﬂZLO (14)

rT€EA

It is clear that A is indeed balanced.
Two interpretations are now:

1) A consists of all y such that the layer {|Jy| < 1} contains A;

1) Ais the intersection of all layers {|z| < 1}, z € A.
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Again, of course, 22= {zF.
Remark. 0 = (=Y.

Some examples of one-sided polars are given below. In each pair of sets the left one is the
one-sided polar of the right one, and v. v., the right one is the one-sided polar of the left one.
Pay attention to the fact, that straight line segments of the boundary of A correspond to corner
points of the boundary of A”, and v. v., corner points of boundary A corresponds to straight line
segments of boundary A”. (Dotted line represents the unit circle.)

yom hmp)

Examples of one-sided polars for R? < R2.

Exercises. [Hint to 1.-6.: use an appropriate from our two interpretations for polars.]

-

© ® N o

10.

11.

ACB=>A">B", O B
(AuB) =4A"nB”, (AUBP=HnHR
AnB) D AUB", (ANBPD LU B (Here "D” cannot be replaced by "="; give a counter-example!)

cod)” = A4, (co AP=4A
AU{0}) = 4%, (AU {0} =0
A (AU ). (So we can write without brackets: —A~.)
A= 4" ﬂ(—AU) (see 7.).
A € Cone = A~ € Cone. (The cone —A” (with minus!) is called the dual cone to A.)

(
(fa)” =47, (nap=» (If =1k =0,1]).
(
(
(-

AC X= 4 =4=4~L (Recall that A € X means that 4 € Lin(X), and AL denotes the annihilator
of A, defined by the formula A+ := {y‘ Vz €A (z,y) = 0})

vteR\O ! (t4)” =t7147, (tAP=1t"14 [Hint: {tz,t"1y) = (z,y).]



54 2 DUALITY THEORY

12. For the cannonical duality R™ < R™ it holds
B = Bl/m
where B, denotes the closed ball with the radius r and the center at 0.

13. A C A77 C A°°. [Hint: By the above two interpretations of polars, A”7 is the intersection of all half-spaces
{y < 1}, containing A4, and A°° is the intersection of all layers {|y| < 1}, containing A.]

Operator [
In order to construct a (convex) function on Y starting from a (convex) function on X, we consider
the epigraph of the function on X (a subset of X x R) and construct an epigraph of a function on
Y (a subset of Y x R) in a manner quite similar to how we defined the one-sided polar.

We say that a point (z,a) € X x R is a friend with a point (y,5) € Y x R, and we

R R write

(I,Oz)-
N (z,a) ~ (y,B),

X Y i

(v, 5) @/@ (x,y) < o+ . (15)

It is convenient to denote an affine function z — {(z,y) — 8 by y — 3, just as we write y instead
of (-,y):
(y=B)(2) = (z,y) - .
Then Eq. (15) is equivalent to each of the following two conditions:

1. the point (z, @) lies above the graph of y — f, i. e,

(z,a) € epi(y — f); (16)

2. the point (y, 3) lies above the graph of z — a, i. e.,
(y,B) € epi(z — a). (17)

. def,
< (z,0) €epily— f) = (y— B)(z) Ca e (2,y) - < a = (15). >
It is clear that this friendship relation is symmetric.
Thus, for a given point (2, ) in X x R, the set of all its friends is the half-space epi(z — a) in
Y x R.

Exercises.
1. (z,a)~ (y,8), &' >a = (z,a') ~ (y,8).

2. If two points in X X R are friends with some point in ¥ X R, then each point of the straight line segment
jointing them is also a friend with this point.

Now we construct a function on Y starting from a function f : X — R. Consider the set (epif)”
of all points in ¥ x R that are friends with each point of epif:

(epif )" = {<y,m\v<m,a) € epif(z.0) ~ (1.9) |

This set can be described in two ways, according to (16) and (17), resp. (of two descriptions of
polars):



2.3 Elements of convex analysis in LCS’s 55

(epif )" is the set of all (y, ) such

E} that

4) ) 1'/ ’ f;‘
O\

epif C epi(y — B);

4

(epif)” is the intersection of all
epi(z — @), such that

(z,a) € epif.

Since the last intersection is just the epigraph of the supremum of the functions z —a, (2, a) €

epi f (see p. 18), we see that (epif ) is the epigraph of the function ~ \/  (z—a). This function
(w,0)€epif

is called the Legendre- Young-Fenchel transform of (or the conjugate function to) f and is denoted

by lf (I comes from Legendre) or f*:

==\ (@-a). (18)

(w,0)€epif

Thus, (epif)” = epif*.
Important Remark. If f has the value —oo if even at one point z, then f* = +oc.

: (18)
4 Vn €N : (z,—n) € epif, hence f* > 'V (2 +n)=+oo. >
nEN

Exercise.  Verify that —co € f(X) = f* = 400, using the 1st description of epi f*.
The two descriptions of epi f* can be reformulated so:
1) epi f* consists of all points (y, 8) such that
fzy=-5;
2) if —oco ¢ f(X) then epi f* is the intersection of all epi(z — f(z)), such that
xr € domf.
< 1) This follows from the fact that epi¢ C epitp & ¢ > 4.
2) First of all, a function f: R — R" is finite on domf, so we can consider the affine function

z — f(z). Our assertion follows from the fact that for any (z,«) € epif it holds a > f(z) (so that
z € domf) and hence epi(z — a) D epi(z — f(z)). >

Other representations of f*. Forany f: X — R’
==\ =-J@) (19)

redomf



56 2 DUALITY THEORY

YyeY [ if(y) =f(y) = s ((z,y) — f(=)) (20)
= jgﬁ((w,w—f(r)) = sup(y — f). (21)

< Eq. (19) follows from 2). The first equality in (21) is an immediate consequence of (19), and the
second one follows from the fact that f(z) = +oo for z ¢ dom f. 1>

Emphasize that in (19) we take the supremum of a set of functions on Y'; and in (21), dually,
we take the supremum of a fixed function on X.
The geometrical sense of (21) is elucidated by the first picture below:

B Y v — F*(y) —f*(y) is "the lowest point” of the projection of epi f on R

7along” y.

R f For a smooth f (see the second picture) —f*(y) is the R-
y coordinate of the point of intersection with the R-axis of the
(@) ” tangent line” to .grf taken for a point z where f'(z) = y.
] So for X =R f* is defined by the equations
=
5 J X { J(@) + *(y) = ay (22)
=) y= 1)

The transition from f to f*, defined by (22), is called the Legendre transform in classical
analysis.
Young inequality. Forany f: X - R

Vae X VyeY i(z,y) < f(z) + " (v) (23)

<1 Each point of epif is a friend with each point of epi f*, hence
(2, f(z)) ~ (v, [ (y)) >
Since X and Y occur in our dual pair quite symmetrically, we can apply the same operator [
to If. The function

FrErf =) X — R

is called the second conjugate function to f.
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Description of f**. For any f : X — R the function f** is the supremum of all affine functions
of the form y — 3, (y,0) € Y x R, that are less than f:

=\ w-n. (24)
(v,8)€EY XB
y—8<f
< By the definition of I, f** = I(f*) = V (y — ), but, by ), epi f* consists just of all
(y,8)€epi f*
(4, ), such that y— § < f. >
Corollary. Forany f: X - R
fr<r (25)
Examples.
1.
f=4c0o = f*=—-00; f=-00—=—= f*=+40c0. (26)
2.
(y=B) =d{yy +6 (6{y}+8)" =y—8 (27)

3 l(y’ 3) In particular (3 = 0):
2 I(yy =68yl 6{y} = (. w). (28)
R
f ::j!!lq!l!!: = f** — j!!l’ll!tt .
3. JI24

Some other examples of conjugate functions, for R < R, are given below (the functions are
represented by their epigraphs). In each pair of functions the left one is the conjugate of the right
one, and v. v. Pay attention that again, as for polars, straight line segments of the graph of f

correspond to corner points of grf*, and v. v.

L
L
|

e

e
b
“t

Hrda
=y

v
¥
¥

Examples of conjugate functions for R < R.
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Exercises.
L f<g=f*>gn
2. (fAg) = f*vg*.

3. (fVg)* < f*Ag*. Here”<” cannot be replaced by "=".F. g.,Vy1,52 €Y :y1 # w2 : (11 Vi )* < Yy Ay
(drawn the picture!).

4. Vo eR : (f4+a) =f*—oa.
5. For any ¢ > 0 define an operator ’Ytjf( X,R) < (where 7( X,R) is

the space of all functions f : X — R) by the formula !
epi(v: f) = tepi f. Yo f

a) (tf) =w(f"); b) (wf) =tf"
6. For R+ R, if f(z) = %azz, then f*(y) = iyz. (Thus, %z2 goes into "itself”. It is the unique function on R
with this property.)
7. Put
(z,0)~(y, B) = (z,y) = a + (29)

((z,2) and (y, 3) are "lovers”). Obviously, it is a symmetric relation.

a) (z,0)%(y, 8) & (z,2) € gr(y = B) & (v, 6) € gr(= — a).

o
e

b

‘ 235 (v, ﬁ)'/‘

function y — 3, then all graphs gr(z; — ;) go through
the point ( 3). (That is why straight line segments of
gr f give corner points of gr f*, and v. v., corner points ‘ ‘9\

b) If points (z;, o;), ¢ € I, lie on the graph of some affine \

give straight line segments. See the picture on p. 55.)

8. For smooth f: R — R it holds
(e, f1(2))~(f'(2), £ (=)
(See (22).)

Show that
9. Consider the following conditions: ow tha

() {70 = S(2)+ *(0), (2) <= (¢)

(b) (z,y) = f**(z) + f*(¥),

(c) y €dsf, \w ¢

() = € By f*. (b) «=—— (d)
[Use the Young inequality.]

10. 9z f #0= f**(z) = f(z). [Use 9.]
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Summarize all this.

Three descriptions of the operators of convex Analysis

(below f: X — R", p € Sublin(X), A C X)

K K < —representation () —representation
friendship- (in ferms of subsets of X (in terms of subsets of Y
representation and functions on X) and functions on Y)

epif*={(v,8)[y—B<F}
f‘(y)=5|)1(p(y—f)

epif*= 1 epi(z—i(x))
mf

AT={ylACvy } AS
={yly<1 on A}

T A={y|Vzc A D z~y)
={ylVzeA : (zy)<1} <
7 X
>

Orded properties of [,s,0,m. The operators of convex analysis have the following properties
(below I is an arbitrary index set):

epif* ={(y,8)|V(z,a)€epif :
i (z,a)~(y,8)}
={(y,8)1f(z)<a=
(=, y)<a+B}
~
X
¥
episA={(y,8)ly—A<0 on A} pEAs D,
sA(y)=supy sA= V =z
A TEA
R
cpisA={(y,8) V€A
s {(?,D;igy,ﬂL}A A
={(y, € N
(w,y) <A} 3 X Y
-
8;7=1yIVREX . f(z+h)
>5(#)+(h,v)}; Bffzhgx{yl(h,y)Sw}
=y
£={y]¥(z,a)€epif ' h <74
o (z,a)~(y,(y—F)(2))
={ylf(z)<a=
(= y)<at(—1)(2) h >
op={yly<p} dp= ﬂx{y|<r,y)3p(r)}
z€ ——
p y =y
op={y|¥(z,a)€epif
(?T}F()lzn)} X T >
= = o= —
(em)<a) =7
T <A
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monotony (| —property

Fix (Aﬁ>zéﬁ

figfo= { 5 : |
1 C Oufo if fi(z) = fa(x) _ if all f, have at =
O L/E\I fo] = LQI 9z f. a common value
sAq < sAs s U A )= \/ sA,
A= { A1TD Ap]AS D A3 el

=y
(UA) =Na, (UAP=NA
g
1) epi(Vfi) =epif, ,
2) epi(Af) =Uepif, " where the epi-closure C" of aset C' C X x R is defined as

o= {(z,a)]a > infC,}, Cp:={a€cR|(z,a)ecC}.
3) Y(z,0) €C : (z,0)~ (1,0) & V(z,a) €T i (z,a) ~ (1, ).
lo The monotony properties follows from the ()-properties. <1< E. g., fi < fa by, fi =

“Prop. ., * % ObV. oy *
DAL "B = v ES g > g e
2 (Y-properties follow from the friend representations (f. r.). << E. g., let us prove that
(Afi)" =V 7. We need show that epi( A f.)" = epi(\/ £ ). But, indeed,

(y,ﬂ)Eepi(/\fb)* Lo V(:L‘,a)Eepi(/\fb) C(z,a) ~ (y,0)

1

Ya.a)eJepifo i (z.0)~ (v, 0)
V(z,a) € Uepi [ (z,0) ~ (y,0)
ViV(z,a) €Eepif, i (z,a)~ (y,0)
Ve i (y,B) €epif]

(v,8) €[ epi £

(v,B) €epi\/ . B> >

© o o © ©
SR | SR | S | R RO S

Exercise. Prove 0°2) and 0°3).

