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Chapter 1

Introduction

1.1 A rickety pillar of physics

The apparent conceptual incompatibility of general relativity and quantum
theory represents one of the most important challenges for contemporary
theoretical physics. Many leading experts seem to agree that it’s resolution
will require a severe modification of the fundamental principles underlying
these theories.

Most importantly, both theories do assume that energy (matter) can,
in principle, be localized in an arbitrarily small region of spacetime. How-
ever all the prominent approaches to quantum gravity, in particular String
theory and Loop Quantum Gravity, find that this is impossible within their
model. Moreover several heuristic arguments indicate that one should indeed
expect that a consistent theory of the interaction of the gravitational field
with quantum fields will be nonlocal. However, none of these arguments is
mathematically rigorous nor is it completely clear whether the assumptions
they make about the sought-for theory of quantum gravity are realistic. Even
though they appear very natural from our present understanding of the world:
The real theory of quantum gravity might not.

On the one hand, quantum theory and general relativity are both verified
experimentally to an impressive accuracy. Thus, if we believe that the prin-
ciple of locality is violated at some energy-scale (or rather at sufficiently high
energy densities), in other words if locality is not an indispensable funda-
mental principle, then it should be possible to formulate alternative theories
that do not presuppose locality, but nevertheless are in accordance with all
experimental facts.

Indeed, it is one of the aims of A. Connes’ Noncommutative Geometry
to generalize Einsteins theory of general relativity to noncommutative space-
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times, i.e. spacetimes on which matter cannot be localized in arbitrarily
small regions.

Likewise, quantum theories on noncommutative spacetimes have also
been a subject of intense research over the last decade. Contrary to the
original belief it turned out that certain theoretical arguments that such the-
ories could not be consistent (for instance that they could not be unitary or
renormalizable) are not justified. Yet there is as yet no model that is realistic
enough to be confronted with experiment.

But what is actually known experimentally about locality ? Is there any
direct consequence of locality that could be tested experimentally and used
to rule out nonlocal theories in a model-independent way (i.e. without having
to formulate a concrete model first)? Or is even the converse true: Do the
experimental findings appear much more natural in such nonlocal theories ?
In fact, there are many indications for the latter. We shall mention some of
them later.

1.2 About these Lecture notes

In view of such questions, it seems to me that it is certainly worthwhile to
present the conceptual and mathematical foundations of general relativity
and quantum theory in a way that makes the role played by the principle of
locality as explicit as possible. However, to the best of my knowledge none
of the many excellent textbooks on these subjects considers this aspect. The
following notes of a course that I have given for students of mathematics
at the university of Opava attempts to fill this gap for the case of quantum
mechanics. At least as far as it had been possible in the given time, which
unfortunately is not very far. In particular only very few of the basic experi-
ments and mathematical tools of quantum mechanics will be described, and
in fact very briefly. Excellent introductions to these issues can be found in
many textbooks. So there would have been no point to write another book
on them here. Yet as I necessarily had to describe the conceptual foundations
of quantum physics in much greater detail and much more carefully than can
usually be done in a regular course, these notes could well serve as a sup-
plement to the more conventional textbooks or a regular course in quantum
mechanics. Yet, as these notes take a rather different vantage point, I hope
that some readers may find them inspiring. More importantly I hope that
they can help them to realize that some statements in many textbooks a
bot the interpretation and experimental verification are not as clear as they
are usually sold to be. Even more importantly, still, I intended to point out
that in view of recent experimental and theoretical progress many statements
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about the interpretation and experimental verification of quantum mechanics
are not as unclear as they are sold to be.

The lecture started with some introduction to mathematical prerequi-
sites: C∗-algebras, unbounded operators in Hilbert spaces and some basic
differential geometry. Accordingly these notes start with a brief outline of
the mathematical structures that are used in the later chapters. However,
as all these topics are well covered in the literature, I shall be very sketchy
here. In the course itself I tried to present the proofs of the stated theorems
in full detail, while here they are usually omitted. Only when I felt that
some details of the proof are important to understand the concepts that are
essential for the remainder of the notes, I have indicated the respective part
of the proof and sketched the part I did not cover. Exceptions are also made
if the proof is less than half a page or if I was not aware of a good reference
where the proof is stated.
Thus I recommend readers familiar with the topics covered in the first chap-
ter to simply skip it. Those readers, who do not feel too comfortable with
those subjects, might get a first impression, and a rather broad overview of
them. But no more. Thus, some excellent and very comprehensive textbooks
on these topics that are listed in the bibliography and recommended for fur-
ther reading.

We then carefully analyzed which operation on the set of observables and
the states of a physical system can safely be assumed. For instance, given two
observables, position and velocity of a particle say, their sum can in general
only be measured (if at all) by an experimental setup that is completely
different from the two apparatuses used to measure each of them separately.
It is then well conceivable that the result of a measurement of the sum of
the observables will not be the sum of the results of measurements of each of
the observables (in particular as any measurement has some inaccuracy and
does in general change the state of the system). In fact, as Bell pointed out,
in a hidden variable theory this linearity of states must fail. If this linearity
holds, the system can always be described via operators (the observables) on
some Hilbert space (whose elements represent the states).

Going on with our analysis we then find that the failure of classical me-
chanics to correctly describe certain experiments means that either there is
an uncertainty relation for the simultaneous measurement of momentum and
position, or the theory must contain hidden variables, and thus cannot be
described by operators on a Hilbert space. The latter possibility is then
seemingly ruled out by the experiments proposed by J.Bell and carried out
later (by A.Aspect and others). However as we are going to see this is only
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true if one additionally assumes that the hidden variable theory is a local
theory. Following Bell we shall explicitly give a nonlocal hidden variable
theory that does correctly describe the Aspect experiment. Thus, if do not
want to exclude the possibility of nonlocality, then the experimental findings
in the non relativistic regime do not seem to exclude a deterministic theory.
Quite to the contrary.

We therefore also briefly considered relativistic quantum mechanics, only
to find that a one particle theory would not have an operationally well de-
fined interpretation (at least if one keeps the assumption of locality). Thus
one would necessarily have to consider quantum field theory. Unfortunately
neither time nor my abilities did allow to enter a discussion of locality in
quantum field theory. Thus, admittedly, these notes are more than unsatis-
factory as concerns the questions related to locality. Yet I still hope that they
may serve as food for thought. Some readersmight e.g. not be aware of the
posibility to derive the Schrödinger-equation from the uncertainty-relation,
which implies that the only interactions compatible with these relations are
gravitational and Yang-Mills interactions, i.e. precisely those that we do find
in nature, but no others. In fact, what might render these notes special is
that they necessarily give a rather broad overview of physics, including the
basic equations, like the Yang-Mills, Einstein-, Schr”odinger- or the Dirac-
equation. Furthermore they point out in how far these equations rely on the
fundamental principles.

6



Chapter 2

Mathematical Preliminaries

Most physical systems have a natural description on some Hilbert space H
where observables are represented as selfadjoint operators. This is particu-
larly true for all quantum theories and all models of (quantum) statistical
physics. Moreover, recently A.Connes’ has shown that also Einstein’s The-
ory of General Relativity can be (almost) equivalently reformulated in this
language.
Thus, as this formalism seems to be rather universally applicable, it is cer-
tainly worthwhile to gain some familiarity with its basic concepts, definitions
and results. In the following chapter we shall therefore give a broad overview
of the most elementary aspects of operator theory.

2.1 Bounded Operators on Hilbert Spaces

In the sequel H will always denote a complex Hilbert space whose inner
product shall be denoted by 〈·, ·〉. We shall denote the norm of a vector
ξ ∈ H by ‖ξ‖ =

√
〈ξ, ξ〉.

2.1.1 The Algebra L(H)

An operator (i.e. a linear transformation) A will be called bounded if there
is a C ≥ 0 such that for all ξ ∈ H one has ‖Aξ‖ ≤ C‖ξ‖. The operator
norm of a bounded operator A is by definition the smallest C with this
property, i.e.

‖A‖ := sup
‖ξ‖=1

‖Aξ‖.
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One may check that this indeed defines a norm, i.e. for all bounded operators
A,B and λ ∈ C one has

‖A+B‖ ≤ ‖A‖+‖B‖, ‖λA‖ = |λ|‖A‖, ‖A‖ = 0 ⇔ A = 0.

Moreover it is
‖AB‖ ≤ ‖A‖‖B‖.

An operator is continuous if and only if it is bounded. We shall denote the
set of all bounded operators on H by L(H).
In view of the triangle inequality and homogeneity of the norm, L(H) is
obviously a vector space. Moreover it is also an algebra, as the product of two
bounded operators is always bounded by the above stated submultiplicativity
of the operator norm. Even more so it is also complete:
Let us call a sequence An of bounded operators a Cauchy sequence with
respect to the norm topology if ‖An − Am‖ tends to zero as n,m → ∞ . It
then easily follows that every such Cauchy sequence converges in L(H).
Furthermore each A ∈ L(H) has an adjoint in L(H), i.e. there exists a
unique operator A∗ ∈ L(H) such that

〈η,Aξ〉 = 〈A∗η, ξ〉 ∀η, ξ ∈ H.

Some obvious properties of taking adjoints include

(λA+ µB)∗ = λ̄A∗ + µ̄B∗, (A∗)∗ = A (AB)∗ = B∗A∗.

One also easily checks that ‖A∗‖ = ‖A‖.
Finally it follows immediately from the definition of the adjoint of A that its
kernel equals the orthogonal complement of the image of A, i.e.

A∗ξ = 0 ⇔ 〈ξ, Aη〉 ∀η ∈ H.

Note that while the kernel of a bounded operator A is always closed, its
image need not be.
In view of the above properties L(H) is a Banach-∗-algebra. In fact it
is more, namely a C∗-algebra, i.e. one also has ‖A∗A‖ = ‖A‖2 for all
A ∈ L(H):

‖A‖2 = sup
‖ξ‖=1

〈Aξ,Aξ〉 = sup
‖ξ‖=1

〈ξ, A∗Aξ〉 ≤ sup
‖ξ‖=1

(‖ξ‖‖A∗Aξ‖) = ‖A∗A‖,

while, on the other hand, from the above properties it also holds that

‖A∗A‖ ≤ ‖A‖‖A∗‖ = ‖A‖2.
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L(H) is also unital, i.e. the identity operator 1 on H is a bounded operator.

Definition:
We shall call a ∗-subalgebra of L(H) that is complete with respect to the
norm topology a concrete C∗-algebra.

The definition and properties of abstract C∗-algebras will be stated later.

Definition:
A ∈ L(H) will be called

• normal if A∗A = AA∗

• selfadjoint if A∗ = A

• projection if A = A∗ = A2

• unitary if A∗A = AA∗ = 1

• isometry if A∗A = 1

If P is a projection, we call the dimension of PH the rank of P . (If PH
is infinite dimensional, we say that P is of infinite rank.)

Examples:

1. Let (X,µ) be a measure space, andH = L2(X,µ). Then every bounded
measurable function f defines a bounded operator f̂ on H by setting
f̂ψ(x) = f(x)ψ(x) (which however only makes sense almost every-
where.) This operator is selfadjoint if and only if f is real. It is unitary
if and only if |f(x)| = 1 almost everywhere.

2. Let now H be any separable Hilbert space and let {ψk}k=1,2,... denote
a complete orthonormal set. Let the operators Pn be defined by

Pn

(∑
k

αkψk

)
=

n∑
k=1

αkψk.

Then the Pn are projectors.
Moreover define Tk by

Tkψn = ψk+n.

Then T ∗kψn = ψn−k if n ≥ k but Tkψn = 0 otherwise. Hence the Tk are
isometries, but not unitaries.
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3. There is a one-to-one correspondence between projections and closed
subspace of H: If P is a projection, then the space HP = PH is
necessarily closed (as it is the orthogonal complement of the kernel of
P .)
Vice versa, given a closed subspace V of H, every vector ξ ∈ H can
be uniquely decomposed as ξ = η + ψ where η ∈ V and ψ is in the
orthogonal complement of V . The linear map defined via PVξ = η is
then a projection.

2.1.2 The Weak and Strong Operator Topologies

There are other interesting Topologies on L(H):

So far we have defined the norm topology on L(H). To recall, we say
that the sequence An ∈ L(H) converges in norm to A ∈ L(H) if

‖An − A‖ → 0.

This topology is also often called the topology of uniform convergence.
Next, we shall say that the sequence AnL(H) converges in the strong topol-
ogy (respectively the topology of pointwise convergence) to A ∈ L(H) if for
all ξ ∈ H one has

‖(An − A)ξ‖ → 0

Finally we shall say the sequence converges in the weak topology if for all
ξ ∈ H and all η ∈ H one has

〈(An − A)ξ, η〉 → 0.

Obviously, norm convergence implies strong convergence which in turn
implies weak convergence. The converse is not true:
Consider example 2 above. Then the sequence Pn converges strongly to the
unit operator 1, because the component of each fixed vector ψ in the orthog-
onal complement of PnH tends to zero. However it does not converge in the
norm topology because ‖Pn − Pm‖ = 1 whenever n 6= m.
The sequence Tk converges weakly to zero, but not strongly.

L(H) is then complete with respect to any of these topologies.

2.1.3 The Spectrum of bounded operators

Clearly, an element of L(H) need not be invertible, and if the inverse exists,
it need not be a bounded operator. Now suppose that, given a bounded
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operator A, λ ∈ C is chosen such that ‖A‖ < |λ|. Then the von Neumann
series

(λ · 1− A)−1 =
1

λ

(
1 +

A

λ
+
A2

λ2
+ · · ·

)
will converge in norm and thus be bounded.

Definition:
Let A be a bounded operator. We call the set

r(a) := {λ ∈ C | (A− λ · 1) is invertible in L(H)}

the resolvent set of A.
Its complement

σ(A) = C \ r(A)

will be called the spectrum of A. The number

ρ(A) = sup{|λ | ∈ σ(A)}

is called the spectral radius of A.

Example: Consider example 1 above with X compact, and take e.g.
a fixed continuous function f on X, represented as a bounded multiplica-
tion operator f̂ on L2(X,µ). Then f̂ − λ is invertible if and only if there
does not exist x ∈ X such that f(x) = λ. Consequently σ(f̂) = f(X) and
ρ(f̂) = max

x∈X
|f(x)| = ‖f̂‖.

Elements of the spectrum of A can be viewed as generalized eigenvalues.
Indeed, if λ is an eigenvalue of A, i.e if there exists a ψλ ∈ H such that
Aψλ = λψλ the obviously λ ∈ σ(A). However the converse is not true. We
shall have to say more about the distinction of the spectrum and the eigen-
values of an operator in the section on unbounded operators.

Note hat the resolvent set of A is always open. In fact, if λ0 ∈ r(A) then
for any λ in the open ball |λ − λ0| < ‖(λ0 − A)−1‖−1 one checks that the
series ∑

m=0

(λ0 − λ)m(λ0 − A)−m−1

converges in norm to (λ − A), i.e. λ ∈ r(A). Thus σ(A) is closed. Since
from the discussion previous to the definition of ρ(A) ≤ ‖A‖, it is also
bounded. Finally it is also nonempty. Otherwise, if r(A) = C then the
function (λ−A)−1 would be holomorphic (in fact entire) and bounded on C.
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Thus it would vanish for all λ ∈ C, in contradiction to the existence of A−1

which is implied by 0 ∈ R(A). In conclusion:

Proposition:
For all A ∈ L(H) the spectrum σ(A) is a nonempty, compact subset of C.

Note that if λ is in the spectrum of A, because (λ−A)∗ = λ̄−A∗. Likewise:

Proposition:
Let A be bounded. Then

1. σ(A∗) = σ(A).

2. If A is invertible then σ(A−1) = (σ(A))−1.

3. If A is an isometry then ρ(A) = 1.

4. If A is unitary then σ(A) ⊂ S1 = {λ ∈ C | |λ| = 1}.

5. If A is selfadjoint then σ(A) ⊂ [−‖A‖, ‖A‖] and moreover σ(A2) ⊂
[0, ‖A‖2]..

6. If P (z) is any complex polynomial, then

σ(P (A)) = P (σ(A)) = {P (λ) |λ ∈ σ(A)}.

2.1.4 Spectral decomposition of selfadjoint and uni-
tary bounded operators

Definition:
We say that a selfadjoint element A ∈ L(H) is positive, A ≥ 0 if 〈ξ, Aξ〉 ≥ 0
for all ξ ∈ H.

Note that if A ∈ L(H) then A∗A is positive. In particular, if A is selfad-
joint then A2 is positive.

Lemma:
Every positive element A ∈ L(H) has a positive square root in L(H).

We shall later see a quick and elegant argument for this fact. For the
convenience of the reader we note here that a direct construction is also pos-
sible (though less elegant):
Consider the following sequence of functions on [0, 1] defined recursively via :
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f0(t) = 0 and fn+1(t) = fn(t)+ t
2
− (fn(t))2

2
. one then proves that this sequence

converges uniformly to
√
t on [0, 1].

Suppose now ‖A‖ ≤ 1 (which can always be achieved by multiplying A with
a positive real number). It is then possible to prove that fn(A) (as the fn are
polynomials this definition needs no explanation) is an increasing sequence
of bounded operators that converges in norm. Obviously the limit is then√
A.

Theorem
Let A ∈ L(H) be selfadjoint. Then there exists a projection valued measure
dP (λ) on the real line such that

A =

∞∫
−∞

λ dP (λ).

Here the integral is to be understood in the sense that the Riemann sum
approximations to this integral converge in the norm topology.

A sketch of the proof:
A is selfadjoint and therefore A2 is positive. Hence |A| :=

√
A2 is well defined.

As the kernel of any bounded operator is closed, the orthogonal projection
P+ on the kernel of A − |A| is uniquely and well defined. Intuitively it can
be viewed as the projection on the space on which A is “positive”. More
precisely A+ = AP+ is positive, i.e. A+ ≥ 0. Likewise, considering for α ∈ R
the operator A− α we get projections Pα such that (A− α)Pα ≥ 0. For any
Borel-set ∆ = [α, β) one may therefore introduce the projections

P (∆) := Pα − Pβ.

(They are indeed projections, since PαPβ = PβPα by construction.) One
immediately checks the following properties

1. αP (∆) ≤ AP (∆) ≤ βP (∆).

2. Since σ(A) ⊂ [−‖A‖, ‖A‖] it follows that P (∆) = 0 if ∆ ∩ σ(A) = ∅.

3. If ∆1 ∩∆2 = ∅ then the corresponding projections are orthogonal, i.e.
P (∆1)P (∆2) = P (∆2)P (∆1) = 0.

4. Accordingly, if ∪i∆i = σ(A) and the ∆i are mutually disjoint, ∆i∩∆j =
∅ for all i 6= j, then ∑

i

P (∆i) = 1.
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The projections P (∆) are called the spectral projections of A.
Let now σ(A) = ∪Nk=1∆N

k be a decomposition of σ(A) in N disjoint Borel
subsets ∆N

k =
[
αNk , β

N
k

)
. Let δN = sup

k
|βNk − αNk |. We shall assume that

δN → 0 as N → ∞. Moreover let νNk ∈ ∆N
k be arbitrarily chosen. It then

follows immediately from the above properties of the P (∆N
k ) that

−δN ≤ A−
N∑
k=1

νkP (∆k) ≤ δN

(Just subtract for each k the term νkP (∆k) and sum over k.) Thus for

N → ∞ the sequence AN :=
N∑
k=1

νkP (∆k) converges in norm to A, and this

defines the above integral.