Topological properties of operators [, 0, s, 7.

All this was so far a pure algebra (with the exception of [)-properties). Now topology goes into
the play.
Definition 1. Let X be a topological space. A function f : X — R is called closed (it would
more appropriate to say ”closed from below”, but it is long) if its epigraph is closed in X x R:

f €Cli<=epif e Cl(X x R).

Remark. Another name of such functions is lower semi-continuous.

Examples.
1. The function f = +oo (resp., —o0) is closed.
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2. On R, the function is not closed, the function 1s.
3. A e Cle A e ClI(X).

non-closed closed

4. Each continuous function X — R is closed. < The epigraph is the pre-image of the closed
set [0, +00) by the continuous mapping (z, @) — a — f(z). >

(Notice that continuous functions are closed also ”from above” and have a closed graph.)

Definition 2. Let X & Y. We say that a function X — R is weakly closed if f is closed X being
equipped with ¢(X,Y):

fewCl:<=epif e Cl((X,0(X,Y)) xR).

Example. LetX < Y. Then each affine function y — 3, (y,8) € Y x R, is weakly closed. <
y— B ={(,y)— B is continuous on ( X,o(X,Y)). (Recall that ( X,s(X,Y)) =Y.) >

Lemma on wClConv. ILet X &Y.

a) Yf: X =R f* € wClConv; if f(x) €R, then O, f € wClConv(Y) := ClConv(Y,o(X,Y)).

b) VAC X :A”, A€ wClConu(Y); if A# 0, then sA € wClSublin.

< All this follows at once from [}representations, from the fact that the intersection of any family
of closed convex sets is also a closed convex one, and from the fact that each half-space {z < v}
and each epigraph epi(z — a) are closed by equipping of Y with ¢(X,Y). >

Thus, the operators of convex analysis turn every thing to a weakly closed convex one.

2.3.2 Duality of properties to be bounded and to be absorbing

Here we prowe that by passing to polars the property to be weakly bounded goes to the property

to be absorbing.
Lemma. Let X & Y. Then the polars of all finite sets in Y form a base of neighbourhoods of 0

for o(X,)Y).

< It follows at once from the relation
(v, P= () {lwl <13, (1)
i=1

which is none more than the ()-representation of the polar of the set {y1,...,yn} (see 14 on p. 52).
>
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Theorem on Bddand Abs. Let X &Y, and let A C X. Then

A€ Bdd(o(X,Y)) < e Abs(Y). (2)

<
1) The lemma above.
)

2) A C A°°. (See Exercise 13 on p. 54.)

3) AC B = 4D B (monotony of9).

4) ¥t € R\ 0:(tAp=1t""4 (See Exercise 11 on p. 53.)

o "=7. Let A € Bdd(o(X,Y)), and let y be an arbitrary point of Y. We need show that 4
absorbes y. By 0°1), #€ Nbg(o(X,Y)). So 3t >0 : tA C . Hence,

0° 0°3)

2 0
y E){y}°° C (tA)OO:AI)t‘lAO,

that is, y is absorbed by 4.
» 7. Let A be absorbing. We need show that A is ¢(X,Y)-bounded. Let U be an arbitrary

neighbourhood of 0 in ¢(X,Y). By 0°1),
UD{yla"'Jyﬂ}o (3)

for some y1,...,y, € Y. Since A1is absorbing and balanced, it holds, for sufficiently small £ > 0,
ty; € A i =1,...,n, that 1s,
POy, .., un} (4)

Hence,

0°2) (4),0°3) 0°4 (3)
A A (e P e P C T

Thus, A is absorbed by U. >

2.3.3 Duality theorem

This is one of the central results of convex analysis.
Roughly speaking, Duality Theorem asserts commutativity of the following diagram:

convex i convex
functions 1 functions a)| 12=id e) 0 =s
on X onY b) 2 = id )| lp=9dr
d c)| s0=id g)| wr=s
J . a d)| 9s=id h| do=1
convex r convex ”hard” Teasy”
subsets subsets part part
of X ™ of Y

More precisely:
Duality theorem. Let X &V, f: X 5 R 0£ACX, p€ Sublin(X). Then:

I (The "hard” part, with the weak topology, without § and u.) There hold equivalences:
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a) z** = f <= f € wClConv (Fenchel-Moreau theorem);

AT = A<= A€ wClConv and 0 € A
b) A =A< A€ (theorem on bipolar);
mboxwClConvBal

¢) sdp = p <= p € wCl (Minkouvski theorem);
d) 9sA = A <= A € wClConv (Hérmander theorem).

IT (The "easy” part, without the weak topology, with § and p.) There hold equations:

e) (§A) = sA;

f) (nA) =38A7;
g) pA” = sA if 0€ A;

h) §0p = p*.
> o
g 5§ Remark. Some more detailed, the com-
2 2 mutative diagram looks as shown to the
2 -2 left. The equally shaded regions go one into
= & another!
& <€ CF ... convex functions
CS ... convex sets
I ... indicator functions
TK ... ind. functions of cones (IK = 1N S)
< >~ IL ... ind. functions of lin. subspaces
E E K ... cones (p=26onK)
é é K ... lin. .subspaces .(7r =<1 on L)
< 2 S ... sublinear functions
v} 3]

<1 We begin from the ”easy” part.
II. ®
1) (-property of I;
2) ()-representation of  and ;

3) uA= A ey, where e, is 6{0} for z = 0 and is
Tz€EA

for & # 0 (see p. 19);
4) 16{z} = (z,-) (see (27) on p. 57).

. ° =
o Ve e Xiley, =02°. << If z =0 all is trivial: eg = {0}, [6{0} 02 0,0 =Y, Y =0.1If
z # 0 then

2\ (- enl) E e -2\ ta - 1),

t>0 t>0
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SO

lez(y) = supt((z,y

>_1)_{0 if (z,y) <1, that is, if y € 27,
>0

+oo if (z,y) > 1, that is, if y & 2°.
But this just means that le, is 5:13 >

def.

D o) ad AR A 6{a) 2 \/za{x} 2 (2,) T sAL

Tz€EA T€EA €A
o
3 ) ag WA A @' Ve BV o a0 o DA o
r€EA r€A r€A TEA

# g) 9 Let 0€ A. Then Vy €Y :

f. ef.
purAly) 2 inf{a > O| a~lyenA} ff:i inf{a > O| (A,a7ly)y < 1}
def.

= 1nf{oz>0| (A, y) <a} 1nf{aER| (A, y) <a} S sup (A, y)
LA,

The equality marked by ”1” is true since the set (A, y) (C R) contains 0 (0 € A!), and hence
cannot have negative majorants. >
% h) <<« Tt follows immediatelly from the definition of dp that

p y € dp
" 0 if y € Op,
p=swt—n ={ G HLE

y & Jp But this just means that p* = ddp. >>

6 Thus, the easy part is over. Go to the hard one.

I o

1) Strict Separation theorem;

2) f* = >/< (y— B) (see (24) on p. 57);
y—

3) [ < f (see (25) on p. 57);

) (X, O'(X Y)) =Y;

)

)

)

[\

Lemma on wClConV (see p. 61);
(z,y) <a+p & (z,a) €epi(y — B) (see p. 5d);
if ¢ =400 and ¥ = —oo, then ¢* = ¢ and ¢* = ¢ (see Example 1 on p. 57);
8) epiV/ =[)epi.
T Each continuous linear functional [ on (X,0(X,Y)) x R can be uniquely represented in the
form

-~ O Ot i~ W

(z,a) — (z,y) + af

for some (y,3) € Y x R. (Compare with the general form of a linear functional on B? = R x R.)
<1<1  The restriction of [ on X x 0 is a continuous linear functional on ( X, o(X,Y)) and hence can
be uniquely represented in the form (-, y) for some y € Y, by 0°4). The restriction of / on 0 x R
can be, obviously, represented in the form a — af for some 7 € R. Our assertion follows now from
linearity of [. >

2 All implications ”=" in a)-d) follows at once from 0°5). Let us prove ”<".

P a) << Let f € wClConv. We have to show that f** = f. If f = 400, then this is true by 0°7).

So we can assume that
dom f # 0. (1)
By 0°3), we need verify that f < f**, or, equinalently, that
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) e 0°2) 0°s
epi f D epi f = epi \ -2 = M w-25).
y-p<f y-p<f

So it suffices to prove that

(,6)

| W(a,6) gepifAWB) €Y xR y—B< 1, (8,a) & epily—p). (2

Let (&, &) ¢ epi f. By the supposition, epi f is convex and closed in (X, o(X,Y)) x R. Hence, by
0°1) and 1°,

:7) €Y xR sup  ((5,2)+0a7) < (8,2)+ay.  (3)
(z,a)€epi f
(39 (3")

Now, 4 cannot be > 0, since then the supremum in (3) would
I\ z be equal to +oo (since epi f # 0, by (1)). Further, consider two
(¢y) —a =0 possible cases.

4 Case 1: & € dom f. In this case f(2) € R and (&, f(Z) € epi f). So v cannot = 0, since then
for (z, @) = (%, f(2)) we would have (3') = (3”), which contradicts (3). Hence 4 < 0. Deviding (3)
by —v (which is positive!) and putting y := =, we obtain

= sup ((z,y) —a)<(2,y) - (4)
(z,0)€eplf
It follows from (4) that

V(z,a) €cpif i (ey) <atf =5 epif Cepily—f) 2 y—p<f

and
. 0°s) .
(z,y) >a+p = (z,a)¢epi(y—p).
So (2) is fulfilled. (Notice that the graph of y — 3 is just the ”S-level line” of our separating

functional (z,a) — (z,y) — a.)
% Case 2: 2 ¢ dom f. If v < 0, then all is O. K., just as in Case 1.

If v = 0, then (3) turns to (we will write now y
instead of z)

g = sup (z,9) < (&,9.) (5)
redom f

Tt follows from (5) that

7 — 3 <0 on dom f, (6)

Now, take any zq € dom f (it is possible by (1)). Since f has values in R, f(zq) € R. Take any
finite g < f(20). Then (zq, ag) & epi f. Just as in Case 1 we find (yo,Bo) € Y x R, such that

yo— Bo < f. (8)
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(That (zg, aq) & epi(yo — Bo), is now unimportant for us: we need just any affine minorante for
f.) Put for each t € R

v — B = (yo — Bo) +t(y — B).
By (6) and (8), w0 oy
t>0:yu -0 <[

By (7), (y: — B:)(2) = +00 as t — 4o0. So for sufficiently big ¢ it holds (y: — 8;)(&) > &, that is,

(2, &) & epi(y: — Br).
Thus, (2) is fulfilled for this (y;, B:). >>

6 The rest is a play with diagrams: all other commutativity equations follows from the already
proved ones.

b) << Let A € wClConv, and let 0 € A. We need show that 72 A = A, or, which is equivalent,
that d72A = §A. But, indeed,

se2A L ura 2isA 2 2sa L sa
(we can apply a) to §A, since §A is convex and weakly closed together with A). This chain of

equalities becomes more clear when represented graphically (see the ”full” diagram before the
formulation of the theorem):

{ {
) _ _ _ _
B B
m n

The second implication (for balanced polars) follows at once from the first one and from the
evident fact that A= A~ for balanced sets A. >
? ¢) << Let p € wClSublin. Then we have

=
e

*p p

;i I
<%:5 / = =i >>>
s

& d) << Let A€ wClConv. Then dsA = A, since the indicator functions of both sides are the

H

h) e) a)
d0sA = IsA = [2§A = JA
{ {
same: k)
) = 3 = ! = |6 >> >
s k)
Remarks.

—oo foraxz =20
400 forz#£0

4'ﬂ then f* = 400 (see Important Remark on p. 55), so f** = —oo, and
f#E

1. The condition f(z) C R" in the theorem is essential. E. g., if f(z) = {
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2. The condition 0 € A in g) is essential. E. g., for R < R, then p{1}" = p(—o0,+1] =

, but s{1} = ;

3.If X M Y, then X x R <Y x R with respect to the pairing

((:E,Oz), (yaﬂ)) — <Jj,y> +af

(that occurs in 1°), and the corresponding weak topology in X xR coincides with the product
topology of (X,0(X,Y)) x R (see Exercise below).

Exercise. (Product of dual pairs.) If X <<7—>3 Y1 and X <<74> Y2, then

X1XX2MY1XY2,
where
{(z1,22), (y1,92)) == (=1, 91 )7 + (Z2,92)5

Further
U'(Xl X X27Y1 X Yg): 0’(X17Y1) X U(Xg,Yg).

2.3.4 Weak compactness of polars and subdifferentials

Here we apply the results of Sections 2.3.2 and 2.3.3 to the most interesting case of the dual
pair X < X*, where X is a Hausdorff LCS.
Theorem on duality of boundedness and absorbingness for LCS’s. Let X € HLCS, and
let AC X, Then
A € Bdd(X) <= A€ Absorb(X™)

(where the polar is taken with respect to the dual pair X < X*).

< This follows from the theorem of Section 2.3.2 and the coincidence of the bounded sets in the
original and in the weakened topology (theorem on p. 48, Part b)). >

Duality Theorem for LCS’s Let X € HLCS. Then the theorem on p. 62 is true with Y
replaced by X* and wCl replaced by Cl.

Here f € Cl :& epi f € CI(X,R).
< This follows from Duality Theorem and the coincidence of the convex closed sets (and, hence,
of the convex closed functions) for the original topology and for the weakened one (the theorem
on p. 48, Part a)). >

Exercise. Prove, using this theorem, that A°® = col} A for any 4 C X.

Now give one example of less direct application of Duality Theorem.
Theorem on compactness of polars and subdifferentials. Let X € HLCS.
a) (Alaoglu-Bourbaki theorem.) Both Uc and U~ for every neighbourhood U of 0 in X are
o(X*, X)-compact (that is, compact in the topology o(X*, X).

b) The subdifferential Op of every continuous sublinear function p on X is a non-empty conver

o(X*, X)-compact set.

a @
1) Duality Theorem (for LCS’s);
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2) The fact that for every balanced neighbourhood of 0 its Minkovski function (that is, the
associated semi-norm) is continuous (see p. 27);
3) Tichonov theorem: the product of (any family of) compact spaces os a compact space.

To At first we prove that b) = a). Suppose that b) is already proved, and let U is a neighbourhood
of 0 in X. Since [Pis o(X*, X)-closed (see Section 2.3.1) and is contained in U, it is sufficient to
show that U~ is o(X*, X)-compact.

Since X is an LCS, there exists an open balanced convex neighbourhood V of 0 such that
V € U. The Minkovski function pV of this neighbourhood is continuous by 0°2), and hence by b)
its subdifferential ouV is o(X*, X)-compact. But by 0°1)

ouV =nvV =V".

Thereby it is proved that V'~ is ¢(X*, X)-compact. Tt remains to notice that U/ is contained in
V"~ (because U D V) and is o(X*, X)-closed.

2 Now let us prove b). Let p be a continuous sublinear function on X, so that in particular p has
only finite values. Then dp is convex (as every subdifferential) and is nonempty: if we had dp =0
then we would have ddp = +oo, that is, by 0°1), Ip = +oo, and therefore I?p = I(lp) = —c0,

0°1 . . . . . .
but %p 2 p # —oo (0°1) is applicable, since p is continuous and hence p € Cl). Thus, Jp is
a nonempty convex set.

3> Put

K= ] [=p(=2),p(2)]

(the product of segments [—p(—=z), p(z)] over
all # € X, with the product topology). By
0°3) K is a compact space. (Notice that
Ve i —p(—z) < p(r). Why?)

We may consider K as a subspace of the
space

RY .= F(X,R) ~

of all real-valued functions on X with the

topology of simple (= pointwise) convergence pLF —)]
(see p. 3). (Indeed a point of K is a family

{tz}rex, —p(=2) <tz < p(x), and we can

consider such a family as a function X —

R, z —t;.)

an element of K
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The elements of K are the functions on
X such that their graphs lie between
the graph of p and the symmetric cone.

an element of K

4 The space X* is a subset of F(X,R), consisting of all continuous linear functions on X, and the
topology o(X*, X) is evidently coincides with the topology, induced on X* from F(X,R) (verify!).
Further it is clear by the definition of the subdifferential that

p=X"NK

(the intersection being taken in F (X, R)).

% Now we claim that X* N K is closed in F(X,R). [NB X* itself may be nonclosed in F(X,R)!
See Example on p. 42. ] Indeed, let a function f € F(X,R) belongs to the closure of X* N K in
F(X,R). This means that f = lim f, in F(X,R), where {f,} is a net of elements f, € X* N K.
We need to show that f € X* N K, that is that f is a continuous linear functional on X, satisfying
the condition

—p(—=) < f(=) < p(x). (1)

By the definition of the topology of pointwise convergence we have
f(z) =limfo(z) VzeX.
So the fact, that f is linear, follows from linearity of f, by passing to the limits:

flzr+22) = limfo(zr + 22) = lim( fa(z1) + fa(z2)) = lim fo(21) + lim fo (22)
Jx1) + fx2),
fltz) = limfu(tz) =lim(tfo(z)) = flim fo(z) = tf(2).

Quite analogously the fact that f satisfies (1) follows at once from the fact that every f, satisfies
(1). At last continuity of f follows by (1) from continuity of p.

6 Thus our subdifferential dp = X* N K is a closed subset of the compact set K and hence is
compact in the pointwise convergence topology. Since dp C X* and o(X™*, X) coincides with the
topology, induced on X* by the pointwise convergence topology, we conclude that dp is o(X*, X)-
compact. >

Example. Let X & Y be a dual pair, and let U C X be a neighbourhood of 0 in ¢(X,Y’). Then
UDA{yi,...,ynPfor some yi,...,y, €Y, and hence

Exc. on

PC{y, -y} "= cohi{yr, - ua}
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(where the closure is taken in o(Y, X)). But the set {y1, ..., y,} liesin a finite-dimensional subspace
of Y, and the topology, induced on this subspace by (Y, X), coincides with its usual linear topology
(which is the unique Hausdorff linear topology in a finite-dimensional vector space). So o (Y, X)-
compactness of [P is evident here: it is simply compactness of a closed bounded set in finite-

dimensional space.



3 Normed spaces
Normed spaces (NS) are a very special and a very important case of Hausdorff LCS’s.
3.1 Preliminaries

We have already dealt with norms (see p. 26). Recall that a norm || | is a finite semi-norm such
that |z] = 0 = # = 0. For convinience we repeat the definition in an explicit form.
3.1.1 Definitions

A norm on a vector space X is a functional
X —R,

that satisfies the following three conditions (?axioms of norm”):
a) |z| > 0Vz € X, and ||z| =0 = 2z = 0 (positivity and nondegenerary);

b) [tz| = |t||z| ¥t € RVz € X; in particular, |—z| = |z| (positive homogeneity and symmetry);
c) x4yl < |z|+ |yl Ve, y € X (subadditivity = sublinearity = convexness).

A normed space is a vector space, equipped with a norm. It one want to emphasize that a norm is
defined just on X, one writes | |5 or | I~
It is easy seen, that the formula
e(z,y) =z —yl
defines a metric on X, which is invariant (relative to translations). The topology generated by this
metric coincides evidently with the (locally convex Hausdorff) topology generated by the norm.

This topology has the closed balls
B, = {:E| || < r}

as a base of closed balanced convex neighbourhoods of 0, and has the open balls
BB, := {z|lz] < r}

as a base of open balanced convex neighbourhoods of 0.
The balls By and BB; are called, naturaly, the (closed unit ball and the open unit ball, resp.
It is clear that for any net (generalized sequence) {z,} in a NS X we have

Ty — ¢ < o —z| — 0.

The most important class of NS’s are the Banach spaces. A Banach space (BS) is a NS, that is
complete with respect to the metric generated by the norm.
Clearly, a sequence {z,} in a NS is a Cauchy sequence iff

Ve>03aINeEN:n>Nm>N = |z, —zm| < e.

3.1.2 Examples

Here are some basic examples of finite-dimensional and infinite-dimensional NS’s.

1. On the real line R there exists the unique (up to a scalar factor)
norm, viz. |z|. The corresponding topology is the usual topology of
R.

2. On R” there are, among many other, such norms:

n
el = S e,
i=1
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and, more generally,

lal, = (Xl )* (129 <00,

lal,. = max s
In the most important case p = 2 we obtain the well-familiar Fuclidean norm

2 2
el =) leil”.

The unit balls in these norms are of the following form (in, say, Rz):

We see that a ball may be nonsmooth!
Notice, that all these norms generate one and
), the same topology in R™ (that is, are equiva-
lent, see Section 3.4.1):

A

Al

Exercise.  Verify that, for 0 < p <1, n > 2, | |, is not a norm

(though the corresponding "balls” form a base

of neighbourhoods of 0 of the usual topology / \
in R™. \ /

3. C([0,1]). The space of all continuous functions z : [0, 1] = R, with the norm

Vo
N

= t)|.
Il max |z(t)]

-1

4. C7([0,1]). The space of all r times continuously differentiable functions [0, 1] — R, with
the norm
0 ) ’

5. 3. The space of all sequences = (z1,23,...), #; € R, such that S x? < 0o, which the

norm
2
l2l; = =f.

It is a classical example of so-called Hilbert space.
6. 1,. More generally, for any 1 < p < oo, the space of all real sequences such that ) |z;|" <

oo, with the norm
1
o1, = (3 lel") "

lal, := max (lel, [2'l,. .. |2
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7. ls. The space of all bounded real sequences, with the norm

|2]o := sup fa;].

ieN
8. ¢g. The space of all hull sequences (that is, convergent to 0), with the same norm, as in .
Exercise. Prove that in all these examples we have BS’s.

3.1.3 Subspaces and products of normed spaces

If Xisa NS, and Y € X, then we can equip Y by the induced norm

Iy =11xly-
If X and Y are NS’s, we can equip X X Y by the norm

Iz o), = 1Cl=], 1yl )||§2,

for any 1 < p < 0.
It is easy seen, that, in both cases, all the axioms of norm are fulfilled, and that, in the product

case, all the norms generate one and the same topology, viz. the product topology.
Exercises.
1. The closed vector subspace of a BS, with the induced norm, is again a BS.

2. The product of two BS’s, with any of the norms, introduced above, is again a BS.

3.1.4 Continuous mapping in NS’s
The definition of continuous mapping for TVS’s, ”translated” into the language of norms, looks
as follows: a mappping f: Y = Y (X,Y being NS’s) is continuous at z € X if
Ve>036>0: |Jz—2| <d=|f(z) - f(2)]| < e.

Examples of continuous mappings.
1. The norm | | : X — R itself, for any NS X.

2. As for every TVS, the arithmetical operations in a given NS.
3. Every linear mapping R" — R™ (with respect to any norm | |, 1 < p < oo, in R" and any
norm | |,, 1 <p < oo, in R™).
4. The linear functional
d- : C([0,1]) —= R, z— (1),

7 € [0, 1] being fixed. This functional is called Dirac §-function concentrated at a point 7. It
is an example of so-called generalized functions (or distributions).

5. Linear functionals of the form
1

L:C(0,1]) = R, z+~— /m(t)y(t)dt,
0
y € C(]0,1]) being fixed.
6. Linear operators of the form
1
Axz(t) ::/K(s,t)m(s)ds,
0
K € C([0,1] x [0,1]) being fixed (integral operators with the kernel K).
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3.1.5 The place of NS’s among TVS’s

A TVS is called normable if its topology is generated by a norm. Since each NS is (as a TVS)
Hausdorff and locally convex, 1t is clear that normable spaces are to be looked for among Hausdorff
LCS’s.

Kolmogorov’s theorem. Let X be a Hausdorff LCS. Then X s normable iff there exists
a bounded neighbourhood of 0.

< @

1)
2)

Theorem on continuous semi-norms (p. 27);

the fact that in any LCS there exists a base of convex balanced closed neighbourhoods of 0.
o The part "only if” is trivial: the unit ball in the corresponding NS is such a neighbourhood of
0.

2 The part ”if”: Let U be a bounded neighbourhood of 0.
Then, by 0°2), AUy : Uy C U, Uy € BalConvCINbg. (This
Ug is bounded together with U.) By 0°1), the corresponding
semi-norm py, is continuous. We claim that py, is a norm.
Indeed, py, is finite as any continuous function. Let us show
that z # 0 = py,(z) # 0:

# 0= pu,(e) # 1,

X is c

Hausd Ug€EBda
e A0 Y e Nby :2¢gV = H>0:tUCV

def.
of

= gty = plo(x)>t>0 = pp,(z) #0.
~—~—~

PUy

Thus, py, is a norm. vV

P Now we claim that the topology 7( pu, ) generated by py, coincides with the original topology
7 of X. Indeed, by 0°1),

BPUD = Uy,
hence, the balls €Uy, € > 0, form a base of neighbourhoods of 0 for 7(py, ). But they form also

a base of neighbourhoods 0 for 7: V € Nbg(7) UoERdd 3. - ¢ . elUy C V. Thus, 7= 7(py, ). >

So in a nonnormable Hausdorff LCS any neighbourhood of 0 is unbounded.