Now, let A be any normal operator. Then, writing A = S+iT , where S, T
are selfadjoint, it follows immediately from AA∗ = A∗A that ST = TS and
this continues to hold for the spectral projections PT (∆), PS(∆̃) for T and
S respectively. It is then possible to construct a spectral decomposition also
for normal operators along similar lines as above. Finally, since unitary oper-
ators are normal, and since for U unitary one has σ(U) ⊂ S1 = {eiλ |λ ∈ R}
one infers

Theorem:
Let U be any unitary operator. Then there exists a projection valued spectral
measure dP (λ) on [0, 2π) such that

U =

∫
eiλ dP (λ).

Finally the spectral decomposition also allows to define bounded (and in
fact, by continuity also some unbounded) functions of a normal operator.
For simplicity we shall state the theorem only for selfadjoint operators. The
general statement will be obvious.

Theorem (functional calculus):
Let A be a bounded and selfadjoint operator. If f is a bounded Borel function
on σ(A) then the following uniquely defines a bounded operator:

f(A) :=

∫
f(λ) dP (λ).

1. f(A) is selfadjoint if and only if f is real-valued
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2. f(A) is a projection if and only if f only takes the values 0 or 1, i.e. if
f is a characteristic function,

3. f(A) is unitary if and only if |f(λ)| = 1 for all λ ∈ σ(A).

2.1.5 Commutants and von Neumann algebras

Let A,B be two bounded operators. We call the bounded operator

[A,B] := AB −BA

the commutator of A and B. Two bounded operators are said to commute
with each other, if their commutator vanishes. Thus, a subalgebra of L(H)
is commutative if and only if all its elements commute with one another.

Proposition:
Two normal bounded operators commute if and only if all their respective
spectral projections do commute.

Definition:
Let S ⊂ L(H) be a subalgebra. We call the subspace

S ′ := {T ∈ L(H) | [T, S] = 0 ∀S ∈ S}

the commutant of S. Likewise the subspace S ′′ = (S ′)′ is called the bi-
commutant of S.

Obviously S ⊂ S ′′ and S is commutative if and only if S ⊂ S ′. Moreover
S1 ⊂ S2 then S ′2 ⊂ S ′1. Furthermore 1 ∈ S ′ and the commutant is always
weakly closed (by continuity of the commutator of bounded operators with
respect to the weak topology).

Let A be a concrete C∗-algebra. We say that A acts irreducibly on H if
there is no proper subspace of H that is invariant under the action of A. In
other words, any ψ ∈ H is a cyclic vector for A, i.e. the set Aψ is a dense
subset of H.

Proposition:
If a concrete C∗-algebra A acts irreducibly then A′ = C · 1

Proof:
If A acts not irreducibly, i.e. if there exists a proper invariant subspace, then
the A commutes with the orthogonal projection on that subspace. Hence the
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commutant not only consists of multiples of the identity.
Conversely, if the commutant contains a nontrivial element T 6= λ · 1, then
also T ∗ commutes with A (by using the definition of the adjoint). Thus we
may assume that T is selfadjoint (or take e.g. T +T ∗). But then the spectral
projections of T will also commute with A and there would exist a proper
invariant subspace (unless C + C∗ is a multiple of the identity).

We shall say that a subalgebra S of L(H) acts nondegenerately on H
if Sξ = 0 for all S ∈ S implies ξ = 0. If 1 ∈ S then S acts obviously
nondegenerately.

Theorem (von Neumann bicommutant theorem):
Let S ⊂ L(H) be a ∗-subalgebra that acts nondegenerately on H. Then S
is strongly dense in S ′′.

A sketch of the proof:
We only show that given any ξ ∈ H and S ′′ ∈ S ′′ there exists a sequence
Sn ∈ S so that Snξ converges to S ′′ξ in norm. To see this, on considers the
strong closure of the image of ξ under S, i.e the closed subspace

Ξ = {Sξ |S ∈ S}.

The orthogonal projector PΞ on this space then necessarily commutes with
S. (As S leaves Ξ and its orthogonal complement invariant). Therefor we
have for all S ∈ S:

S(1− PΞ)ξ = (1− PΞ)Sξ = 0

since Sξ ∈ Ξ. But then it follows from the nondegeneracy of the action of S
that (1− PΞ)ξ = 0, i.e ξ ∈ Ξ.
On the other hand PΞ also commutes with the bicommutant of S and hence
with S ′′. Thus S ′′ leaves Ξ invariant, and so S ′′ξ ∈ Ξ and by definition of Ξ
there must exist the required sequence Sn. One then continues to prove that
there must also exist a sequence Sn in S such that Snφ→ S ′′φ for all φ ∈ H
(which is much less obvious). The full proof can be found in the references
given in the bibliography.

Thus we have that S ′ = S ′′′. We shall call a ∗-subalgebra M of L(H)
a von Neumann algebra if M = M′′. In other words a von Neumann
algebra is a ∗-algebra of bounded operators that is weakly closed. Note that
it follows that 1 ∈ M and that any von Neumann algebra is also a concrete
C∗-algebra. But the converse is not true.
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We shall say that a von Neumann algebra M separates the elements of
H if from 〈ξ,mξ〉 = 〈η,mη〉 for all m ∈M it follows that ξ = η.

Lemma:
The algebra L(H) separates the elements of H.

Lemma:
Let H be separable. There exists a commutative von Neumann algebra that
separates the elements of H.

As for the proof, one may take any orthonormal basis ψn of H. Then
the projections Pnψk = δnkψn are mutually commuting and thus generate a
commutative von Neumann-algebra.

Lemma:
If a von Neumann algebra M separates the elements of H then there exists
a commutative von Neumann algebra N ⊂ M that separates the elements
of H.

This follows from the spectral decomposition and functional calculus, as
for any normal element in M also all its spectral projections belong to M
(apply characteristic functions to the element). From the separating property
one then concludes that there do exist sufficiently many mutually commuting
spectral projections in M.

2.2 Abstract C∗-algebras

As we shall see later, the operational structure of observables for physical
systems naturally leads to consider C∗-algebras. It is only because every
C∗-algebra has a faithful representation on a Hilbert space that the latter
structure plays such a prominent role in physics. In this chapter we shall
briefly describe the way from abstract to concrete C∗-algebras.

Definition: A (complex) Banach-algebra A is an associative algebra
over C which is also a normed space with norm ‖ · ‖ : A → R such that

• ‖a‖ ≥ 0 for all a ∈ A,

• ‖λa‖ = |λ|‖a‖ for all a ∈ A and all λ ∈ C,

• ‖ab‖ ≤ ‖a‖‖b‖ for all a, b ∈ A.
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• The normed vector space (A, ‖ · ‖) is complete, i.e every Cauchy-
sequence with respect to ‖ · ‖ converges in A.

A Banach-∗-algebra is a Banach-algebra that is equipped with an involution
∗ : A → A, i.e. a map such that for all a, b ∈ A and all λ ∈ C:

• (a+ b)∗ = a∗ + b∗,

• (λa)∗ = λ̄a∗,

• (ab)∗ = b∗a∗,

• (a∗)∗ = a.

A Banach-∗-algebra A is called unital if there exists a (necessarily unique)
element 1 ∈ A such that 1a = a1 = a for all a ∈ A.

Definition:
A C∗-algebra A is a Banach-∗-algebra such that for all a ∈ A it holds that
(C∗-condition)

‖a∗a‖ = ‖a‖2.

Remark:
Note that the C∗-condition implies

‖a∗‖ = ‖a‖

and thus that also
‖aa∗‖ = ‖a‖2.

Indeed from ‖a‖2 = ‖a∗a‖ ≤ ‖a∗‖‖a‖ it follows that ‖a‖ ≤ ‖a∗‖. Applying
the same reasoning to ‖a∗‖2 one gets the assertion.

Examples:

1. Obviously any concrete C∗-algebra ( and thus in particular L(H) is a
C∗-algebra. In fact, as we shall see, any C∗-algebra can be viewed as a
concrete C∗-algebra. However, there are some advantages to consider
abstract C∗-algebras. In particular as concerns the definition of states.

2. Let X be a (locally compact) topological Hausdorff space. We shall
say that a continuous function f : X → C “vanishes at infinity” if for
all ε > 0 there exists a compact set Kε such that |f(x)| < ε for all
x ∈ X \Kε.
Consider the algebra C0(X) of all continuous functions which vanish at
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infinity with the involution given by complex conjugation, i.e. for all
f ∈ C0(X) and all x ∈ X we have that f ∗(x) = f(x). Moreover set for
all f ∈ C0(X):

‖f‖ := sup
x∈X
|f(x)|.

Then (C0(X),∗ , ‖ · ‖) is a C∗-algebra, as is easily checked.
Note that this C∗-algebra is unital if and only if X is compact. (In the
latter case C0(X) is just the algebra of all continuous functions on X.)
Most importantly this C∗-algebra, usually simply denoted by C0(X),
is commutative. In fact, as we shall prove in the next section, every
commutative C∗-algebra is of this form. This then also completely
justifies the shorthand notation C(X).

Just as for elements of L(H) one may define selfadjoint (a = a∗), nor-
mal (a∗a = aa∗) and unitary (u∗ = u−1) elements, projections (p∗ = p =
p2) and isometries (v∗v = 1) for (unital) C∗-algebras.
Likewise one defines the resolvent set of an element a of a C∗-algebra A as
the set rA(a) of complex numbers z for which a − z is invertible in A. The
spectrum of a is then the closed set σA(a) = C\rA(a). Finally the supremum
of |λ| over all λ ∈ σA(a) is called the spectral radius ρA(a) of a.

Theorem (Spectral radius formula):
Let A be a C∗-algebra and a ∈ A. Then σA(a) is a nonempty compact set
and

ρA(a) = lim
n→∞

‖an‖
1
n ≤ ‖a‖.

Sketch of the Proof:
Consider the von Neumann series

(1− za)−1 =
∑
k

(za)k.

One can show – by first using the Banach-Steinhaus-Theorem (i.e. consider-
ing ρ((1− za)−1) for all linear functionals ρ on A) and then the Hadamard-
Cauchy-Theorem – that the radius of convergence of this sequence is 1

lim
n
‖an‖

1
n

.

Thus for z 6= 0 the resolvent (z − a)−1 = 1
z
(1 − 1

z
a) will exist if and only if

z ≤ lim
n
‖an‖ 1

n , which proves the asserted formula, provided the limit exists.

We repeat Strocchis argument to prove the latter:
Let r = inf‖an‖ 1

n . Thus r ≤ lim inf‖an‖ 1
n ≤ ‖a‖ < ∞ and we only need to

show that r ≥ lim sup‖an‖ 1
n .

Now let ε > 0 and choose m ∈ N such that ‖am‖ 1
m < r + ε. (If no such m
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exists the assertion already follows.) Then by decomposing any n ∈ N as
n = knm+ ln where kn, ln ∈ N and 0 < ln < m we have

‖an‖
1
n = ‖aknmaln‖

1
n ≤ ‖am‖

kn
n ‖a‖

ln
n ≤ (r + ε)

mkn
n ‖a‖

ln
n .

Hence the assertion follows as ε has been arbitrary and ln
n
→ 0 as n → ∞,

while mkn
n
→ 1 and thus lim sup‖an‖ 1

n ≥ r.
The proof of the equality for normal elements essentially uses the fact that
for normal elements ‖a2k‖ = ‖a‖2k , as follows from

‖a2‖2 = ‖(a∗)2(a)2‖ = ‖(a∗a)∗(a∗a)‖ = ‖a∗a‖2 = ‖a‖4.

The remaining statements of the proposition are proven as in the case of
concrete C∗-algebras.

Theorem (Gelfand-Mazur):
If all elements, except 0, of a C∗-algebra A are invertible then A ∼= C.

As for the proof one notes that for all 0 6= λ ∈ σ(a) one would have that
λ − a is not invertible and thus it vanishes, i.e. a = λ1. Otherwise, if the
spectrum of a only contains 0, then ‖a‖ = 0 and thus a = 0.

In the following, a selfadjoint element a ∈ A will be called positive if
there exists b ∈ A such that a = b2. A linear functional ω on A will be
called positive if ω(a) ≥ 0 for all positive elements a ∈ A. It will be called
normalized if ω(1) = 1 (in the case that A is unital).

Definition:
A positive, normalized linear functional on a C∗-algebra on A is called a
state on A.

The set of states is then automatically convex, as with ω1, ω2 also the
convex combination ω = tω1 + (1− t)ω2 is a state for all t ∈ [0, 1]. A state ω
which can not be written in this way for t ∈ (0, 1) and some ω1, ω2 is called
a pure state.

Example:
Let us consider a concrete C∗-algebra A ⊆ L(H). Then any ξ ∈ H with
‖ξ‖ = 1 defines a state ωξ on A via

ωξ(a) = 〈ξ, aξ〉 ∀a ∈ A.
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We shall later see that this state is pure if and only if a acts irreducibly on H.
Moreover let ξn be any orthonormal basis of H and let wn be a sequence of
nonnegative real numbers such that

∑
n

wn = 1. Then the operator ρ defined

via
ρψ =

∑
n

wn〈ξn, ψ〉ξn

is obviously selfadjoint, positive,i.e. ρ ≥ 0 and trρ =
∑
n

wn = 1. Such an

operator is called a density matrix. Every density matrix defines a state
ωρ on A as

ωρ(a) = tr(ρa) ∀a ∈ A.

As they are linear functionals, there is a norm on the set of states as

‖ω‖ = sup
‖a‖=1

|ω(a)|.

Obviously ‖ω‖ ≥ ω(1) = 1 for all states ω. We shall later see that in fact
‖ω‖ = 1.

Definition:
A left (right) ideal of an algebra A is a subspace I such that ai ∈ I (respec-
tively ia ∈ I) for all a ∈ A and all i ∈ I. An ideal is called two-sided if it
is a left and a right ideal. A proper ideal of A is an ideal that is not equal
to A, i.e. I 6= A. A proper ideal is called maximal if it is not contained in
any other proper ideal.

Not that if A is unital then 1 /∈ I if and only if I is proper. Moreover if
A is a Banach-algebra one easily sees that the closure of a proper ideal is a
proper ideal:
Otherwise one would have that 1 ∈ Ī. However that would imply that there
exists x ∈ I so that ‖a − x‖ < 1 and from this is follows (via the von Neu-
mann series) that x = 1− (1− x) is invertible in A. But then 1 = x−1x ∈ I
in contradiction to I being proper.
Thus maximal ideals are closed. On the other hand, by using Zorn’s Lemma,
one can also show that each proper ideal is contained in a maximal proper
ideal.

If I is a proper ideal, then the vector space A/I is an algebra by setting
[a][b] = [ab] which is well-defined if I is an ideal.

Example: Consider C0(X) and let Y ⊂ X be closed. Then the subspace
of C0(X) of all functions that vanish on X is an ideal, and this ideal is

21



obviously proper unless X = Y . Moreover it is maximal if and only if
Y = {y} is a single point y ∈ X.

2.2.1 Commutative C∗-algebras and the Gelfand-Naimark-
Theorem

An important tool for the study of abstract C∗-algebras whose value can not
be overestimated is the Gelfand-Naimark Theorem. We shall later see that
is also indispensable for the operational approach to quantum mechanics and
the interpretation of the latter. In brief it says that an abstract C∗-algebra is
commutative if and only if it is the algebra of continuous functions that van-
ish infinity on some topological Hausdorff space. Henceforth A will always
denote a commutative and unital C∗algebra. (The unital case is somewhat
easier to handle, though the statement is also true for nonunital algebras.)

Definition:
A multiplicative functional on A is a homomorphism x : A → C, i.e. a
C-linear functional on A such that for all a, b ∈ A one has x(ab) = x(a)x(b).
Hence in particular x(1) = 1. We shall denote the set of all multiplicative
functionals on A by Spec(A), respectively call it the Spectrum of A.

Note that multiplicative functionals will rarely exist for noncommutative
C∗-algebras. It is important to observe that multiplicative functionals are
states.

Proposition:
Let x be any multiplicative functional. Then

‖x‖ = 1

and hence x is continuous.

Sketch of the Proof:
Due to the multiplicativity ker(x) is a two-sided ∗-ideal in A and hence
A/ker(x) is a ∗-algebra. One may write x = x̃ ◦ π, where π is the nat-
ural homomorphism on A/ker(x), while x̃([a]) = x(a). Now, it obviously
follows from x̃([a]) = x̃([b]) that [a] = [b]. Hence there is an isomorphism
i : A/ker(x) → C that is explicitly given by i([a]) = x̃([a]). This implies
that ‖x̃‖ = 1 and hence that ‖x‖ ≤ ‖x̃‖‖π‖ ≤ 1. (For a projection π one has
‖π(a)‖ ≤ ‖a‖.) On the other hand we already know that ‖x‖ ≥ |x(1)| = 1.
Hence the claim follows.
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On the space of continuous linear functionals on A there are, besides the
one inherited from the norm, several interesting topologies. among them is
the weak-∗-topology, which is also called quite appropriately the topology of
pointwise convergence. The precise definition can be found in the references
on C∗-algebras, but is of no importance for what follows. Indeed, in the
examples we shall consider later, the physical interpretation will always give
a clear picture of the topology of the corresponding spaces.
The only important properties of the weak-∗-topology needed here are:

• it is weaker than the topology inherited by the norm.

• By the Banach-Alaoglu-Theorem the unit ball (of the space of contin-
uous linear functionals on a Banach-space and thus in particular A′) is
a compact Hausdorff space in the weak-∗ topology.

From the above proposition it is clear that Spec(A) is a subset of this
unit ball. Moreover this subset is closed, as the multiplicativity xn(ab) =
xn(a)xn(b) is obviously a preserved property if the limit n→∞ exists. Thus
we have the

Proposition:
In its relative weak-∗-topology, Spec(A) is a compact Hausdorff space.

Definition:
To any a ∈ A we assign the complex-valued function â on Spec(A) via

â(x) = x(a) ∀x ∈ Spec(A).

The map a 7→ â is called the Gelfand transformation.

Note that by definition of the weak-*-topology the Gelfand-transform â
of any a ∈ A is continuous.

Theorem:
For every a ∈ A it is

σA = {â(x) |x ∈ Spec(A)}.