3.2 The normed space £( X,Y)

Here we show that for NS’s X and Y the space £(X,Y ) has a natural structure of a NS, and
we study this structure.
3.2.1 Characterization of bounded sets and bounded operators in NS’s

Since NS’s are metrizable, we know from the theorem on boundedness and continuity (p. 38),
that a linear mapping between NS’s is continuous iff it is bounded. More precisely, it holds
Lemma. Let X,Y € NS, BC X, A€ L(X,Y). Then:

a) B € Bdd(X) < |B| € Bdd(R) < 3¢ > 0 Yz € B:|z| < ¢; that is, a set in a NS is bounded
(with respect to the generated topology) iff it is bounded in norm.

b)
AcL(X,)Y) <= a € Bdd(X,Y) <= A(Bi(X)) € Bdd(Y)
<< dc>0: |z] < 1= |Az| < e

(See Corollary and Example on p. 38.)
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3.2.2 Norm of an operator
By the assertion b) of the lemma above, we can put for any A € £(X,Y) (X,Y € NS)
|Al:= sup [Az]. (1)
l=l<1
Exercises.
1. Verify that the defined function | | : £(X,Y) — R is a norm (called the operator norm).
2. Verify that ”|z| < 1” in (1) may be replaced by " |z| = 17, that is
Al = sup [Az]. (2)
|lz|=1
3. Prove that forall A € £(X,Y) and allz € X
lAz] < |A[l=]- ®3)

This inequality and analogous one (see below) will be used very often. We shall relate to all of them as to
basic inequalities for norms.

Thus, for every normed spaces X and Y we obtain a normed space £(X,Y). If the contrary is
not specified, we ever assume that £(X,Y) is equipped with the norm (2).
Basic inequality for norms of operators. Let X,Y,7 be NS’s, and let A € £L(X,Y), B €
LY, Z):
x4y 2z

Then the norm of the (evidently continuous) composition BA := B o A satisfies the estimate

1BA| < IB]IA]-

g Ve e X,
(3) (3)
[(BA)z| = |B(Az)| < |B||Az]| < [BIA]l=],

hence

|BA| = S [(BA)z| < |B||A]. >

3.2.3 Completeness of £L(X,Y)

We know that £(X,Y) equipped with the "topology of pointwise convergence” may be "non-
complete” | if X is not complete (see p. 42). As to the space L(X,Y") equipped with norm topology,
it is the completeness of Y that plays the key role, that is, defines the completeness of £(X,Y):
Theorem on completeness of £(X,Y). Let X be a NS, and let Y be a BS. Then the space
L(X,Y) (with the operator norm) is complete (that is, is a BS).

<
1) Basic inequality for norms;
2) continuity of arithmetical operations.
o Let {A,} be a Cauchy sequence in L£L(X,Y), that is,

Ve>03n, :n>n., m>n. — |A, — An| <e. (1)
We need show that there exists A € £(X,Y) such that

|4, — A] =53 0. (2)
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2 For every fixed z € X the sequence {A,z} is a Cauchy sequence in Y. In view of (1), this
follows from the estinate

0°1)
[Anz = Amz| = [(An — Am)2| < [An — Am]]2]. (3)

Since Y is complete, 31im A,z =: Az. We claim that so defined A is what we need.
P A€L(X,Y). Indeed, for all z,y € X and all o, 3 € R

Alaz +8y) = lim(An(az + By)) = lim (aAnz + fAny) "= alim Anz + Blim Any
= aAx + Ay.
.
Ym>n.:A— Ay, €L(X,Y) and |A— Ay| <e. (4)

Indeed, the mapping y — |y — Amz|, ¥ — R is continuous, for any fixed n and z, as the
composition of translation by — A,z and | |, which are both continuous mappings. Since A,z — Az
in Y (for fixed z), we conclude, that

[Anz = Apz| — |Az = Apz]| = (A = Ay )z].

Hence, for z € By(X) and m > n., it holds

. (1)
[(A=Ap)al = lim JAuz—Ana] <,
n— 00 —/_/

(3)
<NAn—Anl 2]
S~

<1
that is A — A, is bounded on B;(X) and, therefore, is continuous, and

[4 = Al = sup [(A—An)z] <.
lzl<1

% Since A = A, + (A — Ay, it follows from the first assertion (4) that A € £(X,Y). Then the

second assertion (4) means that (2) is true. >
3.2.4 Dual normed space

Applying the results of Sections 3.2.3 and 3.2.4 to the case Y = R, we obtain that the topological
dual space

X* = L(X,R)

to every normed space X may be equipped with the norm

l2*|:= sup [(z",2)| = sup (2", z) =sup(z”, Bi) = sBi(z7), (1)
el <1 el <1

and is Banach space with respect to this norm (since R is complete!).
If the contrary is not specified, we assume ever that X is the Banach space with the norm (1).
Exercise. Prove the equation, marked with ”!” in (1). [Use the fact that B; is balanced.]

The basic inequality for norm takes in our case the form

(2%, z)] < =" ][] (2)
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Examples.
1. For 1 < p < oo, it holds (}R”, [ ||p) = (]R", | ||q), where ¢ is defined by the equation

1
-4+ —-—=1. 3
pl (3)

In particular, for p = 2 the normed dual space coincides with the original one.

2. For 1 < p < o0, it holds [} := (l,)" = l,;, where q is again defined by (3). As to p = oo,
the normed dual space to s is the space ba of ”finitely additive measures” on N (see [3, p.
261]); note that /; may be considered as the space of (countably additive) measures on N.

3. C([0,1])" may be identified with the space of all measures p on [0, 1]:
1
(u, ) == / zdp  (the integral of z with respect to the measure p),
0

|l = Varp (the total variation of p).

In particular, Dirac delta-function §; ”is” the measure of the unit mass (|§-] = 1), "concen-
trated” at .

3.3 Applications of Hahn-Banach theorem in NS’s

Here we derive some special ”normed space” corollaries of the ”first whole” of functional anal-
ysis.
3.3.1 Banach lemma on zero angle

In the case X = (R",| |,) the basic inequality for norms (2) on p. 76 has a simple geometrical
interpretation: the modulus of the inner product (scalar product) of two

* x*
\N\\ vectors is less or equal to the product of their lengths (Jcos ¢| < 1, see the
i T picture).
|

|z For arbitrary NS’s Equation (2) may be used for defining cosine of the
”angle” ¢ between a vector * in X* and a vector 2 in X (let these vectors

(@) = o[ e eosy lie in different spaces!):
(+2) = 1l (2" 20,2 £0)
cosp(z®, z) = r T .
lz =]

In particular, we say that z* and  are orthogonal if cos p(z*, z) = O:
¥ L= (% z)=0,
and we say that 2* and x have the same direction if cos p(2z*,2) = 1:
" M= (2t x) = 7|2

In the finite-dimensional case (X = R™) for every vector z € R" there exist ever a vector
z* € (R")" = R” that has the same direction as z; we can just take z* = z. In the case of
infinite-dimensional NS’s, this fact remains valid (although z and z* lie now in different spaces!),
but it is by no means trivial.
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Banach lemma on zero angle. Let X be a NS. Then for every & € X there exists a vector
z* € X* \ 0 that has the same direction as x. An equivalent statement is: for every & € X there
exists x* € X* such that

lz*] =1 and (z*, 2) = |2|.

<1 (» Hahn-Banach theorem.
T First of all, the equivalence of our two statement follows from the fact that if z* # 0 and
z* 11 z then ";—*” satisfies:

2 If £ =0 then any z* # 0 fits. Let 2 # 0. Put

Xo :=lin{z} = {t2

t e R},

and define a linear functional 2§ on X by putting
(25, 2) = |z (1)

(it is clear that z§ is uniquely defined by its value at #). We have, evidently,

2h <=1 |y,
So, by 0°, 3z* € X’ such that
2| 5, = o0, @)
2 <1 (3)
We claim that this * 1s what we need.
> We have
. (3)
sup (z*,z) < sup |z| =1,
[zl<1 [zl<1

so z* is bounded by 1 on the unit ball and hence is continuous, and |z*| < 1. But at the point
72r € By our z* has the value 1:

[El
. & (2)< . T ><1)
Ty = Loy 1= = 11 4
< ||x||> > Ta )
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SO
|z*| = sup (z*,z)=1.

reB,
At last,

w ooy (A s

(z*,2) =" |z|

>
Exercise. Prove by analogous argument the following theorem on extension with presentation of norm:

Let X be a NS, let Xqg € X, and let z§ be a continuous linear functional on X (equipped with the induced
norm). Then there exists z* € X* such that

e =z and |z¥] = [ag].

Xo

Example. Let X = C([0,1]). For any & from this space we have

3>

211, or &1t (—d;),

where 7 is any of the points where |z| attains its maximal value.
Indeed, 0 |
(0-, 8) = &(7) = +|z|

XY S

(recall that -] = 1). We see that for, say, & = 1 there exists a whole continuum {d,} ¢, ;) of
(linearly independent) vectors with the same direction!

3.3.2 Canonical imbedding X < z**
Let X be a NS. Since X < X*, we know that

X € (X (1)

(see p. 2.1.2). But we have more in this case:
Theorem on the canonical imbedding. Let X € NS. Denote the imbedding (1) by i:

i X — (X)), iz, 2") = (z,z%) (2)
(the first pairing corresponding to ( X* ) < X*, the second one corresponding to X « X*). Then
a) iX C X* = (X*)",
b) i: X — X** is an isometry, that is,

"im")(** = ”m"X Vz e X. (3)

Recall that X* denotes the normed dual space to X, and X** is the normed dual space to this
X*.
< ®

1) Basic inequality for norms;

2) Banach lemma on zero angle.
o a): Let z € X. We have for any 2* € By (X*)

NG oy 000 .
[(iz, z™)| = [(z,2")] < |zf |=7] < |=], (4)
N~

<1
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that is, iz is bounded (by |z|) on B1(X*), and hence iz € X**.

2 b): By 0°2), applied to our z, 32* € X* : |*| = 1 and
(z,27) = |=|.

From (4) and (5) follows that

sup |(iz, 2")| = |z,
la*1<1

3.3.3 Reflexive NS’s

3 NORMED SPACES

By the theorem on the canonical imbedding we can consider any NS X as a subspace of the
NS X**. A NS X is called reflezive if X** = X (that is, if each continuous linear functional on,

X* is "generated” by some element of X):
N €RefINS = X™" = X.

Remarks.

1. Every reflexive NS is a Banach space. Indeed X** is a BS as every normed dual space (see

p. 87).

2. In the case of general TVS’s one distinguishes reflexive and so called ”semireflexive” spaces.

For NS’s these notions coincide. (See [4, p. 693].)

3. For areflexive NS X the weak topology in X, associated with the duality X < X™*, coincides

with the weakened topology of X*:
o(X*, X)=0(X*, X"
(just since X = X™*).

4. If X is a reflexive NS then X* is also a reflexive NS (indeed, ( X*)™ = (X**)" = X*).

Examples.

1. The spaces I,, 1 < p < 00, are reflexive (see p. 88).

2. The spaces ¢g and I, are not reflexive (see the picture where dotted lines denote the passage

to the normed dual space). (See [3, p. 408], [6, p. 203].)

€ denotes dense linear imbedding

(1<p<2),(2<p< )



3.3 Applications of Hahn-Banach theorem in NS’s 81

Exercises.
1. A NS X is reflexive iff the topology of X* (as a NS) is compatible with the duality X < X*.

2. Prove that
XE v=V7Y*E, Xx*

[Here X,Y € NS, X being not assumed to be equipped with the norm induced from Y, €,
denotes continuous dense linear imbedding, and €, denotes continuous linear imbedding. (Recall
that a dense imbedding is an imbedding with a dense image.) For example, p < ¢ =1, €, [, ]

3.3.4 Dual operators

The notion of duality may be extended onto operators. Let X ui Y; and X, M Y>. We
say that a linear operator A : X1 — X3 agrees with the dualities ( , ); and (, ),, if Vy» € Y3 the
functional

X —r <y2,AX1>,X1 — R

(which is evidently linear) is given by some element of Y7 (recall that Y7 € X7{); such an element,
if exists, must be unique by the totality properties of dual pairs (verify!). So the formula

(A"ya, 1), = (Y2, Az1)y (21 € X1,y2 EY2)

defines in this case an operator from Y3 into Y7, which is obviously linear. This operator A* is
called dual operator to A. Emphasize that A* acts in the opposite direction as compared with A.
Exercises.
1. Every A € L(X,Y) (X and Y being arbitrary vector spaces) agrees with X <+ X’ and Y < Y, so we obtain
A Y — X!
(the algebraically dual operator).
2. Every A € L(X,Y) (X and Y being arbitrary Hausdorff LCS’s) agrees with X +» X* and ¥ < Y™, so we

obtain
A" Y — X*
(the topologically dual operator).

Example. If A e L(R",R™) = L(R",R™) is an operator defined by a matrix, then A* €
L(R™,R™) = L(R™ R") is the operator defined by the transpose of this matrix.

Remark. It is clear that operation A + A* is linear (when defined): (A + 3B )" = aA* +3B*.
It is also easy to see that this operation changes order of composed mappings: (A o B)* = B* o A*.

Theorem. Let X andY be NS’s, and let A € L(X,Y). Then

AT €LY, XT) and |AT] = |A].

< ®

1)
2)

The basic inequality for norms;
Banach lemma on zero angle.
T For any y* € B1(Y*) and z € B1(X) we have

.. def. o 0°1) 0°1)
(A", )| = [y™ Azl < |y*[[A=] < [A] =] <[A].
——’ ——

<1 <1



82 3 NORMED SPACES

Tt follows that Yy* € By (Y™*) |A*y*| < |A|, that is A* is bounded on B;(Y*) and hence is
continuous, and, moreover, that

[A* = sup ATy < |A].
ly*l<1

2 Show that, v. v., |A] < |A*|. We need verify that Vo € B (X) |Az| < |A*|. By 0°2) applied
to Az, dy* € Y* such that

ly* =1 and (y* Az) = |Az].

Hence, indeed,

[
* def. * % ) * * *
Az] = (v*, Az) =" (A%y" ) < [A7]|]y"] J=] < [A7].
=~

=1 <1

3.4 Applications of Openness Principle in NS’s

Since each Banach space is a Fréchet space, Banach theorems on open mapping and on inverse
mapping and the theorem on closed graph are true for BS’s.

Here we give two specifically "normed space” corollaries of the mentioned Banach theorems.
3.4.1 Equivalent norms

Let we have two norms | |, and || |, on a vector space. We say that | |, is stronger than | |,
and write

=11,

if the topology generated by | |, is stronger than the one generated by | |,. We say that | |, and
| |, are equivalent and write

I~ 11,

if they generate the same topology.
Exercises.
Lllh=lle3a>0:]l>all,® Bi(ll)eBdd(]],).

2y~ & 30,878 >0 af Iy <y B vl < 1, <614

3. InR™ all | |, 1 <p < co, are equivalent.
. *
4. In k (finite sequences) p > g = | [, 2 [ [, & [ 1, <1,

Theorem on comparable norms. Let | |, and | |, be two norms on a vector space X. If
| I, = I |5 and X is Banach space with respect to each of these two norms, then | [, ~ | |,.

<1 (» Banach theorem on inverse mapping.

lo The identity mapping id: (X, | |,) = (X,| |, ) is bijective (evidently) and continuous (by
the definition of a stronger norm). Hence, by 0°, this mapping is a homeomorphism. But this just
means that topologies, generated by | |, and | [,, coincide. >

This theorem is used usually in the folloving form (see exercises 1 and 2):
Let | |, and | ||, be two norms on X, such that X is BS with respect to each of them. If 3o > 0
such that || |, > a| |,, then 33 > 0 such that | |, > 3| |-



3.5 Applications of Boundedness Principle in NS’s 83

3.4.2 Lemma on a right inverse operator

X
It is obvious that for every surjective mapping A : X — Y
(where X and Y are arbitrary sets) there exists some right inverse
mapping R, that is, a mapping R : Y — X such that Ao R =1id } }
(©A(R(y))=yYyey). N \
The following result affirms, that for Banach spaces X and Y }RT} lA }
and a continuous linear mapping A such a mapping R can be
chosen to be ”bounbed” in a sense. Y Y

Lemma on a right inverse operator. Let X,Y € BS, A € L(X,Y), and let A be surjective
(AX =Y). Then there exist a mapping R:Y — X and a real number o > 0 such that

AoR=id (1)

and

IR < alyl VyeY. (2)

It should be emphasized that such an operator R is in general neither linear nor even continuous
(but is, of course, continuous at 0). Condition (2) expresses the mentioned ”boundedness in a sense”.
< (» Banach theorem on open mapping.

o By 0°, A is open. Hence the image ABBf is open in Y. Since, evidently, 0 belongs to this
image, we conclude that 3§ > 0 : AB’Bf D BY, that is,

VyEY : Iyl <4, 3ry € X : o] < 1, Av, =y,
S— ——
(a) (®)

> Fix any z, for each y with |y| = J and define R as the extension
by linearity of this mapping on the rays, going out of 0: A y

A(Y) 0 ify=0, lyll
(y) = .
Y ”g—”m(;”_fl” if y #£0.

3 This R is what we need. Indeed, Yy € Y \ 0

Y Y
AR(y) IA(uI(;L) = ”()—,"A:L‘(;ﬁ =Y,
N——

5 O
(8)
| 1
IR = | W = W o[ < 5 1
—_——
(a) =
<1

and for y = 0 all 1s also O.K. >
3.5 Applications of Boundedness Principle in NS’s

Here we at first reformulate Boundedness Principle as applied to NS’s, and then we apply this
principle for study of the weak(ened) topology in NS’s.
3.5.1 Boundedness Principle for NS’s

First of all recall onde more characterizations for NS’s of all related notions (see p. 38, 39, and

74).



84 3 NORMED SPACES

Characterizations of boundedness, equi-boundedness and equi-continuity in NS’s. Let
X and Y be NS’s.

a) For a set B C X the following conditions are equivalent:

1. B is bounded (in X considered as a TVS),

2. B is bounded in norm, 1. e.
|B| € Bdd(R)<=>3e¢ >0 : 2 € B= |z| < c.

b) For an operator A € L(X,Y) the following conditions are equivalent:

1. A is continuous (that is, A € £(X,Y)),
2. A is bounded (as a mapping between two TVS’s),
3. A is bounded on the unit ball, 1. e.

ABy(X) € Bdd(Y)<=>Te > 0 : |z < | = |Az| < c.

c¢) For a family of continuous linear operator {A,}
are equivalent:

aedr Aa € L(X,Y) the following conditions
1. {44} is equi-continuous,

2. {Ay} is equi-bounded,

3. {A,} is bounded in operator norm, that is 3¢ > 0 : |Ay| < ¢ Va € A.

Taking into account this characterization we can reformulate the boundedness principle for the
case of NS so:
Boundedness principle for NS. Let X be a BS and Y be a NS, and let {Aa}aeA be a family
of continuous linear operator from X into Y. Then the following conditions are equivalent:

a) sup [Ae| < oo (& Fe>0: |Ax] < ecVae A);
aEA

b) sup |[Apz| < o Ve € X (Ve e X3e>0: |Agz| <cVa e A).
agA

The nontrivial part of this equivalence is the implication b) = a). The latter may be rewritten
in the equivalent ”negative form”:

sup |As| = co = Jz € X : sup |Asz| = co.
o o

This implication is called the principle of fixation of singularities. It means that if a family of
operators is ”bad” in the sense that the values of the operators on the unit ball are unbounded
(although the values of each individual operator are bounded), then we can find a ”fixed” point
(say, on the unit sphere), where things are ”bad”.

3.5.2 Criterium of the weak convergence of sequences

Here we give a criterium of convergence of sequences in a NS with respect to the weakened
topology and in a dual NS with respect to the weak topology. In order to formulate the result, we
need a notion of fundamental set:

Definition. A set F'in a TVS X is called fundamental if its linear hull is dense in X, that is

IinF = X.
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Theorem (criterium of weak convergence of sequences). Let X be a NB.
a) A sequence {x,} in X converges to an element & € X in the topology o(X, X*) iff

1) {z,} is bounded in the norm, that is sup |z, | < oo,
n

2) there erists a fundamental set G in X* (equipped with the norm topology) such that for
every z* € (G
(7, 2n) — (27, 2). (1)

b) If X is a Banach space, then a sequence {z}} in X* converges to an element * € X* in the
topology o(X*, X) iff

1) {z:} is bounded in the norm, that is sup |z} | < oo,
n
2) there exists a fundamental set F in X such that for every x € F

(zp,z) — (27, 7). (2)

If (2) is true we say that the sequence Z7 converges to * at the point (element) x.
Thus we have the following scheme:

pa T3 &L et e Xt (0% 20) — (27, 8)
1)Je>0VneN : |z, <c .
At { 2) 3G € Fund(X*) : Va* € G : (z*,z,) — (2%, %) (3)
zy "EE e EL e e X (a),0) — (37 0)
Xg BS 1)Ie>0Y¥neN : |zi]| <c (4)
2)3F € Fund(X) : Yz € F : (Z*,2) — (&%, 2)

< @
1) Theorem on completeness of the dual NS;
2) theorem on the canonical imbedding X into X**;
3) boundedness principle.
T The equivalences marked by ”def.” are immediate corollaries of the definition of o(X,Y) (and
were the content of Exercise 4 on p. 46).
2 The assertion a) follows from b), since by 0°1) the space X* is Banach space and since the
canonical imbedding X into X** is an isometry by 0°2). So it remains to prove the right equivalence
in (4). Let us prove it.
P 7= Let for every z € X it holds (z},z) — (Z*,z). Then 2) in (4) is fulfilled with F' = X.
Further for each # € X the sequence (Z*, ), being convergent, is bounded (in R). Thus, the
sequence &* is pointwise bounded, and by 0°3) we conclude that the norms |Z*| are bounded, so
that 1) in (4) is also fulfilled.
$ 7<=" Let 1) and 2) in (4) be fulfilled, and let Z € X. We have to show that (2}, z) — (z*, Z).
First of all it follows from 2) that the sequence (z};, z) converges to (#*, z) also for every element
z of the linear hull of F. Indeed, if 2 =t121 + ... +tpxg, t; € R, x; € F, then

(xyp,z) = (x5, tiz1+ ... +tpzn)
= t{zr, e+ it (e, zE) — 0@ 2+ (BT ) = (37 7).
———’ ——’

—{&*,z1) —{&* zk)
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% Further, it follows from 1) that it holds also |2*| < ¢. Indeed for all z € lin F' we have by 4°
(#*2) = lim (s5,2) <elal. )
n—00 S —’
SR
——
<e
Since lin F is dense in X and since #* and | || are continuous functions we conclude that
(z*,z) < c|z| VeeX,

so that

|*] = sup (z*,z) <e.
lzl=1

6 At last let us show that (2},%) — (2*, %). Let be given ¢ > 0. Choose & € lin F' so that

9
r—z| < 6
o -3l < - (6)

(it is possible since lin F' is dense in X). Now by 4° it holds (z},, ) — (z*, &), so for all sufficiently
great n we have

[ 8) = (" ) < 57 (7)
and hence
(an, 2) —(@* )| = [ap, @) — (25, 2) + (xg, 2) — (27, 2) + (27, 7) — (27, 7))
< Nany2) = (on, )+ [z, @) — (27, 2)| + (27, 2) — (27, 7))
(M)
< o &=+ o 85 - )]
* ~ -~ € Sk -
< =l =2+ 5=+ 271 |z - 2|
~—~———— 204+ 1 e
yo® °®
Se <oy <e S gqy
€
< 1 —e.
S goyqletitod=e
Tz

.

Remarks.
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1. The condition 1) is essential (both in a) and in b)), see Example 1 below.

2. The condition of completeness of X in ) is essential, see Example 2 below.

Examples.

1. Consider in the space l5 the sequence

z1 = (1,0,0,0,...),
s = (0,2,0,0,...),
xr3 = (0,0,3,0,...),

and in the dual space I5 (=1l3) the set G of all elements of the form
(0,...,0,1,0,0,...).

The set G is fundamental in I3, and (z*, z,) — 0 for every z* € GG, but z,, does not converge
to 0in o(l2,15). Indeed, for the elements, say,

J0,...,0, ,0,0, ...

11 1 1
* = 1,— —, ... b = 1 — -
a ( 193 >; or 70707 9 3
had had
4th place 9th place

it holds
(a*,zp) =150 (or even (b*,z,) =n —> o).

The point is that ||z, | — co.

2. Consider the space k of finite sequences with the max-norm, defined on p. 41, and the same
sequence of continuous linear functionals on k as there, only now we will denote them by z};:

(z;,2) = nz, (2= (21,29,...)).

This sequence z7, converges to 0 at every element = € k, that is it converges to 0 in o( k*, k),
but the norms |z | (= n) are not bounded. The point is that k£ is not complete.

3.5.3 Equivalence of boundedness, weak boundedness and relative weak compactness

Here we study interrelations between the properties of boundedness and compactness in norm
and weakened topologies.

It is well known that in finite-dimensional spaces every closed bounded set is compact. In
infinite-dimensional case this is not so:
Theorem on noncompactness. In no infinite-dimensional NS the closed unit ball is compact.