Proof:
It is clear that for any a ∈ A and λ ∈ C one has that the Gelfand transform
of a − λ is â − λ and that σ(a − λ) = σ(a) − λ. Hence it is sufficient to
prove that: an element a ∈ A is invertible if and only if â is a non
vanishing function. This is proven as follows:
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“⇐”: If a is invertible there exist a−1 and since â(x) ˆa−1(x) = 1 it follows
that x̂ 6= 0 for all x ∈ Spec(A)..
Suppose now that a is not invertible. Then the two-sided ideal aA = {ab | b ∈
A} (remember thatA is commutative) is a proper ideal (as it does not contain
1). Hence aA is contained in a (closed) maximal proper ideal I. Consider
B = A/I. Since I is maximal this algebra B must be simple, i.e cannot
contain a proper ideal. Moreover it is commutative. Thus all elements b of B
are invertible (because the ideal bB = B contains 1). By the Gelfand-Mazur
Theorem we then have that B is isomorphic to C. Since a ∈ B we may
indeed define a natural isomorphism i : B → C by setting i([λa]) = λ. Then
I = ker(i) and i can be extended to an element x of Spec(A) as x(b) = i([b]).
But then â(x) = x(a) = 0 since a ∈ aA ⊆ I. Hence â vanishes at least in
one point in Spec(A).

Corollary:
The states on a (not necessarily commutative) C∗-algebra A separate the
elements of A.

Proof:
Any element a of A can be uniquely written as a = a1 + ia2 where a1, a2 are
selfadjoint and thus normal. Suppose now that a 6= b. Thus at least one of
the two selfadjoint operators ci = ai − bi (i = 1, 2) does not vanish. Now
any of the ci does generate a commutative C∗-algebra and by the Gelfand
transformation and the above Theorem, this algebra can be viewed as a sub-
algebra of C(Spec(A)). But the points of Spec(A) separate all the elements
of C(Spec(A)). Thus there exists a multiplicative functional xi on the sub-
algebras generated by each of the ci with the property that xi(ci) 6= 0. It is
easy to see that xi can be extended to a state on all of A by applying the
Hahn-Banach-Theorem.

Theorem (Gelfand-Naimark):
The Gelfand transformation is an isometric ∗-isomorphism of A onto C.

Proof:
It remains to prove that the Gelfand transformation is onto and isometric.
Let us first prove the latter assertion: The norm in C(X) (for any topological
space X) is given as ‖f‖∞ = sup

x∈X
|f(x)|. Hence, using the above theorem we

have for the Gelfand transform â f any a ∈ A:

‖â‖∞ = sup
x∈Spec(A)

|â(x)| = sup
λ∈σ(a)

|λ| = ρA(a) = ‖a‖.
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The last equality follows from the spectral radius formula because every ele-
ment of a commutative C∗-algebra is normal.
Next, we show that for all a ∈ A on has â∗ = â, by considering the expo-
nential series eita for selfadjoint a and t ∈ R (The existence of the expo-
nential series is easy to see.) Since by multiplicativity and linearity for all
x ∈ Spec(A) one has x(eita) = eit(â(x)) the unitarity of eita implies that â(x)
is real. Since every element of A can be written as a complex linear com-
bination of two selfadjoint elements the assertion follows. Thus the Gelfand
transform preserves the involution ∗.
Moreover, by definition the Gelfand transform separate the elements of Spec(A).
(Because two multiplicative functionals are only different if they differ on
some a ∈ A.) As the constant functions are in the image of the Gelfand
transformation, we may apply the Stone-Weierstrass-Theorem (all supposi-
tions thereof are met) which implies that the subset {â | a ∈ A} is dense in
C(Spec(A)). As it is also a closed subset, the statement of the Theorem
follows.

Corollary (Functional calculus):
Let a be a normal element of a (not necessarily commutative) C∗-algebra A.
Then any continuous function f(a, a∗) of a and a∗ defines an element of A,
and

σA(f(a, a∗)) = f̂(σA(a))

Now from this Corollary we obviously get that a = b2 for some b = b∗ ∈ A
if and only if σA(a) ⊆ [0, ‖a‖]. One may also show (using some easy algebra)
that the latter property is equivalent to the existence of c ∈ A such that
a = c∗c. In any case we have for such positive elements a that ‖a‖ − a ≥ 0.
Hence for every state ω by positivity of ω :

ω(a) ≤ ‖a‖ω(1)

But then it is not hard to prove that for all c ∈ A:

|ω(c)|2 ≤ ‖c‖2

by considering a = c∗c. Hence one gets:

Corollary: All states on a C∗-algebra are bounded.

2.2.2 The GNS-representation

Definition:
A representation of a C∗-algebra A is an (isometric) *-homomorphism
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π : A → L(H) for some Hilbert space H.
One calls a representation faithful if ker(π) = {0}.
A representation is irreducible if no proper subspace is invariant under the
action of π(A).
A cyclic representation is a representation that admits a cyclic vector
ψ ∈ H, i.e. π(A)ψ is dense in H.

Note that in an irreducible representation every vector is cyclic. However,
the existence of a cyclic vector does not imply that the representation is irre-
ducible, nor that all vectors are cyclic. (Consider for instance commutative
C∗-algebras.)

Theorem (Gelfand-Naimark-Segal):
Given a state ω on the unital C∗-algebra A there exists a Hilbert space Hω

and a representation πω : A → L(Hω) such that

1. There exists a cyclic vector ψω for πω.

2. ω(a) = 〈ψω, πωψω〉 for all a ∈ A.

3. Every other representation π on some Hilbert space H such that there
exists a cyclic vector ψ with ω(a) = 〈ψ, π(a)ψ for all a ∈ A is unitar-
ily equivalent to the above representation, i.e there exists a unitary
operator U : H → Hω such that for all a ∈ A:

Uπ(a)U∗ = πω(a) ψω = Uψ.

Sketch of the Proof:
Given a state ω one may define a positive semidefinite inner product on A
by

(a, b) := ω(a∗b).

However, (·, ·) will be degenerated in general. Now set

I := {a ∈ A |ω(b∗a) = 0 ∀b ∈ A},

which obviously is a left ideal in A
Hence we can consider the vector space A/I on which the restriction 〈·, ·〉 of
(·, ·) is obviously nondegenerate and positive definite. We may thus complete
A/I with respect to 〈·, ·〉 to obtain a Hilbert space H.
The representation πω of A on H is the defined as

πω(a)[b] = [ab].
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One easily checks that πω is well defined. Moreover from the inequality
ω(a∗a) ≤ ‖a‖2 we proved above, one infers that ‖πω(a)‖ = ‖a‖.
Finally, ψω := [1] is obviously a cyclic vector and

〈ψω, πω(a)ψω〉 = ω(1∗a) = ω(a)

The stated unitary equivalence is given by

U∗πω(a)ψω = π(a)ψ ∀a ∈ H

which obviously defines U uniquely (and well) due to the cyclicity of the
representations π and πω.

Theorem (Gelfand-Naimark:
Every C∗-algebra admits a faithful representation on some Hilbert space H.

Sketch of the Proof:
As the states do separate the elements of a C∗-algebra there exists a family
F of states which also does so. Then one may consider the sum of the GNS-
representations for elements of F , i.e. H =

⊕
ω∈F
Hω and π =

⊕
ω∈F

πω. This

will obviously provide a faithful representation.
Proposition:

The GNS representation defined by a state is irreducible if and only if the
state is pure.

Proof:
“⇐′′: If the GNS-representation is reducible, then there would exist a pro-
jector P on the invariant subspace. Setting λ = ‖Pψω‖2, and ω1(a) =
〈Pψω, πω(a)Pψω〉 and ω2(a) = 〈(1−P )ψω, πω(a)(1−P )ψω〉 one easily checks
that 〈ψω, πω(a)ψω〉 = λω1(a) + (1− λ)ω2(a).
“⇒”: Let now be ω such that the resulting GNS-representation is irreducible.
Suppose ω = λω1 + (1− λ)ω2 were not pure. Thus for all a ∈ A we have:

λω1(a∗a) ≤ ω(a∗a) ≤ ‖a‖2.

But then from the cyclicity of the representation and the Riesz-representation
theorem it follows that there exists a bounded operator T on H such that
for all a, b ∈ A we have

λω1(a∗b) = 〈ψω, πω(a∗)Tπω(b)ψω〉 =: τ(a∗Tb).

Then, for all a, b, c ∈ A

τ(a∗Tcb) = λω1(a∗cb) = λω1((c∗a)∗b) = τ((c∗a)∗Tb) = τ(a∗cTb).
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Using again the cyclicity of the representation, we get from its irreducibility
that T ∼ 1 and thus ω = ω1.

Corollary:
A state on a commutative C∗-algebra is commutative if and only if it is
multiplicative.

This follows easily, because for a commutative algebra all irreducible rep-
resentations are one-dimensional, while conversely the GNS-representation
of a multiplicative state is easily seen to be one-dimensional.

2.3 Unbounded Operators on Hilbert spaces

In physics it is often necessary, or at least useful, to work with operators that
are unbounded and are thus at best defined on dense subsets of H. Typical
examples of such Operators include Differential Operators, in particular the
momentum- and Hamilton-Operators, the latter being the generators of time
translations. In fact, as we shall see in this section, Stone’s Theorem asserts
that every strongly continuous group of unitaries (to be defined below) is
generated by a possibly unbounded selfadjoint operator. For instance the
operator i ∂

∂x
defined e.g on appropriate sets of smooth functions f(x) on the

real line R generates translations, f(x) → f(x + α), where α ∈ R can be
arbitrarily chosen. However, as it is local operator, on might also consider
its action on smooth functions on some subset X ∈ R. However then the
above translations need not be well defined. According to Stone’s Theo-
rem the Operator i ∂

∂x
can thus only be well-defined as a selfadjoint-operator

if one finds a way to make the translations for all α well defined. As we
shall see, this is indeed possible if X is open and also if X is compact – by
fixing appropriate boundary conditions. In the latter case different choices
of boundary conditions will lead to different operators, however. For other
choices of X, for instance the non-negative half-line it is impossible to define
i ∂
∂x

as a selfadjoint operator.

2.3.1 Densely defined operators on Hilbert space.

As usual H shall denote a Hilbert space, while D will denote a subset of H.
Any complex linear map A : D 7→ H will be called a partially defined
operator with domain D. We shall write dom(A) = D. If the domain D
of A is dense in A, one says that A is densely defined. Note that for ξ ∈ D
we have ‖Aξ‖ <∞ by definition.
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For any densely defined operator A there is a natural definition of its
adjoint:
Let D(A∗) denote the subset of all ξ ∈ H for which there exists a ξ∗ ∈ H
such that

〈Aη, ξ〉 = 〈η, ξ∗〉 ∀η ∈ dom(A).

Note that for ξ ∈ H there is, by density of the domain of A, at most a unique
ξ∗ with the above property. Moreover D(A∗) is dense in H by Riesz’ Lemma.
Thus, setting A∗ξ = ξ∗ densely defines an operator A∗, called the adjoint
of A in H, with dom(A∗) = D(A∗).
Note that from the definition of A∗ it also immediately follows that the kernel
of A∗ is the orthogonal complement of the range of A.

Definition:
A densely defined operator A is called symmetric if

〈ξ, Aη〉 = 〈Aξ, η〉 ∀ξ, η ∈ domA.

Theorem (Hellinger-Toeplitz):
A symmetric operator A with dom(A) = H is automatically bounded.

In other words an unbounded symmetric operator is necessarily only
densely defined. As for the proof of the above theorem one notes that if
an everywhere defined symmetric operator A would be unbounded, there
would exist a sequence χn ∈ dom(A) = H so that ‖χn‖ = 1 for all n and
‖Aχn‖ → ∞. But then, for all ξ ∈ H we have

|〈ξ, Aχn〉| = |〈Aξ, χn〉| ≤ ‖Aξ‖‖χn‖ = ‖Aξ‖ <∞.

It is an easy exercise to conclude that then ‖Aχn‖ must be bounded, in con-
tradiction to the hypothesis.

Definition:
If A and B are densely defined operators we shall say that B is an extension
of A if dom(A) ⊂dom(B) and A = B on the common domain dom(A).

Let A be an unbounded operator, B bounded. One might be tempted to
define the commutator of A and B as [A,B] = AB−BA, just as in the case
of two bounded operators. In fact one does use the same notation. However,
the meaning is necessarily slightly different:
Note that AB = BA as operators would imply that the domains of the two
operators are equal. Now suppose B = 0 is the trivial operator that maps
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all ξ ∈ H to 0. Then the domain of AB is all of H, while BA is only defined
on the domain of BA. Hence A0 6= 0A. One therefore defines:

Definition:
We say that an unbounded operator A commutes with the bounded oper-
ator B if AB is an extension of BA.
We shall call the subspace

{A}′ := {B ∈ L(H) |B commutes with A}

the commutant of A. Accordingly, given a collection T of unbounded oper-
ators we shall write T ′ for the intersection of the commutants of all T ∈ T .
IfA is a concrete C∗-algebra we shall say that such a collection T is affiliated
to A if

A′ ⊂ T ′.

Affiliated operators may be viewed as unbounded generators of subalge-
bras of A. Thus, e.g. the position operator x on L2(R) is affiliated to C0(R).
In general, if A and B are densely defined and if there is a common dense
domain Dof the operators AB and BA, we shall write [A,B] for the operator
AB − BA with domain D. Whenever we write [A,B] in the sequel this in-
terpretation is implied. We shall later see in a concrete example that severe
contradictions arise if the commutator of two unbounded operators is used
carelessly.

Definition:
We shall call a densely defined operatorA closed if for any sequence ξn ∈dom(A)
with

ξn → ξ and Aξn → η

one has that ξ ∈dom(A) and Aξ = η.

Example:
A∗ is automatically closed: If ξn ∈dom(A∗) converges to ξ such that Aξn
converges to η one has for all ζ ∈dom(A):

〈Aζ, ξ〉 = lim〈Aζ, ξn〉 = lim〈ζ, A∗ξn〉 = 〈ζ, η〉

i.e. ζ ∈dom(A∗) and Aζ = η.

Definition:
A densely defined operator is called closable if it has a closed extension.
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The closure Ā is the smallest closed extension.

A densely defined operator A is called selfadjoint if A = A∗, i.e if it is
symmetric and dom(A) = domA∗).
A densely defined operator A is called essentially selfadjoint if Ā is self-
adjoint.

In other words, an essentially selfadjoint operator admits a unique self-
adjoint extension.

Lemma:
A symmetric Operator A on H is selfadjoint if and only if

Ran(A± i) = H

Proof:
“⇐”: Let’s first assume that Ran(A± i) = H i.e. that for any φ ∈ H there
exists η ∈ D(A) such that φ = (A−i)η = (A∗−i)η. (The last equality follows
because D(A) ⊂ D(A∗). This then holds in particular for every ξ ∈ D(A∗).
But then one would have (A∗ − i)(ξ − η) = 0, which implies ξ = η because
the kernel of A∗ − i is the orthogonal complement of the image of A+ i and
thus only contains 0 by assumption.
In conclusion D(A∗) = D(A) and thus A is selfadjoint.
“⇒” Let’s now assume that A is selfadjoint. Then 〈ξ, Aξ is real for all
ξ ∈ D(A), and hence 〈ξ, (A ± i)ξ = 0 implies ξ = 0 (by density of D(A)).
Thus the kernel of A± i is trivial. Moreover the Range of A± i is closed:
First of all the reality of 〈ξAξ〉 for all ξ implies that for any sequence ξn ∈
D(A):

‖(A± i)(ξn − ξm)‖2 = ‖A(ξn − ξm)‖2 + ‖ξn − ξm‖2.

Hence if (A± i)ξn converge in norm, so do Aξn as well as ξn. But then since
A is closed, this implies that Ran(A±i) are closed. This completes the proof.

Similarly one shows that a symmetric Operator A on H is essentially
selfadjoint if and only if

Ran(A± i) = H

(In fact, by simply applying the above theorem to Ā.)

Definition:
The two numbers :

n± = dimker(A∗ ∓ i)
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are called the deficiency indices of A.

Theorem:
A symmetric operator A on H admits selfadjoint extensions if and only if
n+ = n−. These selfadjoint extensions ÃU are then described as follows:
Pick a unitary operator U : ker(A∗− i) 7→ ker(A∗+ i). Then the domain of
ÃU is given as

D(ÃU) = {η = η0 + η+ + Uη+ | η0 ∈ D(A), η+ ∈ ker(A∗ − i)}.

ÃU acts as ÃUη = Aη0 + iη+ − iUAη+ on this domain.

Examples:

1. Let us – as a first example – consider the operator i ∂
∂x

on L2([0, 1]). We
shall try to define it as a selfadjoint and thus in particular symmetric
operator. Now, for two differentiable functions ψ, ϕ on [0, 1] one easily
computes :

〈ψ, i ∂
∂x
ϕ〉 = 〈i ∂

∂x
ψ, ϕ〉 − i ψϕ

∣∣1
0
.

One might thus be tempted to take as a domain the space of all smooth
functions of compact support on (0, 1). However this space is not dense
in L2([0, 1]). (It’s closure has codimension 1).
A family of dense domains is described as:

Dθ = {ψ ∈ L2([0, 1]) |ψ is absolutely continuos and ψ(0) = eiθψ(1)}

Indeed, absolutely continuous functions can be characterized as those
who admit a derivative almost everywhere. Thus i ∂

∂x
is closed and

symmetric on Dθ. We shall denote the corresponding densely de-
fined operator by ẋθ. Moreover the spaces Dθ contain the functions
ψn,θ = ei(2πn−θ)x, n ∈ Z which form an orthogonal basis of L2([0, 1]) by
Fourier decomposition.
In fact the ψn,θ are eigenfunctions of ẋθ to the eigenvalues λn,θ = 2π−θ.
This immediately implies selfadjointness. In conclusion:
i ∂
∂x

admits uncountably many different selfadjoint extensions
on L2([0, 1]).
Note that the multiplication operator x does not leave any of the do-
mains Dθ invariant, as it is not compatible with the boundary con-
ditions. Hence, in this case the commutator [x, ẋθ] makes no sense
at all. Indeed, otherwise we could conclude that 〈ψn, [x, ẋθ]ψn〉 =
λn〈ψn, (x− x)ψn〉 = 0 for all n and thus on all of L2([0, 1]).
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2. Next we consider again the operator i ∂
∂x

but this time on L2([0,∞)).
The differential equation

(i
∂

∂x
− i)ψ = 0

then has a unique square integrable solution, while the equation (i ∂
∂x

+
i)ψ = 0 has none. Thus n+ 6= n− and therefore there do not exist
selfadjoint extensions in this case.

3. Similarly it is immediately clear that i ∂
∂x

is essentially selfadjoint on
L2(R), as n+ = n− = 0. A closed dense domain is given by the set of
all L2- functions whose derivative is also L2.

4. Let’s now return to L2([0,∞)). Yet this time we consider the operator
− ∂2

∂x2 . One checks that n+ = n− = 1 in this case. Square integrable

solutions being given by e−
√
±ix where any complex square root can be

taken. Thus this operator does admit a unique selfadjoint extension.
Note that − ∂2

∂x2 is positive. Thus this result is a special case of

5. Friedrichs’ Theorem:
Every semi-bounded symmetric operator admits semi-bounded selfad-
joint extension.

Here an operator A is called semi-bounded if 〈ξ, Aξ〉 ≥ C (respectively
≤) for some finite C ∈ R and all ξ in the domain of A.