<1 Let X be an infinite-dimensional NS. Assume that the closed unit ball B in X is compact. All the
balls of the radius % form a covering of B. By compactness of B there exists a finite subcovering,
say Bi,...,By. For every n > N there exists an n-dimensional linear subspace X in X, containing
the centers of these N balls. Denote by B, Bi,..., By the intersections of B, By, ... , B,, with X.
It is clear that B is a ball in X of the radius 1 and Bj, ..., By are the ballsin X of the radius %
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If we denote the n-dimensional volume ofNB by V', then it is clear that the n-dimensional volume
of each ball B; is equal to (l )nV. Since B C B1 U...U By we must have V' < N(%)HV. But for

p]
sufficiently great n this is impossible. >

The weakened topology behaves ”better” (is more like finite-dimensional ones): weakly closed
weakly bounded sets in NS are weakly compact. This is a half of the next theorem. The second
half is the equivalence of weak boundedness and boundedness (in norm).

Recall that a set A in a topological space X is called relatively compact, if its closure is compact:

A € RelComp(X) :<= A € Comp(X).

Below we write for short o( X, X*) instead of (X, o( X, X*)). It is supposed as ever that X* is
equipped with its natural norm.
Theorem on equivalence of three properties. Let X be a NS and A C X. Then the following
conditions are equivalent:

a) A is dounded, that is bounded in norm;

b) A is weakly bounded, that is bounded in o( X, X*);

¢) A is relatively weakly compact, that is relatively compact in o( X, X*).

Thus for every NS X

Bd(X) =Bd(eo(X,X")) = RelComp(c( X, X™)).

Theorem on the canonical imbedding;

characterization of o( X, X* )-bounded sets (p. 46, Exercise 5);

theorem on completeness of the dual NS;

boundedness principle for NS;

theorem on boundedness of compact sets in TVS;

elementary properties of bounded sets in TVS;

theorem on compactness (of bipolars and subdifferentials).

I a) = b). It is evident, since the weakened topology is weaker than the original one.

? b) = a). Let A C X is bounded in o( X, X*). By 0°1) we can consider A as a family of
continuous linear functionals on X*. By 0°2) the set 2*(A) = {(;1:*,;13>| z € A} is bounded (in R)
Vz* € X*. This means that A when considered as a subset of X** is pointwise-bounded. Now X*
is a Banach space by 0°3), so we can apply 0°4) and conclude that A is bounded in the norm of
X**. But the imbedding of X into X** is isometric by 0°1), so A is bounded in the norm of X.
P ¢) = b). This follows at once from 0°5).

4 b) = c). We shall prove this implication only for reflexive X. Let A be bounded in o( X, X*).

Then its o( X, X* )-closure ZO(X’X*) will be also o( X, X*)-bounded by 0°6) and hence will be
bounded in the norm by 0°2). So

~1 O O i Lo N =
—_—_ L =

X ¢ px

for some R > 0, where Bg denotes the closed ball in X of the radius R with the center at 0. The
polar (Bg )o(: (Bg) ) with respect to the canonical duality X < X* is the ball Bf(/*R and
hence is a neighbourhood of 0 in X*. So by 0°7) the polar of Bfi% with respect to the duality

X* & X* is o( X**, X*)-compact. The latter polar is the ball Bg**. But X** = X by our
supposition on reflexivity of X, and we may conclude that the ball B is o( X, X* )-compact. It

follows that ZU(X’X*) is also o( X, X* )-compact as a o( X, X*)-closed subset of By . Thus A is
relatively o( X, X* )-compact. >
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Test question. Why the implication b) = a) does not contradict Example 2 on p. 87 (where the sequence z},

is o( k*, k )-bounded, but the norms ||z}, | are not bounded!)?

Corollary on noncoincidence. In no infinite-dimensional NS the weakened topology
coincides with the original norm topology.

(In finite-dimensional spaces these topologies coincide.)

< If they coincided, then the closed unit ball would be compact, at conflict with the above theorem
on noncompactness. [>

Remark. This corollary shows that for every infinite-dimensional NS its norm topology and its
weakened topology may serve an example of two different locally convex topologies (on one and
the same vector space) with the same bounded sets.

3.6 Some additional information

Here we discuss some topologies and convergencies in the space £(X,Y) and give one result
concerning an important notion of the same spectrum of an operator.
3.6.1 Topologies in £L(X,Y)

There are three basic topologies in the space £(X,Y) of all continuous linear mappings from
a NS X to a NS Y. We define them for the general case of LCS X,Y by prescribing a base of
neighbourhoods of 0 according to the following table (where A, A, € L(X,Y)):

| Name | Symbol | A base of neighbourhoods of 0 |
weak 4
operator w(X,Y) U”g’é )_( {é|6|<§//*7 Ajﬁ § }
topology Y ’
strong
Upv = 1Al Az eV
operator s(X,Y) . ’é X é/ é Nxb (Y)}
topology ’ 0
topology
of uniform
Upv = {A|AB)CV
convergence b(X,Y) Be Bd(}i) |V(E NbO(Y})
on the ’
bounded set

A generating system

. Convergence
of semi-norms

A, ") f
VmEX:Aamo(g)Am
<= VeeXVy evY™:
(y", Aam) = (y", Az)

Py g+ (A) := [(y", Az)|
reX, yey”

P 2 (A) = n(Az)

r € X, mell, where $(X,Y)
IT is a generating Aow — A=
system of semi-norms Ve e X Agz — Az
inY
Pp (A) := sup m(Az) BX.Y)
rz€EB ’
BeBd(X), 7 ell, A\;“B E—];dfx‘)::’
where II is a gene- Az — Az

rating systerp of semi- uniformly in z € B
norms in Y
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It 1s clear that

(”<” means ”is weaker”).

Remarks.

1. X =R", Y =R™, then w = s = b is the usual topology in the n x m-dimensional space
L(R™ R™) (of all n x m-matrices).

2. In the case Y = R we have

w(X,R) =s(X,R) =c( X*, X).

3. In the case of NS X, Y the topology b(X,Y") coincides with the norm topology in £(X,Y)
and is called also the uniform operator topology; in the special case Y = R this topology
wears the name ” strong topology in X*”.

4. Thus there is some confusion in the terminology: for a NS X

2

’ = 7strong topology in X*”,

*7)

“uniform topology in £(X,R)
"strong topology in £(X,R)” = "weak topology in z

The ”operator terminology” does not agree with the ”duality one”, but both are traditional!

3.6.2 The spectrum of an operator

Here we consider an important notion of the spectrum of an operator. By study of questions
concerning spectra, it is essential to deal with vector space over C.

Recall that a complex number X is called an eigenvalue of a linear operator A : X — X, where
X is a vector space over C, if there exists a nonzero vector z € X (called the eigenvector of A
associated with A) such that

Az = dzx.

Emphasize that A ”acts” in one and the same space.) In this case the operator A — A1, where 1
p p p
denotes the identity operator:

1= 1X = idx,

has no inverse operator, since (A — Al)z = 0 for z # 0.

For finite-dimensional X the non-existence of ( A — Al )_1 is equivalent to the fact that X is an
eigenvalue of A. But in infinite-dimensional case this is not already so, and things are some more
complex (and interesting).

Definition. Let X be a vector space over C, and let A € L(X, X). The set of all A € C such
that the operator A — Al is not bijective, is called the spactrum of A and denoted by o(A).

The eigenvalues of A form a part of o(A), characterized by the fact that A— A1 is not injective.
This part of the spectrum is called the point spectrum. For orther A € o(A) the operator A — Al is
injective, but is not surjective (in the finite-dimensional case such a thing is impossible).
Examples.
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lo For the identity operator 1 the spectrum consists from the single C
point 1, which is its eigenvalue.
1
2  For the operator of "multiplication by ¢’ in the space C([0,1]),
defined by the formula
(Az)(t) = ta(t), C
0| 1
the spectrum is the segment [0, 1] of the real axis, and the point spectrum

is empty.

Theorem on the spectrum. Let X be a Banach space over C. Then the spectrum of every
operator A € L(X, X) is nonempty and closed and iscontained in the disc of radius |A| with the
center at (.

>

1) The inequality for norms;

2) theorem on convergence of operator series (see below). C
lo We shall prove only the last assertion: N\

< X e a(A) = A < |A]. LA 5(A)
Let |[A] > |A|. Let us show that in this case the operator
(A-— )\1)_1 exists and is given by the following (convergent in
norm) series:
1 1 1
A=A = oo (14 A+ AT+ ). 1
(A=a) =g (1 A gt )

Notice that for numbers the latter equality 18 jllSt the formula for the sum of a geometrical
g
progression.)

2 Since

0 k
iAH = |1—|||A|| < 1, the number series > HiAH converges. Hence by 0°2) the operator
0

00 k
series ) ( %A) converges and its sum is a continuous linear operator in X. Thus the right-hand
0

side of (1) is a continuous linear operator in X . Let us verify that this operator is inverse to A — Al.
3 For every n € N we have

(A—Al)(—%(l—i—%fl%—...—l— %A”)) = <—§<1+§A—|—...+ )\L,LA“))(A—M)

1 1 4 Tyt 1 4 1 .

1
— n+1 ‘
= 1- )\n-}-lA . (2)
But
1 o°ny |l |I**!
H)\n-HAn-H < ‘XA — 0 as n — o0,
<1

so in the limit we obtain from (2)

(b)) = (2 b ) Jasan =1
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just what we had to verify. >

Theorem on convergence of operator series on NS’s. Let X be a NS, and let Y be a Banacg
space. Let {Ag} C L(X,Y) be a sequence of operators such that

Z ool Ag| < 0.

k=1

Then the series ) Ay converges in b(X,Y) (that is, in L(X,Y) considered as a NS) to some
operator A € L(X,Y), and
JAL < 14k ]-

< The proof is quite analogous to the corresponding proof in the "usual analysis (X =Y = R),
only one writes | | instead of | |. >
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4 Hilbert spaces

Now we turn to the most special spaces, the theory of which is in some aspects the most rich.
Notice that this theory is a working tool of quantum mechanics. (We consider as ever only the
spaces over IR, although the complex spaces are also of great importance.)

4.1 Basic definitions and examples

We introduce here basic definitions, give some example and discuss the place of Hilbert spaces
among other normed spaces.
4.1.1 Scalar product

The notion of a Hilbert space (HS) is a generalization of the notion of an Euclidean (finite-
dimensional) space:
Definition. A vector space X is called pre-Hilbert space (pre-HS) if it is given a scalar product
(one says also inner product) on X, i. e. a bilinear function

(] ):XxX—R,

which 1s
1) symmetric: (r| y) = (y| ;L‘) Yo,y € X;

2) nonnegatively definite: (CL‘| m) >0Vze X.
A pre-HS is called a Hilbert space if we have additionaly

3) (1| r) = 0= z = 0 ("Hausdorff”);
4) X is complete in the norm, defined by the formula

|z|? := (13|13)

That the last formula defines really a norm, will be proved later (see Corollary on the next
page).

Examples.

1. The finite-dimensional space R"™ with the usual scalar product

(m|y) ::Zriyi (z=(z1,..,20),y=(¥Y1,--,Yn))

is a HS.
2. The space l3 of all real sequences * = (z1,23,...) such that Y 2 < oo with the scalar
product
(zly) = wiw
i=1
is a HS.

3. For any set A the space l5(A) of all families {z,},c 4 of real number z,, such that

with the scalar product
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is a HS. (The space I3 is a special case of I3(A) with A = N.) The sum in (1) is meant as

sup Y. x2, where Ag runs over all finite subsets of A. It is easy to prove that (1) may be
Ao a€Ag

fulfilled, only if at most countable number of z, are nonzero; so the sum in (2) may be meant
as a usual series. The space [3(A) is separable (that is possesses a countable dense subset) if

A is countable, and nonseparable othervise.

4. The space C([0,1]) with the scalar product

(:L‘|y) ::/0 z(t)y(t)dt

is a Hausdorff separable pre-HS, but is not a HS. We shall denote it by C2( [0, 1]).

5. The space C3(IR) of all continuous real-valued functions on R such that

/ z(t)%dt < oo
with the scalar product
(;L‘|y) = / z(t)y(t)dt

is a nonseparable and noncomplete pre-HS.

One of the key properties of a scalar product is
Schwartz (-Cauchy-Bunjakowski) inequality Let ( | ) be a scalar product and | | be the
associated norm. Then

(=] y)| < l=1 lyl. (3)
x+1y
Y
x
0

< For all t € R we have by the property ) of a scalar product

0< (v+ty|z+ty) = (o) +2(a]y) +1* (4] y) .
—— N——
Il Iyl

Hence the quadratic trinomial in the right-hand side must have a nonpositive discriminant:

(z|y)* = lelPly)* < 0. &

Remarks.
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1. The Schwartz inequality is very like the basic inequality for norms in normed spaces, and as
we shall see it i1s not by accident.