2.3.2 Spectral decomposition of unbounded selfadjoint
operators and Stone’s Theorem

The spectral decomposition and functional calculus for selfadjoint operators
can be generalized to unbounded selfadjoint operators, even though that may
not be apparent at first sight. For instance it is not clear at this point that
the operator |A| =

√
A2 is well defined for selfadjoint A, and thus also the

existence of the spectral projections is not obvious at all. Yet, there are
various methods to construct these spectral projections. The quickest and
perhaps most elegant one goes back to von Neumann, and is in fact also the
oldest one:
Let A be a selfadjoint operator, and thus Ran(A − i) = H. Then A − i is
invertible and one easily proves that the following operator is in fact unitary:

C(A) =
A+ i

A− i
.

33



(Unitarity follows from ‖(A+ i)ξ‖ = ‖(A− i)ξ‖.) This operator is called the
Cayley-Transform of A. Next it is readily seen that 1 is not (i.e. for no A)
in the spectrum of C(A). (Otherwise the operator (A− i)(C(A)− 1) = −2i
would not be invertible.) Even more so, one has the identity

A = i
C(A) + 1

C(A)− 1
.

Finally it is also easy to check that the operators A and C(A) do commute
and in fact that C(A) commutes with any bounded operator that commutes
with A.
Thus it follows (with some more work) that, given a bounded Borel set
∆ ⊂ R, setting PA(∆) := PC(A)(C(∆)) (with an obvious notation) will give
the spectral projections of A.
We still need to define the integral over σ(A) (which is no longer a compact
set). Let ∆k be an increasing sequence of finite Borel sets, such that ∪∆k = R
and let Pk be the corresponding spectral projection for A. The the set ∪PkH
is dense in H. Now for each k one can define

Ak =

∫
∆k

λ dP (λ),

and obviously Ak = A|PkH and in fact (by letting k → ∞) A is the closure
of A|∪PkH. We may therefore define the integral as the closure of the limit of
Riemann-Integrals over sequences of bounded Borel sets.

Theorem:
Let A be a selfadjoint operator in H. Then there exists a projection val-
ued measure P (∆) on the Borel subsets of R, consisting of projections that
commute with A and all bounded operators that commute with A, such that

A =

∞∫
−∞

λ dP (λ).

Remark:
It is important to note at this point that the above derivation makes essential
use of the selfadjointness of A. In fact, there is no spectral decomposition of
symmetric operators, in general. This is, of course, also clear from the fact
that the spectra of the different selfadjoint extensions (if they exist) may be
very different.
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Next by using the same procedure of choosing an increasing sequence
of finite Borel-sets, using the bounded spectral decomposition theorem, and
then defining the desired operator as the closure of the limiting operator, one
also has

Theorem:
For any Borel measurable function f : R 7→ C the expression

f(A) =

∞∫
∞

f(λ)dP (λ)

densely defines an operator f(A) (with a proper interpretation of the inte-
gral).

One says that a Borel set ∆ has A-measure zero if P (∆) = 0. Accordingly
we shall say for two Borel-measurable functions f, g that f = g A-almost-
everywhere if equallity holds up to a set of A-measure zero. In that case,
obviously f(A) = g(A) . Moreover:

Proposition:
If A is a selfadjoint operator and f a Borel measurable function on R.

• f(A) is symmetric if and only if is real-valued A-almost-everywhere.

• f(A) is bounded if and only if f is bounded A-almost-everywhere.

• f(A) is positive if and only if f is positive A-almost-everywhere.

• f(A) is unitary if and only if |f(λ)| = 1 A-almost-everywhere.

Note that we made no statement about the selfadjointness of f(A), as the
dependence of the domain of f(A) on f is not clear in general.

It follows in particular that the expression

UA(t) := eiAt =

∞∫
−∞

eiλt dP (λ)

is a family of unitary operators for all selfadjoint A. In fact it is a strongly
continuous group of unitaries,i.e.

UA(t)UA(s) = UA(t+ s)

for all t, s ∈ R and the function

t→ ‖(UA(t)− 1)ξ‖
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is continuous.
Vice versa, given a strongly continuous group of unitaries U(t), one may
define the generator A via

Aψ = −i ∂
∂t

(U(t)ψ)

∣∣∣∣
t=0

on an appropriate domain. In fact one has to show that this operator will
be densely defined. However, one easily checks that for any ξ ∈ H and every
compactly supported smooth function f the vector ξf =

∫
(f(t)U(t)ξ) is well

defined (due to the strong continuity of U(t) which is essential here) and
in the domain of A. The set of such vectors is then obviously dense in H,
as one may approximate the Dirac-δ-distribution by compactly supported
smooth functions. One easily verifies from the unitarity of the U(t) that A
is symmetric and that its deficiency indices vanish. Indeed, to see the latter
statement, if ξ± is in the kernel of (A ± i), then one would get that for all
φ in the domain of A one has ∂

∂t
χ±(t) = χ±(t), where χ±(t) = 〈ξ±, U(t)φ〉.

Thus the unitarity of U(t) implies χ±(t) = 0. (Otherwise χ±(t) = χ±(0)e±t

would give a contradiction.)
Finally, one easily shows that if U(t) = eiBt for some selfadjoint operator B,
then A = B. This sufficiently motivates:

Stone’s Theorem:
If U(t) is a strongly continuous group of unitaries then there exists a selfad-
joint operator A such that U(t) = eiAt.
Vice versa, if A is selfadjoint, then UA(t) = eiAt defines a strongly continuous
group of unitaries.
The assignment t→ U(t) is norm continuous, i.e ‖UA(t)− 1‖ is a continuous
function of t if and only if A is bounded.

2.3.3 The pure point and the continuous spectrum of
selfadjoint operators

We shall now make the relation of the spectrum of an (un)bounded selfad-
joint operator and its eigenvalues more precise. After all, the points in the
spectrum aren’t as bad as their name might indicate1. In the sequel A can be
any selfadjoint operator, bounded or unbounded. We will continue to call the
set of all z ∈ C such that (A−z)−1 exists as a bounded operator the resolvent
set r(A) of A, even if A is unbounded. The spectrum σ(A) = C \ r(A) of A
will then be a closed set.

1The name spectrum is derived from the Greek word for “ghosts”.
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Now, from the spectral decomposition and functional calculus theorems it is
clear that the resolvent, if it exists, is given as

(A− z)−1 =

∞∫
−∞

1

λ− z
dP (λ),

and this integral exists if and only if the function 1
λ−z is bounded on the

support of the measure given by the spectral projections Pλ of A. Thus, in
particular the resolvent will exist whenever z has a non vanishing imaginary
part, i.e. z ∈ C \ R.
Recall that the spectral projections can be viewed as the orthogonal projec-
tions on the closed subspace on which A ≥ λ, i.e. A − λ is positive, while
the measure is then, as usual defined as the limit µ → λ of the operators
P (∆) = Pλ − Pµ for Borel subsets [λ, µ). Thus λ ∈ R will not lie in the
support of the spectral measure of A if and only if the projection valued
function λ→ Pλ is constant on some finite Borel set [µ1, µ2) which contains
λ, i.e. µ1 ≤ λ ≤ µ2.
In other words the spectrum of A consists of all λ ∈ R for which no finite
Borel set ∆ exists such that λ ∈ ∆ and P (∆) = 0. In particular those real λ
belong to σ(A) at which the function Pµ “jumps”, i.e. for which there exist
µ− < µ− so that Pµ is constant on [µ−, λ) and [µ0, µ+) for all µ0 > λ. One
may then consider the projection

P (λ) = Pλ − Pµ+ = Pµ− − Pλ

and the corresponding subspace Hλ = P (λ)H. Then A leaves Hλ invariant
and

Aξ = λξ ∀ξ ∈ Hλ.

Such values λ ∈ σ(A) are called the characteristic values of A, but are
sometimes also called the eigenvalues of A. Note however that the charac-
teristic subspaces Hλ need not be finite dimensional.
Obviously, if H is separable A can have at most denumerable many different
characteristic values, and characteristic subspaces Hλ and Hµ corresponding
to different characteristic values λ 6= µ are orthogonal.
A selfadjoint operator A on a separable Hilbert space need not have any char-
acteristic values at all. In that case one says that A has purely continuous
spectrum. In the other extreme case, when the characteristic subspaces of
A add up to H, and there thus exists an orthonormal basis ξn of H such that
Aξn = λnξn for some λn ∈ R and all n, one says that A has completely
discrete spectrum. Sometimes operators of the latter type are said to have
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pure point spectrum.
Let λ1, λ2, . . . be a complete set of characteristic values of A and consider the
projectors

Pd :=
∑
k

Pλk and Pc := 1− Pd.

Note that Pd is well defined due to the orthogonality of the projectors Pλ
for different values of λ. Obviously the spaces Hd = PdH and its orthogonal
complement Hc are invariant under A. The assumed completeness of the
set {λk} then requires that the restriction of A to Hc has purely continuous
spectrum, while the restriction of A to Hd has purely discrete part of the
spectrum. The spectrum of the operator APd is called the discrete part of
the spectrum of A, the spectrum of APc is the continuous part of the
spectrum of A.

Among the characteristic values of A are those with finite multiplicity.
The remainder of σ(A) are called the limit points of σ(A). In other words:

Definition:
Let A be a selfadjoint operator. We call all the points of the continuous
spectrum, all characteristic values of infinite degeneracy and all limit points
of the discrete spectrum of A the limit points of σ(A). In particular, if A
is not bounded from below (resp. above) then −∞ (respectively +∞) is a
limit point of A.

Note that by definition, if λ ∈ σ(A) is not a limit point then the corre-
sponding projector P (λ) = Pλ−Pµ+ (see above) is of finite rank. Vice versa,
suppose µ ∈ σ(A) is a limit point. Suppose that there exists a Borel set ∆
with µ ∈ ∆ and such that P (∆) is of finite rank. Then, obviously the projec-
tion valued function Pλ must jump at a finite number of points in ∆. Thus
if µ is a limit point of σ(A), then for all ∆ with µ ∈ ∆ the corresponding
projector P (∆) must be of infinite rank.

Theorem (Weyl):
Let µ ∈ R be finite and A be a selfadjoint operator on the separable Hilbert
space H. Then µ is a limit point of σ(A) if and only if there exists a sequence
ηn ∈dom(A) such that

‖ηn‖ = 1, ηn → 0 and (A− µ)ηn → 0.

Sketch of the Proof:
“⇒”: If µ is a limit point then by the above discussion for all Borel sets ∆
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with µ ∈ ∆ the spectral projection P (∆) is of infinite rank. One may then
choose a sequence ∆n of nested Borel set , ∆1 ⊂ ∆2 ⊂ · · · , which contract to
µ, i.e µ = ∩n∆n. Let Hn := P (∆n)H and choose an orthonormal sequence
ηn ∈ Hn, i.e 〈ηn, ηm〉 = 0 for n 6= m. Such a sequence exists because each Hn

is infinite dimensional. One easily checks that this sequence has the above
properties.

“⇐”: The proof of the converse statement, namely that the existence of
a sequence ηn with the properties stated in the Theorem implies that µ is a
limit point of σ(A) essentially relies on the fact in a finite dimensional Hilbert
space weak convergence implies strong convergence. Hence no subsequence
that also weakly converges to 0 of the sequence ηn can lie entirely in a finite-
dimensional subspace. However one easily proves that for any Borel set ∆
that contains µ there must exist a subsequence of ηn that weakly converges
to 0 and that lies entirely in P (∆)H. Thus all these spaces must be infinite
dimensional. That µ cannot lie in r(A) is easy to see as well.

Remark:
We should note here that besides the purely continuous and pure point part
of the spectrum there is a third possibility for operators that are not normal:
Namely the residual (or singular) part of the spectrum. It is the set of all λ for
which the von Neumann series for (λ−a)−1 converges to a bounded operator,
but the range of this operator is not dense in H. In fact, operators that are
not normal play an important role in physics. E.g. the Dirac-Operator on
Lorentzian Spin-manifolds or Random Schrödinger-Operators.

Examples

1. Consider the selfadjoint operator p = −i ∂
∂x

on L(R). Then p has purely
continuous spectrum, σ(p) = R.

2. Similarly the selfadjoint operator x̂ on L2(R), densely defined by (x̂ψ)(x) =
xψ(x), has purely continuous spectrum σx̂ = R .

3. On the other hand, as we have seen above, the selfadjoint operators
ẋθ i.e. the selfadjoint extensions of i ∂

∂x
on L2([0, 1]) have completely

discrete spectrum.

4. Similarly to the above example the Dirac- and Laplace-Beltrami-operators
on compact manifolds without boundary have completely discrete spec-
trum. (The precise definition of these operators shall be given later.)
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Note that in the first two examples above, there do also exist generalized
eigenfunctions. Given a selfadjoint operator P that leaves the space Φ of
test function space (e.g. the space D(M) of compactly supported smooth
functions on some smooth manifold M) invariant, such a generalized eigen-
function to the eigenvalue λ ∈ R is given as a distribution Tλ such that
:

Tλ(Pϕ) = λTλ(ϕ) ∀ϕ ∈ Φ.

Thus the (general) definition of such generalized eigenfunctions requires a
Gelfand triple , which is given by a dense subspace Φ of H (or a space
continuously embedded into H as a dense subspace) so that

Φ ⊆ H ⊆ Φ′

where Φ′ denotes the space of continuous linear functionals on Φ. Particularly
useful examples arise if Φ is a nuclear space, which however need to be a
possible choice. In fact, the difficulty with the use of Gelfand triples relies
in the problem to find a suitable space Φ for a given operator P . In many
important examples from physics (the existence of) a feasible choice of Φ is
not known. On the other, there do exist concrete algorithms to find a nuclear
space Φ in case such a choice is possible.
Note that, by density, it is clear that one will always find sequences τn,λ ∈ Φ
(and thus in particular in the domain of P ) which converge weakly to Tλ, i.e.

〈τn,λ, ϕ〉 → Tλ(ϕ) ∀ϕ ∈ Φ ⊆ H.

As a concrete example, one may consider the sequence sin(n(x−x0))
π(x−x0)

that weakly

converges to the delta-distribution δ(x − x0) centered at x0, which is the
generalized eigenfunction to the position operator on L2(R), viz

δ(x− x0)(x̂ϕ) = x0ϕ(x0) = x0δ(x− x0)(ϕ).

2.4 Differential Geometry

In this section we shall give a brief introduction to the background in differen-
tial geometry used in the main part of the lecture notes. From a differential
geometric point of view most properties of manifolds are most conviently
described in terms of the pre-C∗-algebra of smooth functions that vanish
at infinfinity (together with all their derivatives). Moreover this algebraic
framework appears very naturally in quantum theory.
Consequently, the following introduction will use the algebraic and thus
global description of geometric data in terms of operations on ( modules over)
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smooth functions. An important advantage of this approach over the more
“geometric”, local approach in terms of local coordinates is that one does not
need to worry about coordinate independence or global well-definiteness of
the construction. Yet, for some local constructions the description in terms
of smooth functions is not known, or too complicated to be of much use
for practical computations. Thus for later use some constructions are also
described in terms of local coordinates.

2.4.1 Manifolds and Vector bundles

Recall that by the Gelfand-Naimark Theorem a locally compact topological
Hausdorff space M is uniquely described by the commutative C∗-algebra
C0(M) of continuous functions that vanish at infinity. Vice versa any com-
mutative C∗-algebra is of this form. For technical simplicity only, we shall
in the sequel restrict ourselves to consider only compact manifolds when ev-
ery continuous function belongs to C0(M) = C(M) and there exists a finite
covering. In particular C(M) is unital.

Definition:
Let A be a unital, commutative C∗algebra. We shall call the Gelfand-
spectrumM := Spec(A) a compact n-dimensional manifold if there exists
a finite set I and for each i ∈ I there exist n selfadjoint elements a1

i , a
2
i , . . . a

n
i

of A such that

• Let Ui :=
n⋂

α=1

supp(aαi ). Then it is
⋃
i∈I
Ui =M i.e the Ui form an open

covering of M.

• For each i ∈ I the map

αi = (a1
i , . . . a

n
i ) : Ui ⊂M→ ai(Ui) ⊂ Rn

is a homeomorphism, i.e. it is invertible, with a continuous inverse a−1
i .

The functions aαi : Ui → R are called the coordinates for the local chart
Ui. The collection {(Ui, ai)}i∈I is called an atlas.

Definition:
Let M be a (compact) n-dimensional manifold. A smooth atlas of M is an
atlas {(Ui, ai)}i∈I such that

ai ◦ a−1
j : aj(Ui ∩ Uj)→ ai(Ui ∩ Uj)
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is a smooth map (between subsets of Rn ) whenever Ui ∩ Uj 6= ∅.
A smooth manifold is a manifold that admits a maximal smooth atlas.

A given smooth atlas is called maximal if no other smooth atlas contains
the same charts, except the given one. Every smooth atlas is contained in
a unique maximal smooth atlas. Note that on a given manifold there may
exist different smooth structures in the sense that there is no diffeomorphism
from the smooth atlas corresponding to the one smooth structure to the
other smooth atlas. Hence the smooth atlas is an important part of the data
defining a smooth manifold.

Given a compact smooth manifold it is natural and convenient to work
with the dense subalgebra of C(M) of smooth functions, denoted by C∞(M).
From a C∗-algebraic point of view this is a pre-C∗-algebra, i.e. a dense
subalgebra of a C∗-algebra that is closed under the holomorphic functional
calculus, i.e. if f is any holomorphic function and a an element of the pre-
C∗-algebra then f(a) is also an element of the pre-C∗-algebra. In particular
the elements aαi of the atlas are then taken from C∞(M).
Let Fi : M → C be a smooth function with supp(F ) ⊂ Ui. We may then
define the smooth function fi : ai(Ui) ⊂ Rn → C by f = F ◦ a−1

i . Thus, vice
versa any such function Fi can be written as

Fi = fi ◦ ai = fi(a
1
i , . . . a

n
i )

with a uniquely determined fi. Note that if e.g. supp(F ) ⊂ Ui ∩Uj, then we
may write F = fj ◦ aj = fi ◦ ai.
Let the family {ψi}i∈I ⊂ C∞(M) be a partition of unity subordinate to
the atlas {(Ui, ai)}i∈I . That is to say the smooth functions ψi : M → R
satisfy

supp(ψi) ⊂ Ui and
∑
i

ψ2
i = 1.

Then any smooth function F ∈ C∞(M) can be written as

F =
∑
i

(ψ2
i F ) =

∑
i

Fi =
∑
i

(fi ◦ ai).

Of particular importance is the set of all first order differential op-
erators on M, i.e. of C-linear maps P : C∞(M) → C∞(M) obeying the
Leibniz-rule:

P (ab) = P (a)b+ aP (b) ∀a, b ∈ C∞(M).
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Obviously this set is a vector space over C. Moreover it is a left C∞(M)-
modul because if P is a first order differential-operator so is aP for all
a ∈ C∞(M).
Note that by the inverse function theorem, the invertibility of the map ai =
(a1
i , . . . , a

n
i ) : Ui → ai(Ui) ⊂ Rn is equivalent to the existence of n linearly

independent (over C∞(M)) first order differential operators χαi such that the
Jacobian

Jαβχ,i := χαi (aβi ) : Ui →Mn(R)

is invertible in every p ∈ Ui.

Let P be a first order differential operator. Then the action of P on any
function Fi ∈ C∞(M) with supp(Fi) ⊂ Ui, i.e. Fi = fi ◦ ai, can be written
by using the chain rule as

P (Fi) =
∑
α

P (aαi )(f
(α)
i ◦ ai)

where f
(α)
i (x1, . . . , xn) = ∂fi

∂xα
(x1, . . . , xn).

Thus, locally, in Ui the action of P is completely determined by the n func-
tions P (aαi ). Alternatively we may describe P in Ui by the n smooth functions
φβi

φβi =
∑
α

P (aαi )
(
J−1
i,χ

)αβ
i.e. P (aαi ) =

∑
β

φβi χ
β
i (aαi ).

Thus we may locally view P as a linear combination over C∞(M) of the
operators χβi .
If Ui ∩Uj 6= ∅ this in particular applies to the χαj when restricted to Ui ∩Uj.
Hence there do exist real-valued smooth functions qαβij with supp(qαβij ) ⊂
Ui ∩ Uj such that

χβj =
∑
α

qαβij χ
α
i .

For later convenience we shall also introduce the functions qαβii = δαβ and
observe that it follows that for any i, j the (n× n)-matrices qij with entries

qαβij fullfill the consistency relation

qijqjk = qik on Ui ∩ Uj ∩ Uk.

In particular qijqji = q2
ij ≡ 1 on Ui ∩ Uj.

Note that we can write P on Ui ∩ Uj either as P =
∑

α φ
α
i χ

α
i or as P =
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∑
α φ

α
j χ

α
j . Consistency then requires that for the respective restrictions of

φαi and φβj to Ui ∩ Uj we have

φαi |Ui∩Uj =
∑
β

qαβij φβj

∣∣∣
Ui∩Uj

using the consistency relation for the matrices qij.

Let now ψi be a partition of unity subordinate to the atlas {(Ui, ai)}i∈I
and let r = |I| be the cardinality of the finite set I.
As we saw above any first order differential operator is fully characterized
by a collection of n · r functions φαi subject to a consitency relation on the
overlaps Ui ∩ Uj.
Define

ϕαi = ψiφ
α
i

and the (n · r)× (n · r)-matrix valued function p with entries

pαβij = ψiψj q
αβ
ij .

From the consistency relation for the matrices qij it then follows immediately
that p is a projector, i.e.

p∗ = p = p2.

Moreover the consistency relation for the functions φαi gives

ϕαi =
∑
j

ψ2
jψi φ

α
i =

∑
j,β

ψ2
jψi q

αβ
ij φ

β
j

=
∑
j,β

ψj p
αβ
ij φ

β
j =

∑
j,β

pαβij ϕ
β
j .

In other words the (n · r)-tupel {ϕαi } can be viewed as an element of the
C∞(M)-module

(C∞(M))n·r · p,

i.e. the complex vector space of all (n · r)-tuples f = (f1, . . . fn·r) of smooth
functions fk such that

fp = f .

Vice versa any such tupel will define a first order differential operator onM.

Definition:
Let A be an unital, associative ∗-algebra. In particular A may be a unital
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(pre)-C∗-algebra. A left A-modul E will be called finitely generated pro-
jective if there exists an N ∈ N and an projector p = p2 = p∗ in MN(A)
such that E = ANp.
If A = C∞(M) is the algebra of smooth functions on a (compact) smooth
manifold M we shall call any finitely generated projective module E over A
the space of smooth sections of some vector bundle over M.

Thus the space of first order differential operators is a finitely generated
projective module over C∞(M). In the sequel we shall only consider finiteley
generated projected modules over this pre-C∗-algebra.
Not that then, by smoothness of its entries, the rank of the projector p is
constant on all of M. For instance, in the example of first order differential
operators the rank of p is n =dim(M). Moreover in that example one can
describe the elements of the module, i.e. the differential operators, locally,
on each chart Ui by n functions φαi . However, due to the consistency rela-
tions and the possibly nontrivial topology of M it may not be possible to
characterize any differential operator by only n functions also globally.

Let E and M be smooth manifolds, M being compact, and π : E →M
be a surjective map. Suppose that for each p ∈ M the fibre Ep = π−1(p)
carries the structure of an d-dimensional complex vector space. Moreover
assume that there exists an open covering {Ui}i∈I of M such that for each
i ∈ I there exists a smooth map Φi : π−1(Ui) → Ui × Cd that is invertible
and has a smooth inverse, i.e. it is a diffeomorphism, and obeys the equation

π = πt ◦ Φ

where πt : Ui ×Cd is the natural projection on the first factor. Thus Φi pre-
serves the fibers Ep = π−1(p) and we shall require that this map πt ◦ Φi|Ep
is a vector space isomorphism.
We may then view E as a collection of d-dimensional complex vector spaces
indexed by the points of M and glued together smoothly over each Ui. In
fact due to requirement that the corresponding maps πt ◦Φi are vector-space
isomorphisms, this gluing is smooth over all ofM. Indeed, if Ui∩Uj 6= ∅ the
map Φi◦Φ−1

j is a smooth map from Ui∩Uj to isomorphisms of d-dimensional
complex vectorspaces.

The triple (E,M, π) is then called a smooth vector bundle of rank d. E
is called the total space, M the base of the vector bundle. The collection
of maps Φi is called a local trivialization of the bundle.
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A smooth section in the vector bundle (E,M, π) is a smooth map
s :M→ E such that

π ◦ s = idM.

Thus a section s assigns to each p ∈ M an element of the vector space Ep
and this assignment depends smoothly on p. Thus the space of all smooth
sections is obviously a (left) module over C∞(M). From the above discussion
of the example of first order differental operators it should also be clear (how
to prove) that this module is finitely generated projective. In fact the con-
verse statement, that each finitely generated projective module over C∞(M)
defines a smooth vector bundle, is also true:

Theorem (Serre-Swan):
There is a one-to-one correspondence of vector bundles over M and finitely
generated projective modules over C∞(M).

Examples:

1. A vector bundle that is globally of the formM×Cd is called a trivial
bundle.

2. The bundle corresponding to the finitely generated projective module
of first order differential operators is called the tangent bundle of
M. Its total space is usually denoted by TM, the fibers by TpM and
the space of smooth sections by Γ∞(TM). Sections X ∈ Γ∞(TM) are
called vector fields. The name tangent bundle (respectively tangent
vectors) is motivated by the fact that elements of T ∗pM can be viewed
as tangent vectors to curves R→M in the point p.
Note that, as they are first order differential operators one may define
the commutator [·, ·] of vector fields X, Y as

[X, Y ](a) = X(Y (a))− Y (X(a))

for all smooth functions a. One easily checks then that [X, Y ] obeys
the Leibniz-rule, i.e. it is well-defined as a vector-field.

3. Most operations from linear algebra can be carried out on vector bun-
dles by defining them fiberwise. Most importantly, if (E,M, π) is a vec-
tor bundle, then one may define its dual vector bundle (E∗,M, π),
which is defined by setting for all p ∈M

(E∗)p := (Ep)
∗.
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Similarly one may define the direct sum and tensor product of two
bundles (E,M, π) and (E2,M, π2) over M and, accordingly also the
exterior (i.e. antisymmetric) and symmetric powers of (E,M, π) are
defined.

4. According to the last example, there is a dual vector bundle to TM,
called the cotangent bundle T ∗M of M. Sections ω ∈ Γ∞(T ∗M)
are called one-forms. We shall also often write Ω1(C∞(M)) for the
space of one-forms. Note that there is a canonical map d: C∞(M) →
Γ∞(T ∗M) defined via

df(X) = X(f) ∀f ∈ C∗(M) and ∀X ∈ Γ∞(TM)

and called the differential d. With respect to the local coordinates
aαi in some chart Ui we may then define a local basis of Γ∞(T ∗M) as

daαi α = 1, . . . , dim(M).

The global picture of this module is then described similarly as for
the tangent bundle. Before we proceed it is important to observe that
d(fg) = (df)g + fdg as follows immediately from the definition.

5. Next, one may define for k ≤ n the k-th exterior power of T ∗M i.e the
k-fold antisymmetric tensor product

ΛkT ∗M := T ∗M⊗̂T ∗M⊗̂ · · · ⊗̂T ∗M︸ ︷︷ ︸
k−times

.

The space of sections of this bundle shall be denoted by Ωk(C∞(M)).
Its elements are called k-forms. An explicit local basis is provided by

daα1
i ∧ daα2

i ∧ · · · ∧ daαki .

Note that for k = n this bundle ΛnT ∗M has rank 1 with the single
local basis da1

i ∧ · · · ∧dan1 .

6. Let p ∈M. We denote by |ΛM|p the set of all functions v : ΛnT ∗pM→
R such that for all λ ∈ R and all ωnp ∈ ΛnT ∗pM one has

v(λωnp ) = |λ|v(ωnp ).

Thus each |ΛM|p is a one dimensional real vector space and together
these vector spaces define a real vector bundle |ΛM|, which turns out
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to be trivial. Sections of this bundle are called densities. Their im-
portance lies in the fact that they can be integrated. (Recall that
we assume throughout that M is compact for simplicity). In a chart
(Ui, ai) we can define a local basis for densities as the unique density
|dai| such that

|dai|(da1
i ∧ · · · ∧ dani ) = 1

Any section s ∈ Γ∞(|ΛM|) with support in Ui is then of the form
Fi|dai| with Fi being a smooth function with support conatined in Ui.
There is then a unique linear map

∫
M

such that for all i ∈ I and all
such Fi = fi ◦ ai with supp(Fi) ⊂ Ui we have∫

M

(Fi|dai|) =

∫
ai(Ui)

fi d
nx.

2.4.2 Metrics, connections and curvature

Since the algebra C∞(M) is commutative all finitely generated modules E
over this algebra are actually bimodules, i.e. elements of E (sections of some
vector bundle) can be multiplied from the right and from the left with smooth
functions.
Given two bimodules E ,F over an assiciative unital algebra A one may build
their tensor product E ⊗A F over A. As a vector space it is defined as the
quotient (E ⊗ F)/ ∼ where the equivalence relation ∼ is given by

(ea)⊗ f ∼ e⊗ (af) ∀a ∈ A.

Obviously E ⊗A F is again a bimodule over A. As a warning, note that in
general (for noncommutative algebras A) the bimodules E ⊗AF and F ⊗A E
need not be isomorphic.
We may thus consider C∞(M)-bilinear maps

g : Γ∞(T ∗M)⊗C∞(M) Γ∞(T ∗M)→ C∞(M)

i.e. we have for all a, b ∈ C∞(M) and all one-forms ω1, ω2 on M:

g(aω1, bω2) = ab g(ω1, ω2).

Moreover we shall assume that the map g is symmetric, i.e. g(ω1, ω2) =
g(ω2, ω1).
Thus, locally, in every chart (Ui, ai) the map g is uniquely determined by the
matrix valued function g with entries

gαβ = g(daαi , da
β
i ).
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For every point p ∈ Ui the matrix gαβ(p) is then obviously syymetric. We
shall say that the map g is nondegenerate if (in all charts) the matrix gαβ(p)
is nondegenerate (i.e. has nonvanishing determinant) for all p ∈M .

Definition:
A symmetric, nondegenerate C∞(M)-bilinear map

g : Γ∞(T ∗M)⊗C∞(M) Γ∞(T ∗M)→ C∞(M)

is called a metric on M. If the above defined matrices with components
gαβ(p) are positive definite in all p ∈M the metric g is called a Riemannian
metric. It is called Lorentzian metric if the gαβ have signature

(−1,+1, . . . ,+1︸ ︷︷ ︸
dim(M)−1

).

A metric g onM yields a nowhere vanishing smooth density, locally given
as
√
|g||dai| where g denotes the determinant of the matrix gαβ. Thus there

is a canonical way to integrate a function on a Riemannian or a Lorentzian
manifold.
As in linear algebra we may then also define the metric on the sections of the
dual bundle, i.e. the tangent bundle TM. The local corresponding matrices
gαβ are then the inverse matrices to the gαβ.

Definition:
Let E be a finitely generated projective left module over C∞(M). A smooth
connection on E is a C-linear map

∇ : E → E ⊗C∞(M) Γ∞(T ∗M)

such that for all ξ ∈ E and all a ∈ C∞(M) it is:

∇(aξ) = da⊗ ξ + a∇(ξ).

Example:
Note that the differential d: C∞(M)→ Γ∞(T ∗M) is a connection, and this
connection obviuosly extends to trivial modules (C∞(M))r of higher rank
by componentwise application. Then, however, one easily checks that pdp
also defines a connection on an arbitrary finitely generated projective mod-
ule (C∞(M))rp. Thus every finitely generated projective module admits a
connection.
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Definition:
A covariant derivative on a finitely generated projective module E over
C∞(M) is a R-linear map

∇ : Γ∞(TM)× E → E
(X, s) 7→ ∇X(s)

with the following properties:

1. The map ∇ is C∞(M)-linear in the first argument,i.e.

∇aX(s) = a∇X(s)

for all smooth functions a, all vector fields X and all s ∈ E

2. ∇ is a derivation with respect to the second argument, i.e. it is C-linear
and

∇X(as) = X(a)e+ a∇X(s)

holds for all smooth functions a, vector fields X and all s ∈ E .

It follows from these properties that, given two covariant derivatives
∇,∇′, their difference defines a C(M)-linear endomomorphism of E for any
vector field X, viz

(∇X −∇′X) : E → E (∇X −∇′X)(as) = a(∇X −∇′X)(s).

Hence it may be viewed as a matrix valued function. Moreover the assigne-
ment (∇−∇′)→ (∇X −∇′X) is C∞(M)-linear. Therefor there must exist a
matrix valued one-form (namely a matrix valued element A of the dual space
of Γ∞(T ∗M)) such that

∇X −∇′X = A(X).

Deliberately fixing a “background” covariant derivative ∇0 then any covari-
ant derivative is given as ∇ = ∇0 +A(·). The one-form A with values in the
C∞(M)-linear endomorphisms of E is called the connection one-form on
E .
The above nomenclature is well motivated by the fact that there is a one-to-
one correspondence of covariant derivatives ∇·(·) and connections ∇, given
via

∇X(s) = ∇(X)(s).
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Given a covariant derivative ∇ on E its curvature is the map

R : Γ∞(M)× Γ∞(M)× E → E

defined as

R(X, Y )(s) = ∇X(∇Y (s))−∇Y (∇X(s))−∇[X,Y ](s)

It is straightforward to check that R can be viewed as an element of

Ω2(C∞(M))⊗ EndC(E)

i.e. for all smooth functions a, b, c and all vector fields X, Y and all s ∈ E it
is

R(aX, bY )(cs) = abcR(X, Y )(s)

and R is antisymmetric in the first two arguments.

Definition:
A covariant derivative on Γ∞(T ∗M) is called metric compatible if for all
one forms ω1, ω2 and all vector fields X it holds that

X(g(ω1, ω2)) = g(∇X(ω1), ω2) + g(ω1,∇X(ω2)).

Likewise we may define metric compatible connections on Γ∞(TM) by using
the inverse metric.

It turns out that there exists a unique metric compatible connection ∇LC

on Γ∞(TM) that is also torsion free, i.e.:

∇LC
X (Y )−∇LC

Y (X) = [X, Y ]

for all vector fields X, Y . This covariant derivative is called the Levi-Civita-
connection. Its connection-one form defines in any local chart (Ui, ai) and
with respect to any local trivialization of the tangent bundle a one-form∑

α Γαdaαi whose components are dim(M)×dim(M)-matrices. Their matrix
entries Γαβγ are called the Christoffel-symbols. The curvature of ∇LC is called
the Riemann-Tensor Riem. It is an element of

Ω2(C∞(M))⊗ End(Γ∞(TM)) ≡ Ω2(C∞(M))⊗ Γ∞(TM)⊗ Γ∞(T ∗M).

Let e1, . . . , en (where n =dim(M) as before) be n vector fields that are
orthogonormal with respect to the inverse metric g−1, i.e.

g−1(eα, eβ) = εαδαβ
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where δij is the Kronecker-delta and the numbers εα = ±1 are to be chosen
according to the signatre of the metric. One may then define the Ricci-
curvature Ric ∈ Γ∞(T ∗M⊗ T ∗M) by

Ric(X, Y ) =
∑
α

εαg
−1(Riem(X, eα)(eα), Y )

and the scalar curvature R ∈ C∞(M) by

R =
∑
β

εβRic(eβ, eβ).

To conclude this subsection we should also mention that the metric g
allows to define to further operations:

1. On any Lorentzian or Riemannian manifold there is a canonical map

grad : C∞(M)→ Γ∞(TM)

called the gradient defined via

grad(a)(b) = g(da, db) ∀a, b ∈ C∞(M).

2. Another natural operation is the divergence i.e. the map

div : Γ∞(TM)→ C∞(M)

evaluated on a vector field X as

div(X) =
∑
α

εαg
−1(eα,∇LC

eα (X))

where we have used the notation introduced above.

2.4.3 Laplacians and d’Alembertians

A generalized Laplace Operator P on a vector bundle E → M over a
Lorentzian or Riemannian manifold (M, g) is a symmetric second order dif-
ferential operator whose principal symbol is given by the metric g.
Thus P maps smooth sections of the bundle to smooth sections, P : Γ∞(E)→
Γ∞(E), and with respect to a local trivialization of the bundle P is locally,
in a point x ∈M , of the form

P =
∑
ij

gij(x)
∂

∂xi
∂

∂xj
+
∑
i

Ai(x)
∂

∂xi
+B(x).
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Let ∇ be a connection on E, i.e. ∇ : Γ∞(E)→ Γ∞(T ∗M)⊗ Γ∞(E). Using
the Levi-Civita connection ∇LC on Γ∞(T ∗M) we can thus build the operator

∆∇ = −tr ◦
(
idΓ∞(T ∗M) ⊗∇+∇LC ⊗ idΓ∞(E)

)
◦ ∇

where tr(ω1 ⊗ ω2 ⊗ s) = g(ω1, ω2)s for one-forms ω1, ω2 ∈ Γ∞(T ∗M) and
s ∈ Γ∞(E).
This operator ∆∇ is called the covariant Laplacian for the connection ∇. A
lengthy calculation shows that it can be written locally as

∆∇ = −
∑
ij

1

g

(
∂

∂xi
− Ai

)
ggij

(
∂

∂xj
− Aj

)

where g = det(gij) and Ai denote the local components of the connection one-
form A =

∑
iAidx

i corresponding to ∇. Thus ∆∇ is a generalized Laplacian.
In fact, every generalized Laplacian is of this form:

Theorem:
Let P be a generalized Laplace Operator on a vector bundle E →M . Then
there exists a unique connection ∇ on E and a unique endomorphism B of
E such that:

P = ∆∇ +B.