2. The inequality (3) means that ( | ) is continuous with respect to the associated semi-norm.
Corollary.  The formula |z|* := (13| z ) defines a finite semi-norm, which is a norm iff ( | )
satisfies condition 3) of the definition above.

<1 All the properties of a semi-norm are evident to be fulfilled, besides the triangle inequality. The
latter follows from the Schwartz inequality:

2 :
le+yl* = (z+y|le+y) = (z]z) +2 (2|y) + (y]y) < (J=] +y])*.
S—— S—— =
[kl <l=l vl lyl?
Thus every pre-HS is a semi-normed space, every Hausdorff pre-Hilbert space is a normed space,
and every HS is a Banach space.

4.1.2 Parallelogram identity

What normed spaces are ”Hilbertizable”? The answer is bound up with a well-familiar property
of parallelograms: the sum of the squares of the lengths of the diagonals is equal to the sum of the
squares of the lengths of the sides.

Parallelogram identity. For any scalar product in a vector space X

2+ yl* + |z =yl = 2| + 2[y|* Yo,y € X.

dztylz+y)+(z—ylz—y) = (z|z)+2(z|y)+ (y|y) Y
()=l G S
2(

Theorem on Hilbertizability. Let X be a normed space. Then a scalar product ( | ) on X

—+

such that |z|* = (1| ) erists iff ( | ) satisfies the parallelogram identity.

<1 The part ”only if” was just proved, and the proof of the part ”if” may be found in [KF, pp.
160-162] or [KG, nv. 547]. >

Examples. 1. The space R” with the norm

l=l, := (le‘ilp) (2= (21, .., 2a)),
i=1
p > 1, is ”Hilbertian” only for p = 2. Indeed the vectors
=(1,1,0,...,0) y=(1,-1,0,...,0)

satisfy the parallelogram identity only for p = 2.
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2. The space C([0,1]) (with the max-norm) is not Hilbertizable, since ~
the pair of functions on the picture does not satisfy the parallelogram v’ a/;
identity. ]

0 1

4.1.3 Orthogonality

Since a scalar product satisfies the basic inequality for norms, we can define the angle ¢ between
any two vectors z,y in a pre-HS by the formula

(z]y) = lel Iyl cos o.
In particular two vectors z and y are orthogonal, if this angle is equal to 90°:
zly <— (:t:|y) =0.

Pythagorean theorem. In a pre-HS if x Ly then |z + y|” = |z]” + |y|”.

A (z+ylz+y) = (2|2)+2(2|y) + (y|y) > y vty
——’ —— S —
[EX 0 lyl? T

For any set A in a pre-HS the set of all vectors, orthogonal to each vector of A, is called the
orthogonal complement of A and denoted by A':

At = {yEX|(:E|y) :0V:BEA}.
Remark. It is easy to see that AL is a closed subspace in X:

At € CISub(X).

4.2 Geometry of a Hilbert space

Here we prove the main fact of the geometry of a Hilbert space, the existence of the orthogonal
projection, and derive some important corollaries.
4.2.1 Orthogonal projection

We shall need later only the projections on vector subspaces, but will prove here a more general
result.
Theorem on orthogonal projection. Let X be a HS, A be a nonempty closed convez set in
X, and ¢ be an arbitrary point of X. Then there exists a point 2o € A, which s the closest point
to & among the points of A, that s which minimizes the distance from z to the points of A:

| — a0 = min]s — o],
TEA
This point is unique and is called the orthogonal projection pr,& of & into A.

Remark. In the case of affine subspace A the projecting vector is orthogonal to A (see the next
subsection), which justifies the name ”orthogonal projection”.
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< (> Parallelogram identity.
o Put

d = inf ¢ |2 — 2|,

and let z,, be a sequence in A, such that
d= lim |z —z,]|.
n— o0

Let us show that {z,} is a Cauchy sequence. By 0° applied to the parallelogram on the picture we
have

~ - ~ 2 ~ - 2 alla 2 all o 2
[(2—2n) + (2 —2m)|" + (2 —2n) = (2 —2m)[" =22 —2a|” +2]2 — 2]
——— ——

2 ||z
2

<d,since Znttm ¢y

R Zn + Tm H |Zrn—2m| —d —d

If we choose ng so that |& — z,]* < d? + ¢ for n > ng then it holds for n,m > ng
l2n — 2m|® <2(d?4+6) +2(d? +¢) — (2d)° = 4e.

Thus {z,} is a Cauchy sequence.
2  Put g := limx,. Then by continuity of the norm we have

|& — #o] = lim[& — z,| = d.

The existence of the closest point i1s proved.

3 The uniqueness follows again from 0°: if |& — &¢| = |& — 2| = d for &g, Z( € A, then it holds
&g+ 2y

analogously
9 z
2||2 + |20 — &) = 2@ — 2ol + 2| — &b ‘
I S
>d ! ! "

whence it follows that |2q — 2| < 0, that is |2g — & = 0 .

Remarks.
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1. The condition of completeness of X is essential. For example
in the space C([0,1]) with the scalar product [ zydt there exists in the & (
closed subspace l
. 1 /V\
A= m|m(t):01ft€ 0,5 ys V1

no point closest to the point = 1 (verify!).
2. Using the above theorem one may establish the following fact: in a HS any sequence

Ay DAy D A3 D ...

1 |
of nonempty closed convex bounded sets has a nonempty intersection. 0 | !
Notice that in arbitrary normed spaces this is not so (in C([0, 1])) with | 1
the usual max-norm it may be given such a counter-example, based on —1 1ol e
the sequence {xz,} of the functions z,, represented on the picture. n on
3. The theorem remains true if we omit the condition of completeness of X (that is for

Hausdorff pre-HSs), but add the condition that A lies in a finite-dimensional subspace of X. (The
point is that every finite-dimensional normed space is complete.)

4.2.2 Canonical decomposition into a direct sum

For any closed subspace (by subspaces we mean, as ever, linear subspaces) of a HS we can
decompose the HS into the direct sum of this subspace and its orthogonal complement:
Theorem on the canonical decomposition. Let X be a HS and X, be its closed subspace.
Then X 1s the direct sum of Xy and X5 := Xf‘ R

X=X, ® X>.

The assertion remains true if we omit the condition of completeness of X (that is for Hausdorff
pre-Hilbert spaces) but add the condition that X is finite-dimensional.

<1 (» Theorem on orthogonal projection with Remark to this theorem.

o Let  be an arbitrary point in X. By 0°
there exist the orthogonal projection of z into
Xl. But

Ty =pry, T, Za:= r—x.

We claim that 2z, € Xf. Indeed, let 2, €
X;. Consider the straight line in X3, passing
through the point #; in the direction of the
vector z1. Since %7 1s the closest to z point of
X1, the function

ti—)||£2‘—(i1+t231)||2 = (;f}—(i‘l—tl‘1|i‘—i‘1—t231)

B—dy) —2(2— 31|z ) + 17 (21| 21)

= (i‘—i‘l

takes its minimal value at ¢ = 0. Hence the derivative in ¢ must be equal to 0 at ¢ = 0. But this
derivative is equal to —2(:E — :El| l‘l). It follows that (:?3 — I | :L‘l) = 0. Thus, z5 € Xf‘.

2 We have proved that X is the sum of X; and X5. That this sum is direct, follows from the
fact that X5 = Xf‘. Indeed, if z € X1 N X5, then x L x, that is (r| 33) = 0 and hence z = 0. >
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Corollary on the orthogonal complement. Let X be a HS and Y be a closed subspace
in X. Then N
vyt =(v+t) =V

Thus, every closed subspace in a HS is the orthogonal complement of its orthogonal complement.

< It i1s evident that YV C (YJ‘)J'. Let us prove that Y O Y14 Let 2z € Y1+, Write its
decomposition
r=2x1+x9, x €Y, (EQEYJ_.

We claim that x5 = 0. Indeed, x L x4, hence

0= (]a2) = (21]22) + (s] 22),
N—_———’
0 (E21k
whence it follows |z|, = 0. Thus, z =2z, €Y. >
Remark. The conditon of completeness of X in the theorem on the canonical decomposition

1

is essential. Indeed, consider again the pre-Hilbert space C([0, 1]) with the scalar product [ zydt
0

and the closed subspace Y = {:E| z(t)=0ift € [0, %] } We have Y+ = {m| z(t)=0ift e [%, 1] }

But
(1) obex

Y+YLI{I

4.2.3 Self-duality

A key property of HSs is that we can identify a HS with its dual space.
First of all the condition (CL‘| :c) = 0 = 2 = 0 means that for any HS we have

XQQX,

that is X forms a dual pair with itself with respect to the own scalar product as the pairing. But
we have more than that:
Theorem on the dual space to a HS. Let X be a HS.

a) Every element * € X* may be represented by the unique way in the form

(#*,2) = (2|z) (z€X),

where £ € X; moreover it holds
Izl = 12" x.-

b) V. v. for every & € X the functional * := (;i‘| ) belongs to X*, and

l2%1x. = [2]x-

This means just that 1) the norm topology in a HS is compatible with the duality X m X,
and 2) the (bijective) correspondence &* ¢ Z is an isometry.
< I Assertion b) follows easily from the Schwartz inequality and the fact that (r| z) = EIE
(give details!).
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2 Let us prove a). The uniqueness of desired # follows at once from the mentioned property
(:E| ;L‘) = 0= z = 0, and the equality of the norms follows from the equality in b). It remains to

find the desired z.
Put

X; = ker#* < {z|(z*,z) = 0}.

If X1 = X, then 2* = 0, and we can take £ = 0. Let X; # X. Put
Xy = Xf‘. We claim that X5 is one-dimensional. Indeed choose
any nonzero zg € Xa (it is possible since X; & X5 = X) and show
that {zo} is a basis in X5. We can assume that |zo] = 1.

At first we must have (z*,2¢) # 0, since otherwise we would
have zq € kerz* = X; and hence zy = 0. Then each vector
z € X5 may be written as

(27, z)

r = ml‘o

Indeed the difference
(27, z)
z— —xg
<;‘E*, I0>
belongs both X3 (evidently) and X (since * vanishes at this difference), hence is equal to 0. Thus
{zo} is a basis in Xs.
> Now let us show that we can take

&= (2" zo)zg.

Indeed, both our original functional * and the functional (i‘| ) are equal to 0 on X; and have
one and the same value (*, zo) at 2o, that is are equal on X5. Hence they coincide (since X =
X1 @ Xq). >

Thus we can identify X* with X (as normed spaces) by means of he rule

(w.) = (x|y).
Rorollary on reflexivity.  Every HS is reflexive.
X = (X)) =X =X.>
N
:X

Remark. A HS is more than reflexive; it ”coincides” not merely with its second ”reflection”,

but already with the first one:
X*=X.

4.3 Hilbert basic

Here we show, how the notion of a basic for finite-dimensional Euclidean spaces may be gener-
alized to HSs.
4.3.1 Orthogonal systems

A family {eq} 4 of vectors in a pre-HS X is called an orthogonal system (ONS) if

_J 1 fora=2,
(ea|eg)_{ 0 fora#p.

Remark. FEvery ONS is a linearly independent family. (Verify!)
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Lemma on finite ONS Let X be a Hausdorff pre-HS, and {e1,...,e,} be an ONS in X. Then
the subspace E := lin{ey, ..., e}, generated by e1,. .., e,, is closed, and for every point x € X its
orthogonal projection into E is given by the formula

n

pTEII E CLEL,

k=1

where
Cr ‘= (I‘| €L )

<1 ( Theorem on the canonical decomposition.
Io Let a sequence z; = c1;e1+. ..+ cpien in E converges in X
to some element x € X. Then by continuity of scalar product

x
€2 l
we have foreach k= 1,...,n ,32/1____) /
/
<l‘i|6k) = Cki — (1‘|€k) = Ck- 1 / €1

On the base of continuity of arithmetic operations in a TVS
we conclude that

ciie1 + ...+ cpjen —> C1€1 + .. .Cpey.
Hence by uniqueness of the limit in a Hausdorff TVS it holds
r=ce1+...+cpe, €FE.

Thus, E is closed.
2 By 0° we have for every z € X

r=2' 42", where 2’ =prpzr € E, 2" € Et.