As for the easy proof we refer to the book by Bär, Ginoux and Pfäffle or the
one by Gracia Bondia, Figuero and Varilly, respectively the references given
therein.

More explicit examples of Laplace-Operators are given by

• The Laplace-Beltrami-Operator on functions on M :

∆(f) = −div grad(f) = −
∑
ij

1

g

∂

∂xi

(
g gij

∂f

∂xj

)

= −
∑
ij

gij

(
∂

∂xi
∂

∂xj
−
∑
k

Γkij
∂

∂xk

)
(f)

where Γkij denote the Christoffel symbols. If the metric g has Lorentzian
signature this operator is also called the d’Alembert Operator.

• The Hodge-de Rham Laplacian on differential forms, given by −(∗d ∗
d+ d ∗ d∗).
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• The Dirac-Laplacian, i.e. the square D2 of the Dirac-Operator (intro-
duced later). By Lichnerowicz’ formula it is related to ∆ by

D2 = ∆ +
R

4

where, as usual, R denotes the scalar curvature.
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Chapter 3

An operationalists road to
quantum physics

In this chapter we shall derive the mathematical structure of physical systems
from rather general considerations on the operational structure of observ-
ables. We shall also get a first, yet slightly superficial glimpse of its physical
interpretation. As a result of this section we shall find that the failure of
classical mechanics in comparison with experiment leads essentially to two
alternatives: Quantum theory or theories with hidden variables.

3.1 General physical systems and C∗-algebras

Before we shall come to our actual definition of the systems under consider-
ation, let us first motivate this definition by some intuitive ideas:

In the following we shall consider a rather general class of closed physi-
cal systems with finitely many degrees of freedom, even though most of our
considerations can, of course, as well be applied to most other examples of
dynamical systems. What we have in mind by a physical system is rather
general: This can mean the molecules of a gas, the Santa Maria on its way
to India, the solar system, an electric circuit and so on. The meaning of the
terms “closed” and “finitely many degrees of freedom” will be explained later.

To such a system we can now associate a set Obs of observables. Each
such observable should correspond to a concrete experimental setup by which
we investigate the system. Thus each time we measure an observable O by
way of performing the corresponding experiment we shall obtain a real num-
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ber oi(ω). Of course the system can possibly be in different states, which
will be denoted by ω. Moreover we shall not assume that the same value is
obtained each time we measure the same observable in the same state. First
of all a realistic experimental apparatus has only a finite accuracy. Thus due
to the statistical error caused by the inaccuracy of our experiment we might
obtain different values each time we measure O in the same state. Then how-
ever it would not make sense to assume that we could assign a definite value
o(ω) to the state ω. Our experimental data are simply not good enough to
safely assume this to be possible. In fact, quantum theory teaches us that it
is’t.
Moreover, a realistic measurement necessarily involves an interaction of the
apparatus with the physical system, and this will, in general, cause a change
of the system during the process of measurement. As we can not assume that
we know exactly all the physical laws governing these interaction (or that we
can completely compute the change of the state of the system caused by
them), we cannot assume at this point of the analyses that we can com-
pletely determine the state of the system after the measurement from the
values we found in the measurement.

Note that by averaging over infinitely many measurements of O we can,
however, define an “expectation value”

ω(O) :=
∑
i

oi(ω)

of O in ω. In case we find the same value o(ω) each time the experiment O
is performed we have ω(O) = o(ω).
In view of the example of the molecules of a gas it is clear, however, that
it might sometimes be wise only to consider observables which are already
defined as mean values. It would obviously not make sense to try to mark
one of the 10−26 molecules (i.e. by a red dot) and consider its velocity as an
observable.

Certainly it will do no harm if we assume that with O also any scalar
multiple λO for λ ∈ R is an observable , i.e. an element of Obs. (Since we
can always rescale our instrument). Moreover, also any real polynomial P (O)
of O should be in Obs: If we measure the values oi(ω) for O then we may
e.g. simply declare that for P (O) we have found the values P (oi(ω)). No
change of our experimental setup is needed to do so. It follows immediately
that for any state ω

ω(λO) = λω(O).
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Since, by our definition, the observable O0 will only take the value 1 in any
experiment, we shall define O0 = 1 for all O. We then also have that

ω(1) = 1

for all states ω.

We shall not assume at this point that the sum or the product of two
different observables is an observable, nor that states are linear if the sum
happens to exist. First of all, given two observables O1, O2, for which there
thus does exist an experimental setup to measure them, it is not at all trivial
that there is an experimental setup to measure O1 + O2, say. (For instance
the sum of the velocity and the position of a particle a priori makes no sense
as an observable.) If there does exist such an apparatus that measures the
sum, it will in general be different from the experiments corresponding to the
individual observables. It is therefore not clear at this point that the expec-
tation value of the sum O1 + O2 equals the sum of the expectation values.
As we shall see, this is actually the case for classical and quantum physics.
However, this fact is experimentally confirmed. It should thus be viewed as
an experimental finding, valid at the presently accessible energy scales, but
not as a necessary presupposition.

A realistic experiment has generically only a finite range of values that
it can measure. For instance the measurement of energy by some apparatus
is typically bounded because the apparatus would be destroyed if it would
come in contact with a higher energy. Likewise no known experiment could
measure the distance to an object that is arbitrarily far away. Of course,
the upper bounds for distances that can in principle be measured with as-
tronomical methods are pushed forward continuously. However, this usually
requires to find new experimental methods, i.e. to define a new observable.
Still, the expectation value for this observable in any state does not exceed
a certain bound. Thus we shall assume that

‖O‖ := sup
ω
{|ω(O)|} <∞.

Now, by definition of O2k, the expectation value ω(P (O)) will be positive
for any positive polynomial P , i.e. a polynomial with the property that
P (x) ≥ 0, ∀x ∈ R. As is explained in the mathematical preliminaries, it
can then be shown that ‖ · ‖ does actually define a C∗-norm on the algebra
generated by a single observable O, i.e the complex valued polynomials of
O: As the expectation values of real polynomials of O are real, it is pos-
sible to extend them to complex linear combinations of such polynomials.
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Of, course, we shall only consider real (i.e. self-adjoint elements) of the so
obtained complex algebra as observables, as it might, for instance, be hard
to find an apparatus that measures an imaginary distance. However, pro-
vided we only assign an operational meaning to the self-adjoint elements the
passage to a complex algebra is completely harmless, and, as we shall see,
only a matter of convenience. As we have a C∗-norm on this algebra it also
appears natural to complete it with respect to this norm. Note that any state
then defines (via its expectation values) a normalized, positive and bounded
linear functional on this algebra. Thus:

Any observable O generates a commutative C∗-algebra C(O), of
continuous functions of O. All self-adjoint elements of C(O) are
operationally well-defined observables of the system. Moreover

any state of the system induces a C∗-state on C(O) for all O ∈ Obs.
We can therefore view Obs as a collection of commutative

C∗-algebras.

There would be no practical or theoretical gain to distinguish two observ-
ables (i.e. experiments) which would give the same expectation value for all
states. Thus we can identify such observables. In other words we shall assume
that the states of the system separate the observables, i.e ω(O1) = ω(O2) for
all states ω will imply that O1 = O2.

On the other hand it might be too restrictive to assume that the observ-
ables separate the states. It is conceivable – though anything but desirable
– that some degrees of freedom of the system are not accessible to any ex-
periment, as they do not interact with any (known) device. Such degrees of
freedom are called hidden variables.
Let us now suppose that the observables do separate the states. We may then
formally define the sum of any two observables O1 + O2 by its expectation
values, i.e as the unique ”observable” such that

ω(O1 +O2) = ω(O1) + ω(O2).

(This will define a unique observable because the states do separate the ob-
servables by assumption.) Thus, in case the observables do separate the
states, we may safely assume that the sum of any two observables is an ob-
servable, even it is not clear how to ascribe a concrete measurement device
to this sum.
The measurement of (the expectation values of) O1 and O2 will in general re-
quire very different experimental setups. Thus the above sum ω(O1)+ω(O2)
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of the expectation values is only operationally meaningful if we can be sure
that the corresponding experiments are carried out in the same state. For
this reason the assumption that the observables do separate the states, i.e.
that we can uniquely determine the state of the system by experiments is
crucial here. In other words:

For a system with hidden variables the sum of any two variables
may not be well-defined. For a system without hidden variables it

always is.

It is then tempting to try to define a product of observables along the
same lines as well. It can be shown that under certain, rather mild, additional
assumptions this can indeed be done. However, the physical interpretation
of such additional assumptions is not known. Moreover we may gain some
flexibility if we assume as less as possible about the system. Nevertheless we
shall now restrict the class of physical systems that we shall consider severely:
As we want to discuss the role of the principle of locality we shall assume
that there exists a manifold X such that all real-valued continuous functions
f ∈ C(X), f ∗ = f are observables. Note that, given some local coordinates
xk on a local chart U for X, the algebras of continuous functions of each xi

would automatically define observables. Thus we assume that we can build
the tensor-product of the resulting algebras which would then (after an ap-
propriate completion) would lead to the algebra C(X). Of course it is not
clear at all that this can always be done, in particular not as we assume
that X can be given the structure of a manifold. In fact we shall later see
that for realistic physical systems this assumption appears more and more
problematic.
For the moment we shall not specify the physical interpretation of the man-
ifold X. It may for instance be the phase space of a classical system, or its
configuration space.

Definition: We say that the system has (at most) N degrees of freedom
if there exists an N -dimensional manifold X such that

1. C(X) ⊂ Obs

2. C(X) separates the physical states

3. No proper C∗-subalgebra of C(X) separates the physical states
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Hence for a system with N degrees of freedom we have that

ω1(f) = ω2(f) ∀f ∈ C(X)

implies that ω1 = ω2. The assumptions that there are no proper C∗-subalgebras
which do also separate the states means that X is chosen minimal in this
sense. In fact, any proper C∗-subalgebra of C(X) will be isomorphic to some
algebra C(Y ) with Y ⊂ X but Y 6= X. However, given X there might of
course be a completely different manifold X̃, of lower dimension such that
C(Y ) belongs to Obs and separates all the physical states. Therefore the
above definition only defines an upper bound for the number of degrees of
freedom. For simplicity we shall in the following assume that the systems
under consideration do have a finite number of degrees of freedom and that
the dimension of the manifold X is chosen minimal.

Now, as explained in the appendix, by the Gelfand-Naimark-Theorem
and the Gelfand-Naimark-Segal-Theorem for any commutative C∗-algebra –
and thus for C(X) ⊂ Obs defined above – and every state ω we know that

1. There exists a representation πω of C(X) on a Hilbert space Hω and a
cyclic vector ψω ∈ Hω of norm 1 such that

ω(f) = 〈ψω, πω(f)ψω〉

for all f ∈ C(X). This representation will, however, not be faithful in
general.

2. There will also exist a faithful representation (π,H, ψ) of C(X), admit-
ting a cyclic vector ψ ∈ H. Any element φ ∈ H of norm one, 〈φ, φ〉 = 1
does then define a state on C(X).
Moreover any state on ω on C(X) can be approximated arbitrarily
well by elements of H. Thus, given ω there exists a sequence ψn ∈ H,
‖ψn‖ = 1 such that for any ε > 0 we have

|〈ψn, π(f)ψn〉 − ω(f)| ≤ ε

for all f ∈ C(X) and sufficiently large n.

To be more concrete, the above representation is, for a compact1 manifold X,
given by H = L2(X) with functions f ∈ C(X) acting as multiplication oper-
ators, i.e. π(f)ψ(x) = f(x)ψ(x). The pure states on C(X) are in one to one

1For technical simplicity we shall only consider this case in the sequel. However, all
that follows also holds for non compact manifolds.
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correspondence with the states of X. Thus if y ∈ X the corresponding state
ωy acts as ωy(f) = f(y). Any sequence ψyn(x) of functions, such that |ψyn(x)|2
converges to the Dirac-distribution δ(x− y) and

∫
X

|ψyn(x)|2 dx = 1, will then

approximate the state ωy in the above sense, i.e. lim
n→∞
〈ψyn, π(f)ψyn〉 = f(y).

Any other state is a linear combination of pure states and can thus be ap-
proximated similarly (as any distribution can be approximated by a sequence
of integrable functions).

Note that it will generally not be true that any state of the above rep-
resentation is a physical state. Thus, in practice we may need to add some
subsidiary conditions to specify which states are physical. In the examples we
shall consider below, this will, however, not be necessary. Moreover,one may
imagine at this point that it may happen that no element of H represents
a physical state, but only limits of such vectors. In the next section, when
we shall discuss the physical interpretation of the mathematical formalism
developed here, we shall however see that such a situation cannot occur for
realistic physical systems.
Of course, in general there will be more observables than the elements of
C(X) and this raises the question whether these observables can also be rep-
resented on the Hilbert space. In fact, the usual C∗-theoretic description
assumes that Obs is actually given as the set of selfadjoint elements of a C∗-
algebra A. One then works with a representation of A, i.e. of all observables.
Here shall not assume that all observable are represented on H nor that any
selfadjoint operator on H defines an observable, as the operational meaning
would not be clear. However we have not yet discussed the dynamics, i.e.
the time evolution of the system. As we shall see now, this will not only
define a large class of additional observables that are represented on H, but
also the operational meaning of these observables will be clear.

The dynamical equations of a physical system will in general induce a
time evolution on the set of physical states. We shall denote the latter
by S from now on. We shall call the system closed if every state ω in S
lies on a unique trajectory under this time evolution. In other words every
state ω ∈ S defines a unique curve {ωt}t∈R such that ω = ωt=0. This time
evolution will automatically be translation invariant, i.e. if t1 − t2 = t3 − t4
then ωt1−t2 = ωt3−t4 . Now, as we assumed that states are separated by
observables and vice versa, we can equivalently describe this time evolution
on the observables. (Provided we assume that the experimental setups we
use to define these observables do not depend on time.) Thus, given an
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observable O we can uniquely define its trajectory Ot by

ω(Ot) = ωt(O) ∀ω ∈ S.

Here ω = ωt=0 and the states are considered not to depend on time once we
consider observables time dependent.
Thus, in particular each element f ∈ C(X) will define a unique trajectory ft.
We shall not assume that ft is an element of C(X) for all t ∈ R. However,
by the definition it is very natural to assume that the algebraic structure is
invariant under this time evolution. Thus, for fixed t the set of all ft will
again form a C∗-algebra that is isomorphic to C(X). We shall denote the
family of C∗-algebras so obtained by {C(X)t}t∈R.
Returning now to the representation (π,H, C(X), ψ) we first note that, as
it admits a cyclic vector ψ every other representation (π̃, H̃, C(X), ψ̃) that
admits a cyclic vector ψ̃ such that

〈ψ, π(f)ψ〉 = 〈ψ̃, π̃(f)ψ̃〉 ∀f ∈ C(X)

is unitarily equivalent to (π,H, C(X), ψ), i.e there exists a unitary operator

U : H̃ → H such that ˜π(f) = U∗π(f)U . Assume that the cyclic vector ψ
represents a physical state, ω say. As any vector in H is cyclic for π(C(X))
this will be possible whenever there exists at least one vector in H which is
physical. Thus so far this is a very mild assumption.
We shall however also assume that then the full trajectory ωt is represented
by elements ψt ofH. In other words we shall assume that the representation is
stable under the time evolution, at least on a sufficiently large set of states.
Certainly this need not be the case. Yet it is a very natural assumption,
and, in fact, it is valid for all known physical systems (that fall in the class
considered here).
Then, as the vectors ψt are cyclic, each of them defines a new representation
πt via:

πt(f)ψ = π(f)ψt

Namely, the set πt(C(X)) will be dense in H. However, then we can define
the operators

πt(f) (πt(g)ψ) = ψt(fg)ψ.

Since the so defined operators are bounded they can be uniquely extended
to all of H.
Moreover, the representation (πt,H, C(X), ψt will by the above remark be
unitarily equivalent to the original one. Thus there will for all t exist a
unitary operator U(t) such that for all f ∈ C(X) we have

πt(f) = U(t)∗π(f)U(t).
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One may then assume that the operators U(t) define a strongly continuous
group of unitaries. (The group properties actually follow from translation
invariance.) Then there will exist a selfadjoint operator H on H such that

U(t) = eiHt.

Note that for any (strongly) smooth family At = U(t)AU∗(t) of operators it
then follows that

Ȧt :=
∂

∂t
(U(t)AU∗(t)) = U(t)(i[H,A])U∗(t) = i[H,At].

Furthermore it is important to stress that the smoothness of the family At
with respect to the strong topology does not imply that Ȧt is a bounded
operator. It only requires that this operator is densely defined. In contrast
the boundedness of Ȧt would be implied by smoothness with respect to the
norm topology.

This then motivates the following
Definition 1:
A closed physical system with N degrees of freedom is given by (H, π, C(X), H),
where:

• H is a Hilbert space.

• C(X) is the algebra of continuous functions on an N-dimensional man-
ifold X.

• π : C(X)→ L(H) is a faithful representation.

• H = L2(X,E) is the space of square integrable sections of some complex
line bundle E → X over X.

• H is a selfadjoint operator on H.

• There is a dense subalgebra A of C(X) such that the family πt(a) =
eiHtπ(a)e−iHt is strongly smooth in t for all a ∈ A.

In addition there are sometimes given subsidiary conditions that specify
which states on C(X) are (un)physical. There might also exist other observ-
ables that are represented on H as bounded, selfadjoint operators. We shall
not specify them here.

Remark:
Note that in the above definition we did not assume that there does exist a
cyclic vector as this would be a somewhat unphysical restriction. We shall
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see this later. There is no clear physical reason, why there should be such a
vector. In fact, it is actually not used in calculations. What is used, how-
ever, is that the commutant π(C(X))′ is the weak closure of π((C(X)) itself.
This does, of course, only make sense for a commutative algebra, and it it
would easily follow from the existence of a cyclic vector. However, it is also
true if H is isomorphic to the space of square integrable section of a complex
line bundle see the discussion in the mathematical preliminaries). In fact,
representations for topologically nontrivial bundles are realized in nature, as
is proven experimentally via some topological effects like e.g. the Aharonov-
Bohm effect.
Note that this commutant condition is operationally well motivated: It sim-
ply excludes that the Hilbert spaces is chosen too large. Otherwise, as is
easily shown, there would exist a genuine subspace of unphysical states, in-
variant under the action of C(X). We could then simply project on the
orthogonal complement of this subspace.
Finally, as we shall see below, the requirement of the existence of a complex
line bundle may be seen as a (nontrivial but natural) regularity condition,
as it ensures that also tangent vectors, (which in classical physics would cor-
respond to components of the velocity), are represented on H, and that also
the algebra of smooth functions of compact support on X is faithfully rep-
resented on H.

Remark:
In order to gain some flexibility one could actually replace the algebra C(X)
in the above definition by an arbitrary C∗-algebra. In fact, in the usual
C∗-theoretic description of physical systems this is done. However as will
become clear in the next section, the physical interpretation will then still
rely on the study of its commutative subalgebras which, by the Gelfand-
Naimark-Theorem would be isomorphic to C(Σ) for some topological space
Σ.

3.2 Physical Interpretation

Before we come to the construction of concrete models it will be helpful to
obtain a somewhat clearer picture of the physical interpretation of the math-
ematical formalism that has been motivated in the last section.

To start with, a physical system has been defined essentially as a family of
representations πt of representations of the C∗-algebra C(X) that is generated
by the unitaries eiHt. For simplicity we assume that X is compact. Note that
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we do not assume that the subalgebras πt(C(X)) and πt′(C(X)) of L(H) do
commute for t 6= t′. Moreover there may be other selfadjoint operators on
H that can be interpreted as operationally well-defined observables. We do
also not assume that these operators commute with the πt.
Every physical state ω induces for all t a state on πt(C(X)), i.e. a positive,
bounded, normalized linear functional. The Riesz-Markov-Theorem then
asserts (shifting the time dependence back to the states for the moment)
that it is given by a unique (regular,..) Borel measure µtω, viz

ω(f) =

∫
X

f(x) dµtω(x).

Now, according to probability theory we may then interpret µtω as a probabil-
ity measure (or probability distribution) on the probability space X. (If we
would actually specify some σ-algebra of (Borel-)subsets of X.) The corre-
sponding random variables would then be given by the elements of C(X), i.e.
by observables. Hence we directly obtain the probabilistic interpretation we
intended. Note that it is also known that a probability measure is uniquely
characterized by its ”moments”, i.e. by by the expectations of a countable
subset of C(X), whose linear range is dense. This then gives a probabilistic
interpretation of the fact that the elements of C(X) separate the states. Of
course, we may take as µ(x) a Dirac distribution δ(x− y). In that case every
measurement of every f ∈ C(X) would give the same value f(y). However,
as pointed out above due to the inaccuracy of any measurement, it is wise to
consider more general states, where we might find different values each time
we measure f . We shall see a better reason below. The coarseness of these
measurements is then in each state ω well described by the variance

∆ω(f)2 = ω((f − ω(f))2) = ω(f 2)− (ω(f))2 .

Analogously ω would produce a probability measure on the spectrum of any
commutative C∗-algebra that is represented on H. Note that it may happen
that two such commutative algebras, that do also commute with each other,
generate a larger commutative C∗-algebra of observables. For all these alge-
bras we would obtain probability measures.

As we shall see below, the probability measure for different commutative
subalgebras need, however, not be compatible in any reasonable sense. Before
coming to this point, let us analyze the interpretation of actual measurements
for the commutative subalgebras. For simplicity of notation, we shall consider
only a situation in which there exists an observable A with purely discrete
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spectrum, and such that no eigenvalue is degenerate, i.e all eigenspaces are
one-dimensional. The distinct eigenvalues of A will be denoted by λn with
n ∈ N and corresponding eigenvectors ψn. As the latter form an orthonormal
basis of H (remember that A is selfadjoint and bounded), every φ ∈ H can
be decomposed as

φ =
∑
n

pnψn pn ∈ C.

In order to provide a state on the C∗-algebra generated by A, the vector φ
has to be normalized, viz ∑

n

|pn|2 = 1.

In this case the expectation value of A in the state φ is given by

ωφ = 〈φ,Aφ〉 =
∑
n

|pn|2λn.

This then strongly suggests to interpret:

In a measurement of A one will find one of the eigenvalues λn as
possible outcome. The numbers |pn|2 are then interpreted as the
probability to find the value λn in such a measurement. No value

other than one of the eigenvalues can be found.

In the more general case the eigenspace corresponding to some eigenvalue
λn is not one dimensional, the the probability to find λn in a measurement
would be given by 〈φ, Pn〉, where Pn denotes the orthogonal projection on
eigenspace to the eigenvalue λn. Finally, we should also comment on the case
of an observable with continuous spectrum. To be explicit we may consider
the case where H = L2(R3) and consider the characteristic function χK of a
compact subset K ⊂ R3. Strictly speaking this is of course not a continuous
function but it nevertheless defines a bounded, selfadjoint operator on H
with eigenvalues 0 and 1. Thus it is a projector. The expectation value

〈φ, χKφ〉 =

∫
K

|φ(x)|2d3x

can therefore be interpreted as the probability to find the particle (respec-
tively the system) in K. Accordingly we interpret |φ(x)|2 as the correspond-
ing probability density.
The above probabilistic interpretation of the measurement of an observable

66



A is, obviously, only consistent, if we assume that the system is in the corre-
sponding eigenstate (-space) after the measurement. For then we know the
state of the system as concerns A. Thus one also assumes:

As a result of a measurement of the eigenvalue λ of the observable
A in the state φ the system will be in the state Pλφ, where Pλ is
the orthogonal projection on the eigenspace corresponding to λ.

This axiom, usually also called the “collapse of the wave function”, that ap-
pears rather natural at this point, is nevertheless the subject of an intense
and controversial debate ever since the invention of quantum mechanics. We
shall comment on this debate later, as it only becomes nontrivial in view of
the noncommtativity of observables in quantum physics. If there were only
mutually commuting observables (as is the case in classical mechanics) then
this axiom is indeed completely harmless: Even if – in the example above
– the support of the probability density |φ(x)|2 is all of R3 and we find the
particle nevertheless in a small region K, this obviously causes no paradox.
We would simply infer that the particle has been in K at the time of the mea-
surement, although we assumed (for some reason) before the measurement
that there was a finite probability to find it somewhere else. If any other
observable commutes with χK , and thus leaves the subspace χKH invariant,
no measurement before or after that of χK will lead to a contradiction with
this conclusion. Thus we may indeed consistently conclude that the result
of our measurement has in fact been predetermined, and that our ignorance
(or inability to obtain sufficient information) has prevented us from knowing
the result in advance. (This will be discussed in more detail later.)

However there might also be (subalgebras of) observables that do not
commute with each other. In particular up to now we did not assume that
the algebras πt(C(X)) and πt′(C(X)) do commute with other, and we should
try to find whether it is a physically realistic option if they don’t.

Let A and B be any two selfadjoint operators on H and let ψ be any
vector of norm 1 in their common domain and that of their products (so that
the following expressions are all well-defined). We then set ω(A) = 〈ψ,Aψ〉
and likewise for ω(B). (In other words ω will define a state on the C∗-algebra
generated by A and B. We also define Ã = A− ω(A) and B̃ = B − ω(B) so
that we have ∆2

ω(Ã) = ω(Ã2) and ∆2
ω(B̃) = ω(B̃2). Note that ω(A2) is real

(and positive). Thus Ã is selfadjoint, and so is B̃.

Now the operator C = ((̃A) + iλB̃)(Ã− iλB) will be positive for all λ ∈ R.
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Thus, as ω is a state, so is ω(C), viz

ω(Ã2) + λ2ω(B̃2) + iλω([Ã, B̃]) ≥ 0 ∀λ ∈ R.

We should remark that iλω([Ã, B̃]) is real. Not that if ω(B̃2) = 0 the above
inequality cannot hold for all λ if ω(Ã2) is finite, unless ω([Ã, B̃]) = 0.

Otherwise we may set λ = −ω([Ã,B̃])

2ω(B̃2)
to obtain

4ω(Ã2)ω(B̃2) ≥ |ω([Ã, B̃]|2.

Hence we obtain that for all selfadjoint operators and all states one has

∆ω(A)∆ω(B) ≥ 1

2
|ω([A,B])|.

Now suppose that for some f ∈ C(X) we have that for some t 6= t′

[πt(f), πt′(f)] 6= 0.

Now, since the elements of H can, by construction, be identified with func-
tions on X, one may think that the above commutator might only be nonzero
when applied to elements of H that are “poorly localized”, i.e whose support
is rather large or all of X, and such that they are greater than a given ε > 0
on rather large sets. However, as all the states can be given as linear combi-
nations of vectors whose support is contained in an arbitrarily small compact
set, one easily shows that generically there have to exist well localized states
on which the above commutator does not vanish. We shall see this later in
the examples. Thus, for such a state we get that there exists some bound
κ > 0 such that ∆(πt(f))∆(πt′(f)) ≥ κ. Thus if such a state was well local-
ized at time t, say, so that the corresponding variance is small,then it will
be poorly localized at t′. (Though this conclusion is of course not strictly
true. However we shall see in the concrete examples that it comes out so).
In other words a probability distribution µt that is well localize ed at some
time, will start to spread its support more and more as time goes by. The
“smearing of wave functions” takes place.
From the point of view of a classical physicist, this situation is certainly un-
acceptable, as it seemingly contradicts determinism, i.e. that the complete
knowledge of the state of a physical system at one time is sufficient to have
complete knowledge of the state at any other time: The better one knows a
state at one time the lesser it is known at later times and this solely due to
the time evolution!
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One might therefore be tempted to assume that the representations πt
have to commute at different times. We shall do so in the next section. Only
to find that this (historically) lead to theories that do contradict experimen-
tal facts.

Before we come to this point, we should however briefly mention another
problem that arises if one adopts a probabilistic interpretation also to non-
commuting observables:
In view of the spectral decomposition theorem we can associate to each ob-
servable its family of spectral projections. (Strictly speaking these spectral
projections do not (necessarily) belong to the C∗-algebra, but to some suit-
able completion of it). As it only has the eigenvalues 1 or 0 we may consider
these projections also as genuine observables, namely the “Yes/No” experi-
ments. Note that two operators commute if and only if their spectral pro-
jections do commute.
We can then consider these “Yes/No” experiments as the elementary propo-
sitions about the state of the system. (e.g. “The state is contained in a
subregion of X (or not)”). One finds such elementary propositions also in
any classical probability theory. Given a projection P we let PH denote its
range, i.e. the subsets of states on which the proposition attains the value
“true”. It is then natural to define in analogy to classical logic the operations
“AND”, “OR” and “NOT” on these projections. Hence, given P1, P2 we shall
denote by P1∩P2 (P1 and P2) the orthogonal projection on the intersection of
P1H and P2H. Likewise P1 ∪P2 (P1 or P2) will be the orthogonal projection
on the union of the ranges of the two projections. Finally P̄ = 1 − P (Not
P), will correspond to the logical negation. Now, in analogy to classical logic,
one might also expect that the distributional law

P1 ∩ (P2 ∪ P3) = (P1 ∩ P2) ∪ (P1 ∩ P3)

holds. Indeed if the three projections P1, P2, P3 mutually commute, this is
easily shown, using that then the set of eigenvectors of all three projections
agree. However, if they do not commute this is not the case:

This is most easily seen via a simple example. We take the Hilbert space
C2 (resp. a two-dimensional subspace). Then one may take as P1 the or-

thogonal projection on the subspace spanned by the vector e1 =

(
1
0

)
.

The projector P2 will be the orthogonal projection on the subspace spanned

by e2 = 1√
2

(
1
1

)
. Thus P̄2 = 1 − P2 will project on ē2 = 1√

2

(
1
−1

)
.

One easily checks that P1 and P2 do not commute. Moreover, obviously
P1 ∩ (P2 ∪ P̄2) = P1 ∩ 1 = P1. On the other hand, since the intersection of
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the eigenspaces is obviously empty we have that P1 ∩ P2 = 0 = P1 ∩ P̄2.

We may now return to the discussion of the “collapse of the wave func-
tion”. We argued above, that if there were only observables that mutually
commute, we could actually assume after the measurement of one of them
that the system has actually ever been in the eigenstate we found in the
measurement. However, this conclusion will no longer work if some observ-
ables do not commute with each other: For instance, if we would measure
P2 in the above example, and obtain the answer “Yes”, we would according
to this reasoning conclude that the system has always been in the state e2.
But what if we would have measured P1 before P2 ? Certainly we would
have obtained some answer for the measurement of P1, so for definiteness
let’s say “Yes” (obviously it doesn’t matter which one). Thus we would have
concluded that the system has always been in the state e1 = 1√

2
(e2 + ē2). If

we thus immediately (that is to say quickly enough that the time evolution of
the state e2 can’t have reached e1 yet) measure P1, then we obviously get an
incompatible answer. The system can’t be in the states e2 and e1 at the same
time. Thus the outcome of a measurement can not have been predetermined
in this case. After the measurement of P1 there really is a probability of 1

2

to find each eigenvalue of P2. But then the assumed collapse of the wave
function during the measurement of P2 really does change the state of the
system and it does so instantly. Even if the observables P1 and P2 would
correspond to measurements in different regions of the universe. We shall
discuss later some of the seemingly paradoxical conclusions that result from
this fact but, more importantly, also its experimental significance.

3.3 Deterministic Systems

As we saw in the last section, if as a consequence of the time evolution of the
system the representations πt of C(X) do not commute at different times,
then this will lead to a delocalization of states. Thus our knowledge of the
state of the system would diminish as time goes by. As this does, seemingly,
contradict determinism, and certainly did not appeal to classical (Newto-
nian) physicists, the following two definitions (which follow the analysis of
Bell) seem to provide natural additional assumptions:

Definition 2 :
Let O be any observable and let Ot = eiHtOe−iHt denote its time evolution.
We say that O is a beable if [Ot, Ot′ ] = 0 for all t, t′.
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The term beable here is to be read as be-able, in sharp contrast to observ-
able. The point is that the property of the system that we measured by some
observable that is not a beable will more and more be resolved during the
time evolution. Thus we can only state that we have this property at some
t, but no more than that. In contrast to that if the observable is in fact a
beable this property would be preserved during the time evolution. Thus in
this sense, beables refer to properties of the states that “are” (and remain),
and not simply to mere observations.

Definition:
We shall call a system deterministic if all f ∈ C(X) are beables.

Thus if a state of a deterministic system is a Dirac delta-distribution,
then it will remain so during the time evolution. If we know the state of the
system completely at one instance of time, then we shall know it at all times.
Note that for the faithful representations of C(X) that we consider here, we
have that πt(C(X))′ = πt(C(X))′′. Hence we obtain that if the system is
deterministic, then for any t, t′ we have thatπt(C(X))′ ⊂ πt′(C(X))′′. Hence,
as by von Neumanns Theorem πt′(C(X))′′ is the weak closure of πt′(C(X)),
there is a sense subset of πt(C(X)) that actually belongs to πt′(C(X)). It
is thus natural to assume that there is dense subalgebra of C(X) which
is stable under the time evolution. If one now assumes that this algbra
contains a dense subset of smooth functions, the one gets that the time
evolution f → ft where π(ft) = πt(f) is actually a diffeomorphism. The
strong continuity then enforces the generator H of the time evolution be a
vector field, i.e. a first order differential operator. We shall give a full account
of this argument elsewhere. Here we restrict ourselves to a brief outline of
the derivation. As we shall see in the next section, the system described here
is not realistic anyway.
Now in order to get second order equations of motions (as is empirically the
case for the basic equations of classical physics) we have to interpret the space
X as phase space. Thus points in X, i.e the pure states, describe the position
and the velocity of the particle, say, at a given time. Here this then means
that we would have to assume that there are local coordinates q1, . . . qn, p1, .n
such that the Hamiltonian locally has the form

H =
∑
i

(
pi

∂

∂xi
+ Fi(x, p)

∂

∂pi

)
+K(x, p)

Hence one would obtain Newtons law d2x
dt2

= Fi(x, p).
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Remark:
In fact, as we shall see later, we are not completely forced to these conclusions.
They require certain additional assumptions and it would not be worthwhile
to explain them here, as the result is simply unphysical. We will, however,
later meet a deterministic system that is much more realistic (though not
completely), namely Dirac’s equation. We should also note in passing that
the above operator H is not bounded from below, and this creates severe
problems concerning the dynamical stability of the system. We shall have to
discuss them in connection with the Dirac equation.

3.4 The need for Quantum Mechanics

Thus, all seems to be fine so far. The assumptions of the previous sections
have lead us – albeit on a seemingly unnecessary long and rickety road –
to Newtonian mechanics. An elegant and clearcut theory that even got us
to the moon. Yet some may object that without the discovery of quantum
mechanics there would have been no live broadcast of Armstrongs first steps
in Television. And they would be serious, I’m afraid. Unfortunately, they
would even be right. Quantum mechanics did in fact bring so many dramatic
changes in every days live2 that that alone provides strong enough arguments
to show that it describes nature much more accurately than classical mechan-
ics. Unfortunately, for the majority of people this also seems to be the only
kind of argument they find acceptable.

Yet, it is hard to believe that Max Planck introduced a modification
of classical physics because he thought it might be useful in case someone
makes it to the moon someday. In fact he did so for very good reasons, and
fortunately they still can be found in many books on quantum mechanics.
However, not in this one. I thought for a while that I really should explain
some of the discrepancies of classical physics with experimental data that
had arisen around 1900 and eventually lead to the development of quantum
mechanics. Hopefully I made myself clear enough in the above (somewhat
cynical) introduction to this section: To my point of view there have been
extraordinary grave theoretical reasons which really forced such a dramatic
change in the paradigms of physics. Yet, to fully appreciate the strength of
the arguments requires a very deep and thorough understanding of classical

2E.g. the modern computer- and information technology would not have been possible
without the discovery of the Transistor and the Laser. Both these technologies thus
essentially rely on pure quantum effects.
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physics, and much more time and space than I had during the lecture, re-
spectively in this script. Thus I added some references in the bibliography
that provide excellent reviews of these issues.
On the other hand, the historical path to a great discovery, is rarely the most
easy to follow. Moreover, quantum theory, like all physical theories can not
be rigorously derived from empirical facts, and most most probably sooner or
later it will be overcome by another, better theory. Better in the sense that it
explains more experimental findings than quantum theory and starting from
fewer assumptions. Just as quantum theory explains far more than classical
theory.
Thus after all, I came to conclude that one no longer needs to explain why
quantum mechanics was invented. Its fully sufficient to explain that it really
does describe nature much more accurate than classical physics, and that it
does indeed start from fewer assumptions. In fact, as we shall see in the next
section, almost all predictions of quantum mechanics are a direct consequence
of one single assumption: Heisenberg’s uncertainty relation.
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Chapter 4

Nonrelativistic Quantum
mechanics

As briefly mentioned in the last section, there has been overwhelming evi-
dence around 1900 that classical (Newtonian) mechanics had to be replaced
by a different theory. One may argue that the double slit experiment by
Gelmer and Davies clearly shows that in this theory [πt, πt′ ] 6= 0 (unless
there are some hidden variables. We shall postpone the discussion of the
existence of hidden variables to the next section.)
Moreover,by carefully analyzing the possible experimental setups to mea-
sure position and momentum of a microscopic object of (small) mass m, W.
Heisenberg then found that there did not seem to be a way to perform an
experiment such that ∆(v)∆(x) < ~

2m
where ∆(O) denotes the inaccuracy of

the measurement of an observable O in a given state.
Thus in view of the relation

∆ω(A)∆ω(B) ≥ 1

2
|ω([A,B])|

it appears natural to assume that for all t one has

[xi(t), ẋj(t)] = δij
i~
m
,

though one is of course not forced to this conclusion yet. However, that this
assumption alone is sufficient to explain all the experimental finding that
lead lead to dismiss classical mechanics, as well as being accordance with all
the other experimental facts. Moreover it lead to many nontrivial predictions
that were later (and still are) confirmed by experiments. Thus, at any rate,
assuming the above commutator relation of position and velocity, leads to a
theory that is to be preferred over classical mechanics.
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However, working with coordinates x as is done above has, to my point
of view, several aesthetic and practical disadvantages. First of all, a physical
result should not depend on the coordinates chosen to calculate (or measure)
it. Thus in dealing with coordinate expressions one always has to check that
the result of a calculation does in fact not depend on the coordinates chosen
to write it down. Secondly, if the configuration space of the system is topo-
logically nontrivial, then there will not exist global coordinates. However, if
one only uses local coordinates, one might not be able to derive global (topo-
logical) effects (which are observed in nature). Thus it appears preferable to
work with a coordinate free expression.
To this end, we first observe that from the commutator [x, ẋ] = i it follows

that for all smooth functions f(x) one has: [f(x), ẋ] = i∂f(x)
∂x

. To see this
one first proves this equality for polynomials, by using the Leibniz rule for
commutators. It is then extended to all smooth functions by a density ar-
gument. Then, as for any function g(x) we have that ˙g(x) = ∂g(x)

∂x
ẋ, and as

functions do commute with each other, we obtain:

[f(x), ˙g(x)] = i
∂f(x)

∂x

∂g(x)

∂x
.