Hence

I
T

1"
r=aie1 +...+ae, +2

for some real «;. Taking the scalar product with ey gives

Cr — (;‘E|6k) = g,

whence 1t follows that
x':clel—}—...—}—ckek. >

It turns out that for every point z in a pre-HS its coordinates ¢, = (:b| ea) with respect to
any ONS {ea},c 4 from an element of the HS I3(.A):
Bessel inequality. Let X be a Hausdorff pre-HS, and {ea}aeA be an ONS in X. Then

S (2lea) < el Vzex. (1)

acA

(The sum is meant in the sence explained on p. 93 just after eq. (2).)
g 0

1) Lemma on finite ONS;

2) Pythagorean theorem.
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o Let 2 € X. By the definition of the sum in (1) it is sufficient to verify (1) for a finite A’ C A.
In this case by 0°1) we have

r = Z Co€o + Y, Where ¢, 1= (.Z‘|6a) and y L ey Va € A'.
agcA’

Hence by 0°2)
I

=

)

21" = Y leacal” +1yl" = D ca+ly

ag A’ ag A’

o

whence it follows (1). >
4.3.2 Hilbert basises and the theorem on isomorphism

An ONS in a pre-HS is called mazimal (or total, complete), if there is no strictly greater ONS
in X, that is, if its orthogonal complement consists only from 0.
Remark. In every pre-HS there exist a maximal ONS. Tt is quite easy to verify (1), using the
Zorn lemma.

In a finite-dimensional space any maximal ONS will be of course a basis in algebraical sense. It
turns out that in Hilbert spaces every maximal ONS is a Hilbert basis in the sense of the following
Definition. An ONS {60<}aeA in a pre-HS X is called a Hilbert basis of X, if for every vector

z € X 1t holds
xr = Z Color, (1)
aEA

where

Cor ::(m|ea). (2)

The inequality (1) means that 1) only countable number of the coefficients ¢, are nonzero, that
is there exist a countable subset A’ C A (depending on z) such that ¢, = 0 Yoo € A\ A’; 2) if we
number anyhow a € A’ into a sequence aq, as, ..., then the partial sums

n

Sy = ankeak (3)

k=1

converge (in norm) to z:
|Sn — 2] — 0 as n — oo. (4)

Remark. The representation (1) is unique, that is if we have a representation (1) with some cq,
thene these ¢, are given by (2). Indeed, by continuity of scalar product we have for each a € A

(a] ea) = lim (Suea).

but
. = | cap=co fa=apandn >k,
(Sn|€a)_(;caleal|ea)—{Oica lfCtg.Al
Example. In the HS [5(A) the family {d,},c 4, Where

1 ifcv:ﬂ;
do 1= {6aﬁ},@6¢4’ dap ::{ 0 ifa#pg,
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is a Hilbert basis. In particular, in Iy the vectors
(1,0,0,0,...),(0,1,0,0,...),...

form a Hilbert basis.

Characterizations of Hilbert basises. Let X be a HS, and {es},. 4 be an ONS in X. Then
the following conditions are equivalent:
a) {eq} is a Hilbert basis;

b) for every z € X it holds the Parseval equality

lel” = 3 (2] ea)’;

agA
c) {en} is maximal (that is {EQ}J' ={0});

d) {en} is fundamental (that is lin{en} = X).

The parseval equality is just the infinite-dimensional formula for the square of the length of the
diagonal in a rectangular parallelepiped.

) Definition of a Hilbert basis;

) Bessel inequality;

) Pythagorian theorem;

) theorem on the canonical decomposition;

) lemma on finite ONS;

) theorem on the orthogonal projection.

o a) = b). Let {e,} be a Hilbert basis, and let z be an arbitrary element of X. By 0°1) we have

O T N — P

n

r= lim S,, S, ::chek, ck::(m|ek)

n—00
k=1

(for short we write ey instead of eq, ). By continuity of norm we conclude that

2 .. 20°3) . w= o G,
lz]” = im|S,|" = hmzck = ch.
k=1 k=1

2 b) = ¢). Let {eq} be such that for each z € X the Parseval equality is fulfilled, and let
z € {ex}". Then (:t:| e ) = 0 Vo, and hence by the Parseval equality for = we have |z|” = 0, that
isz=0.

3 c¢) = d). Let {e,} be maximal, that is {eo}" = {0}. Put Xy :=lin{ey}, Xo := X It is clear
that X2 = {0}. By 0°4) it holds X = X; & X3 = X1, that is {en} is fundamental.
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4 d) = a). Let {eq} be fundamental, that is X = lin{e,}, and let z be an arbitrary element of
X. Put ¢, := (m|ea). By 0°2)
Y i<zl < oo,

acA

hence, as it was noticed on p. 94, only a countable number of ¢, may be nonzero, say, ¢, with
a e A, A’ being countable; so ¢, = 0 if a € A’. Number A’ anyhow into a sequence and shall for
short use notations ey, es,... and ¢q, ¢, ... for corresponding e, and ¢,. We need to show that

n
[Sn — 2| — 0, s, := chek.
k=1

By 0°5)
Sp=prg x, FE,:=linfer,... en}.

Since Ey C E5 C ..., we have evidently
||m—prElm|| > ||m—prE2;r|| >,

that is
lz = Si| >z =S >....

Thus it is sufficient to prove that

Ve>03dngeN : |z — S, | <e.

% Let be given € > 0. Since z € lin{e, }, we can find a finite number of e,, say €], ..., €}y, such
that
|t —zo| <& for some zg € lin{ef, ..., ey}
Among €}, ..., ely there are some ”our” elements from — Xy
. Lo

the sequence eq, es, ... and some ”foreign” ones. Choose |
ng to be greater than the numbers of all ”our” eg oc- I g

. o
curing among e, ..., e}, and put 0 I \/ I

X Eng
Xog = lin{el,...eno, fiso fmg }
N—_——
"foreign” elements among e}, ..., e

. . lin{ey,es, ...}

It is clear that 2y € X3. We claim that

Prx, T = S, (: Pre, r)
Indeed by 0°5)

Prx, = ($|61)€1+~~~+<$|enu)eno+(m|f1)f1+~~~+<$|fmo)fmu :Snu
S—— S—

Suq 0 0

((:L‘|fl) = 0 since ¢, = 0 for o & .,4’). But by 0°6) the orthogonal projection of z into Xy

minimized the distance from x to the points of X, so

|z = Snol < |z — 2o <e. >
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Remark. The condition of completeness of X is essential for the implication ¢) = d) to be true.
For example, consider in l5 the subspace

lin{z1,eq, €3, ...},
where
3 ia ga .

and let X be this subspace with the induced from [5 scalar product. Then the ONS {es, €3, ...} is
maximal (verify!), but evidently is not fundamental.

11
21 = <1 ) e =(0,1,0,0,...), es=(0,0,1,0,...),...,

Theorem on existence and equi-cardinality of Hilbert basises. Let X be a HS. Then X
possesses a Hilbert basis, and all the Hilbert basises in X have one and the same cardinality.

This cardinality is called the Hilbert dimension of X.
< P

1) Existence of a maximal ONS in every pre-HS (see the Remark on p. 102);

2) Characterizations of Hilbert basises.
o By 0°1) in X there exists a maximal ONS. By 0°2) this ONS is a Hilbert basis.
2 In finite-dimensional X equicardinality of all Hilbert basises follows from the analogous alge-
braical fact, since in this case the notions of a (algebraical) basis and of a Hilbert basis coincide.
P Now let X possesses a countable Hilbert basis {e”}neN' Then X is infinite-dimensional (since
{en} is, as every ONS, a linearly independent family) and is separable (since {e,} is by 0°2))
fundamental, that is line{e, } is dense in X, whence it follows, that the countable set of all linear
combination of {e,} with rational coefficients is dense in X). It implies that each other Hilbert
basis {a},c4 contains an infinite number of elements. If A was uncountable,then there would
exist in X an uncountable number of disjoint balls, say of the radius % with the centers at z,,
which contradicts the separability of X.
4 The case of uncountable dimensions requires an appealing the set theory, and we shall omit it.
>

v 1/2

1/2

Example.  The Hilbert dimension of I3(T) is equal to the cardinality of 7. In particular /5 is
countable-dimensional in the sense of Hilbert dimension.

Two pre-HS X and Y are called isomorphic if there exists a bijective mapping 7 : X — Y,
which preserves both the linear structure (i. e. is linear) and the scalar product, i. e.

(im1|im2)y = (;r1|m2)X Vei,29 € X.

Theorem on isomorphism of HSs. Two HSs are isomorphic iff they have one and the same
Hilbert dimension.

<

(0
1) Example on p. 102;
2) characterizations of Hilbert basises.
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Io The necessity is obvious, since by an isomorphism a Hilbert basis is transformed into a Hilbert
basises.
2 The sufficiency is an immediate corollary of the following two facts:

1. a HS with a Hilbert basis {eq},¢ 4 is isomorphic to I5(A);
2. if A and B have one and the same cardinality then I5(.4) and I5(B) are isomorphic.

Let us prove the first fact (the second one is obvious):
P Let HS X has a Hilbert basis {eq},c4- By (viz. by the Parseval equality) the mapping

1T —> {Ca}aeA’ Co = (‘J}|6a),
is an isometry of X into Iy(A): |iz|*> = 3. ¢2 = |«|”. Hence i is injective and its image i(X) is
a closed subspace in [5(.A). But i(X) conatzeiﬁls all images
ileq) =00, a €A,

which form a Hilbert basis of {5(.4) by 0°1), so that by 0°2) (part d)) a closed subspace, containing
them, must coincide with the whole /5(A). Thus i is also surjective.

4 At last the fact that ¢ preserves scalar product, follows from the fact that i is iso-
metry, since a scalar product may be reconstructed on the basis of the associated norm

(2(2ly) = lo +ul” = oI’ - 11 . &

Remark. Thus /3(A) may be regarded as an ”arithmetic realization” of all ”abstract” HS which
have the Hilbert dimension equal card.A.

4.3.3 The separable case; the orthogonalization procedure

Here we consider an important special case of separable (pre-)HS.
Theorem on countable Hilbert dimension. A HS is separable iff it has the countable Hilbert
dimension.

<1 This was in fact proved in Part 3° of the proof of the theorem of existence and equicardinality
of Hilbert basises. >

Corollary. All the separable HS are isomorphic (to l3).

In another words, l5 is the ”arithmetic realization” of all separable HS.

The separable case is distinguished by the fact, that the existence of a Hilbert basis may be
proved without the assumption on completeness:
Theorem on orthogonalization. Let X be a separable Hausdorfl pre-HS. Then there exists
a countable Hilbert basis in X. And what 1s more, there exists a countable ONS in X which satisfies
all the conditions a)-d) from the theorem on characterizations of Hilbert basises.

This ONS may be constructed by means of the orthogonalization procedure, described in the
proof below.

Remark. The condition that a pre-HS is Hausdorff, is equivalent to condition ) from the
definition of a pre-HS.

< @
1) The following fact of the theory of metric spaces: If a set is dense in a metric space X, then
this set is dense also in the completion of X ;
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2) lemma on finite ONS;

3) characterizations of Hilbert basises in HS.
I Orthogonalization procedure. Let X be a Hausdorff pre-HS and {z,} be any countable linearly
independent family in X. Put

—_— pp— 91

= €1 =
y1 1 . 1 Toil’

— 0_2 o — Y2
Y2 '= T2 — pPrp, T2 = T2 — \Tz2|€1 )€1, €2 '= Tyl

0°2) n
— Py - e Yni1
Yn+1l ‘= Tnt1l — P, Tntl = Tn4l — Z <1n+1| €k )eka Ent1 1= ||yn11||’
k=1

E; :=lin{e1} = lin{z,},
Es :=lin{eq, ea} = lin{zq, 22},

Eny1:=lin{e1,...,enqy1} =lin{zy, ..., zpqp1}

This algorithm is called the orthogonal procedure.
By the construction y,41 € EX Vn, so {e,} is an ONS in X. It is clear that

lin{ey,eq,...} =lin{zy, zy,.. .}

€n+1 T4l

2 Let {z,} be a countable dense family in X. Delete successively from {z,} each element which
is a linear combination of the preceding ones. It is clear that the obtained family {y,} will be
linearly independent and fundamental. Apply to {y,} the orthogonalization procedure. We claim
that the resulting ONS {e,} is our desired one.

Indeed, since lin{ey,ey,...} = lin{y1,ya, ...}, the family {e,} will be also fundamental, so the
condition d) is fulfilled.
3 In order to prove that the rest conditions are fulfilled, we consider the completion X of X in
the metric generated by the norm (recall that X supposed to be Hausdorff). Tt is clear that both
linear structure and the scalar product may be extended onto X in a natural way (”by continuity”)
and that the resulting pre-HS is a HS.
4% By 0°1) the ONS {e, } remains fundamental in X. Therefore by 0°3) it satisfies the three rest
conditions a)—c) in X and hence, evidently, in X. >

1
Example. In the pre-HS C3([0,1]) (with the scalar product [ zydt) the functions
0

1, \/560827#, ﬁsin?ﬂt, \/560547#, V2sin 4mt, . ..
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form a Hilbert basis.

This follows (verify!) from 1) the theorem on uniform approximation of continuous functions
on [0, 1], satisfying the condition z(0) = z(1), by the trigonometric polynomials, and 2) the fact
that any continuous function on [0, 1] may be approximated in C3([0,1]) by functions satisfying
the mentioned condition:

1

_j:
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