This may still seem to depend on the coordinates – which it does not, in
fact. However, for the following discussion it will be enough to observe that
for all functions f, f the commutator [f, ġ] is itself a function (and thus a
very special operator). It will turn out gratifying, not to limit the explicit
expression for this commutator any further.

4.1 Quantum mechanics on generic configu-

ration spaces

We shall now start to investigate the consequences of imposing the uncer-
tainty relation in the above form. For simplicity we shall abbreviate

at := πt(a) = eiHtπ(a)e−iHt ∀a ∈ A.

Moreover we shall henceforth assume that A can be chosen as the algebra of
smooth functions of compact support on X, i.e. A = C∞c (X ). This of course
implies that X is equipped with with a smooth atlas, i.e. we shall assume
that it is a smooth manifold. Hence we define:

Definition: We shall call a closed physical system (H, π, C∞c (X), H) with
N degrees of freedom nonrelativistic scalar quantum mechanics if
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1.
[at, ḃt] ∈ πt(A) ∀a, b ∈ A.

2.
−i[at, ȧt] ≥ 0 ∀a = a∗ ∈ A.

3. If for some selfadjoint a ∈ A one has [at, ȧt] = 0 for all t then it follows
that a = 0.

Recall that by definition of a physical system we also know that

• H = L2(X,E) for some complex line bundle E →M .

• The commutant π(A)′ is the weak closure of π(A).

• ȧt = i[H, at] for all a ∈ A.

Remark:
Some remarks are in order here:
The term “scalar” in the above definition refers to the restriction to line
bundles E → X. In principle it would also have been possible to take as H
the space of square integrable sections of a bundle of higher rank. We shall
later come back to this possibility when we discuss particles of higher Spin.
The third condition in the above definition essentially requires that there is
an uncertainty relations for all directions in any local chart: If it would not
hold for some a ∈ A, then one may take a as a local coordinate function (at
least on some open set in X on which it is a diffeomorphism to R).
The physical relevance of the second condition will become apparent later.
We should stress however, that the following arguments do not make use of
this condition. It is only added to exclude some examples that are not in
accordance with the empirical facts and would render the name “quantum
mechanics” in the definition problematic. Thus in this sense it can be viewed
as an experimental finding.

Lemma:
The following formula defines a smooth family of Riemannian metrics {gt}t∈R
on X:

gt(f
(1)df (2) , h(1)dh(2)) := −if (1)

t h(1)[f
(2)
t , ḣ

(2)
t ]

where f (1), f (2), h(1), h(2) are all selfadjoint, i.e. real valued functions.

A Sketch of the Proof:
We first need to prove that the above metric is well-defined as a symmetric
Tensor of rank two on the sections of the cotangent bundle, i.e. on one-forms:
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• By the uncertainty relation, i.e. condition 1 in the above definition,
gt(f

(1)df (2) , h(1)dh(2)) is a function.

• Linearity with respect to C(X) follows from the Leibniz-rule for com-
mutators

[AB,C] = A[B,C] + [A,C]B ∀A,B,C

(on appropriate domains), and the uncertainty relation.

• The Leibniz-rule for commutators and for the time derivative then also
gives the compatibility of the definition of gt with the Leibniz-rule for
the exterior differential, viz

gt(d(ff̃) , h(1)dh(2)) = fgt(df̃ , h
(1)dh(2)) + f̃ gt(df , h

(1)dh(2))

• The symmetry of gt follows from

0 =
d

dt
[ft, ht] = [ft, ḣt]− [ht, ḟt]

• The positive definiteness and nondegeneracy of gt then follows from
conditions 2 and 3.

Finally, the stated smoothness follows from the smoothness of U(t) and the
fact that [f, ḣ] is a bounded operator by the uncertainty relation.

As shown in the preliminaries, on any Riemannian manifold there exists
to any smooth function f a canonical vector field grad(f), defined via :

grad(f)(h) = g(df , dh).

Moreover it is shown there that for any complex vector bundle E → X on a
smooth manifold there exists a covariant derivative ∇ on the smooth sections
of E. It is then obvious that ∇ extends to a densely defined symmetric
operator on L2(X,E) = H. (We shall later comment on the selfadjoint
extensions of this operator).
We shall abbreviate ∇h = ∇grad(h). Now since by definition of a covariant
derivative

∇h(fψ) = grad(h)(f)ψ + f∇hψ

one has
[ft,∇ht ] = [ft,−ḣt]
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and thus:

Proposition:
There exists for all t a complex linear map βt : πt(A) 7→ πt(A)′ such that
ḣt = −∇ht + βt(ht).

Definition:
We shall call a nonrelativistic scalar Quantum mechanics regular if the im-
age of the above maps βt is contained in πt(A), i.e. is always a smooth
function.

From now on we shall assume regularity in the above sense. One may
then, of course, continue with the analysis of the properties of the map β.
However there is a quicker route to the main result:
As also shown in the mathematical preliminaries there exists for all covariant
derivatives ∇ and all metrics g on X a covariant Laplacian ∆∇g on H such
that:

• ∆∇g has a dense domain and is symmetric.

•
[∆∇g , f ] = −∇f +

1

2
∆g(f)

where ∆g(f) is the Laplacian of f . Thus it is a smooth function.

• Thus

[[∆∇g , f ], h] = −ig(df , dh) ∀f, g ∈ C∞c (X)

Thus, taking into account that ḣt = i[H, h] we see that for any covariant
derivative ∇ we have that for all t

[[(∆∇gt −H), ht], ft] = 0.

More explicitly one computes with the help of the above stated formulas that
for all h ∈ A we have

[(∆∇gt −H), ht] =
1

2
∆g(ht)− βt(h) ∈ πt(A).

The inclusion follows from regularity. Thus, commuting with the operator
∆∇gt −H is a linear map from C∞c = A to itself that admits the Leibniz-rule.
Hence it is a vector field, γ say, on X. But then, by the same reasoning as
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before, there exists a covariant derivative ∇̃ and an element β̃ of πt(A)′ such
that

H = ∆∇ + ∇̃+ β̃

But then, as explained in the preliminaries, any operator of the above form
can be rewritten as the sum of a covariant Laplacian and an element of the
commutant of πt(A) in a unique way. Finally we should also use the fact
the, by assumption H did not depend on t.

Theorem:
Let (L2(X,E), π, C∞c (X), H be a regular nonrelativistic scalar quantum me-
chanics. Then there exists a unique metric g, a unique covariant derivative
∇ and a unique measurable function V on X such that

H = ∆∇g + V.

We should remark that for a trivial bundle E with ∇ being the Levi-
Civita connection and V = 0 it is known by Chernovs Theorem that the
Laplacian is selfadjoint if and only if g is geodesically complete. Thus we can
also conclude the geodesical completeness here. Note however that the above
Theorem only holds under several additional assumptions like regularity and
strong smoothness of the time evolution. I’m not aware of any compelling
physical argument why these suppositions should be expected to hold.

It is instructive but tedious to calculate the equations of motion for the
position operator qk referring to some local chart1 in the above mentioned
case of a trivial bundle, with Levi-Civita-connection and V = 0. As a result
one obtains that q essentially obeys the geodesic equation. More precisely:

q̈k + 〈Γijk q̇iq̇j〉 = 0

where Γijk denote the Christoffel-symbols, summing over repeated indices is
understood, and 〈·〉 is the total symmetrization, i.e for a product of three
operators, 〈ABC〉 = 1

6
(ABC + ACB +BAC +BCA+ CAB + CBA).

4.2 Simple examples on Rn

In order to gain some understanding of the physical significance of the uncer-
tainty relation and the structure of the Operator H, that results from it, we

1In this case, local coordinates can be represented on H by using a partition of unity.
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shall now discuss some simple, concrete and, most importantly realistic ex-
amples of nonrelativistic scalar quantum mechanics. In later chapters, more
examples of quantum systems will follow.
We shall, however, only state the solution of the equations of motion for these
systems, but not describe the derivation of these results which can be found
in most textbooks.
Moreover, in order to reduce the complexity of expressions to a minimum,
these solutions are only given in “natural” units. Thus we have consistently
~ = 1 = m, while the unit of charge e of the particle is 1, 2 or 1

2
depend-

ing on the circumstance. Whenever this appears necessary, the magnitude
of the corresponding physical effect for macroscopic bodies, respectively for
the electron is given, so that no misunderstanding can arise: The quantum
mechanical effects described in this chapter do not play a role on the macro-
scopic scale, but are very important and easy to observe on the microscopic
scale (e.g. for single atoms or electrons). Note however that this does, of
course, not mean that there can be no quantum effects that are observable on
the macroscopic scale. Indeed, for systems with a large number of particles
some quantum effects can (and often do) accumulate: Many properties of
materials can not be understood with classical (non quantum mechanical)
models, even though that is often not apparent without a detailed analysis.
Yet there are also many spectacular effects that obviously have no classical
explanation, for instance the Quantum Hall effect, Superconductivity and
-fluidity, or the quantization of the magnetic flux.
In these notes, however, we shall only be concerned with systems that contain
only a few particles. Thus effects of this type will play no role. Moreover,
on the atomic scale, spacetime can well be approximated as being flat: For
instance for the hydrogen atom the masses of the participating particles, the
proton and the electron are extremely small (mp ≈ 10−24g, and me ≈ 10−27g)
as compared to their distance 10−8cm. The curvature of spacetime, i.e. the
gravitational field, only plays an important role on the macroscopic scale
(compare e.g with the mass of the earth mEarth ≈ 10+27g and its distance
to a satellite of approximately 10+9cm). However, gravityy should play a
leading role if distances are extremely small, as must have been the case in
the very early universe.
For the systems considered in this chapter we can therefore assume flat space-
time, i.e. X = RN , equipped with the euclidean metric. As RN is paralleliz-
able it is then clear that ∆∇ is given in the global coordinates xi as

∆∇ = −1

2

∑
i

(
∂

∂xi
− Ai)2.
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Here Ai are the (well defined) components of the one form characterizing ∇
with respect to the frame ∂

∂xi
.

Let us now compute the equation of motion for the operators xi : (we shall
comment on domain questions later)

ẍk = FL
k (x, ẋ) + FC

k (x)

where FC
k = − ∂V

∂xk
is the force felt by a particle in the electric potential V ,

while FL
k = 1

2

∑
ij

εkij (ẋiBj(x) +Bj(x)ẋi) is the symmetrized Lorentz-Force,

i.e the force felt by a particle moving with velocity ẋ in a magnetic field
Bj(x) =

∑
mn

εjmn( ∂An
∂xm

). (εijk denotes the completely antisymmetric sym-

bol. Thus ε123 = 1, and for all i, j, k one has εijk = −εikj = −εjik. Hence
εikk = εkki = 0.)
Note that in classical mechanics also other forms of the Force would be al-
lowed. In particular it would be allowed to have terms of higher order in ẋ
or friction terms. Thus we may already conclude:

The only forces compatible with Heisenberg’s uncertainty rela-
tion are the gravitational and the electromagnetic force.

Later we shall see that, if one allows bundles E of higher rank, also
Yang-Mills interactions are compatible with the uncertainty relation. Thus,
from the point of view of a quantum physicist it is no surprise that no other
fundamental forces are found in nature.
In any case, we are now in a position to discuss some more concrete examples.
For all these examples we shall actually not consider the equation of motion
for the observables but rather will consider the time evolution of states and
thus consider the observables as constant. In the physics literature this is
usually called the “Schrödinger picture”. (In contrast to the “Heisenberg
picture” that we mainly considered so far.) Note that given the wave function
ψ(x) at some initial time, t = 0 say, it will be given at any time t by

ψ(x, t) = eiHtψ(x).

In particular it will obey the equation

−i ∂
∂t
ψ(x, t) = (−1

2

∑
i

(
∂

∂xi
− Ai(x))2 + V (x))ψ(x, t)

which is called the Schrödinger equation.
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4.2.1 The Schrödinger representation of the Weyl-algebra

In the sequel we shall only consider examples where Ai = 0. (Examples with
Ai 6= 0 will be considered later.) One then obviously would get ẋ = −i ∂

∂x

(in one dimension, say). As shown before, both the operators x and ẋ are
essentially selfadjoint on L2(R).
Let us now consider the C∗-algebra generated by the two strongly continuous
families of unitaries

U(α) = eiαx, V (β) = eiβẋ α, β ∈ R.

This algebra is called the Weyl-algebra. One readily verifies that for all
ψ(x) ∈ L2(R)

U(α)ψ(x) = eiαxψ(x) V (β)ψ(x) = ψ(x+ β)

and from this one gets:

U(α)V (β) = e−iαβV (β)U(α)

Proposition:
The Weyl-algebra acts irreducibly on L2(R).

Proof: If not, there exists a subspace H̃ invariant under the action of
the Weyl algebra. Thus for all φ in the orthogonal complement of H̃ and all
nonvanishing ψ ∈ H̃ we get from 〈φ, U(α)V (β)ψ〉 = 0:

0 =

∫
eiαxφ(x)ψ(x+ β) dx.

The above integral is the Fourier transform of φ(x)ψ(x + β) taken in the
point α. Now, since the Fourier transform is an isomorphism from L2(R)
into itself, its vanishing implies φ(x)ψ(x + β) = 0. Since β ∈ R can be
chosen arbitrarily this requires φ(x) = 0.

4.2.2 The free particle and the smearing of the wave
function

As the first and simplest example we shall consider a particle in one dimen-
sion, X = R, that is not subject to any force, i.e. Ai = V = 0.
For definiteness we shall consider the initial wave function ψσ(x) = Cσe

−( x
2σ

)2
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at t = 0, i.e a Gaussian with variance σ, normalized to 1. It readily verified
that ψσ lies in the domain of the operators H, x and ẋ = −i ∂

∂x
. Moreover

〈ψσ, xψσ〉 = Cσ

∫
xe−

x2

2σ2 dx = σ2Cσ

∫
∂(e−

x2

2σ2 )

∂x
dx = 0

while

〈ψσ, x2ψσ〉 = Cσ

∫
x2e−

x2

2σ2 dx = −2σ2Cσ
∂

∂α

(∫
e−

αx2

2σ2 dx

)
α=1

= −σ2

so that ∆ψσ(x) = σ.
One then easily checks that

ψ(x, t) = ψσte
2iσ
t

where

σt = σ

√
1 + (

~t
2mσ2

)2

is the corresponding solution of the Schrödinger equation. Thus, as expected
from our previous discussion, the variance for the position operator increases
with time t.

Note that for the convenience of the reader we reintroduced the constants
~ and m in the last formula above. The time to double the initial spread is
of the order of 10−13 seconds for the electron if σ = 10−8cm. Thus even for
a very good initial localization the wave function delocalizes extremely fast
in this case.
On the other hand, for a small macroscopic body with m = 10−3g and
σ = 10−3cm it takes 1011 years till the initial spread doubled.

4.2.3 The Quantum Harmonic Oscillator, energy quan-
tization and the Tunnel-Effect

Next, we shall add the potential V (x) = x2

2
(still in one dimension), so that

we get what is called the quantum harmonic oscillator. The equation of
motion is given as

ẍ = −x.

Let’s consider the classical dynamical system corresponding to this equation.
Recall that the energy of the system, here E = ẋ2

2
+ x2

2
is a conserved quantity,

i.e. dE(x(t))
dt

= 2(ẍ + x) = 0 for any solution x(t) of the equation of motion.
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But then, since ẋ2 is positive, we conclude that for any solution of energy E
one has

x(t) ∈ [−
√

2E,+
√

2E] ∀t ∈ R.

As we shall see this property is not true for the quantum mechanical har-
monic oscillator.

Let’s now return to the quantum case. The Hamilton-Operator is then
given as

H = −1

2

(
∂

∂x

)2

+
x2

2
= a∗a+

1

2
.

Here we have already introduced the two operators

a =
1√
2

(x+
∂

∂x
) a∗ =

1√
2

(x− ∂

∂x
).

since x and i ∂
∂x

do have a common dense domain and are essentially selfad-
joint on this domain, it is clear that the above operators are defined on a
common dense domain on which they are the adjoints of one another. More-
over it follows that H is densely defined and positive H ≥ 0 on its domain
and finally from Friedrich’s Theorem that H is essentially selfadjoint.
One then checks that

[a, a∗] = 1, [H, a] = −a, [H, a∗] = a∗

and that there is a unique (up to a complex constant) vector ψ0 ∈ L2(R)
such that

aψ0 = 0 ⇒ ψ0(x) = Ce−
x2

2 .

Obviously Hψ0 = a∗aψ0 + 1
2
ψ0 = 1

2
ψ0, 1

2
is an eigenvalue of H. Moreover the

vectors ψn = (a∗)nψ0 are eigenvectors of H since [H, (a∗)n] = n(a∗)n (by the
Leibniz rule) and thus:

Hψn = (a∗)nHψ0 + n(a∗)nψ0 = (n+
1

2
)ψn.

One easily checks by direct computation that all ψn are square integrable
and have a nonvanishing norm.

Proposition:
The vectors ψn are a complete orthogonal set. Thus the operator H has
purely discrete spectrum

σ(H) = {(n+
1

2
), n = 0, 1, 2, . . .}
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Proof:
Mutual orthogonality of the ψn is clear, since they belong to different eigen-
values.
Next one notes that the subspace they span is invariant under the action of a∗

and a and thus also under the action of x = 1√
2
(a+a∗) and i ∂

∂x
= i√

2
(a∗−a).

Accordingly it is also invariant under the action of the Weyl-algebra these
operators generate. By irreducibility of the Schrödinger-representation of the
Weyl-algebra it is therefore dense in L2(R). This completes the proof.

Thus we get that, unlike in the classical case, the set of possible values
for the measurement of the energy is discrete, i.e. there is a “Quantization
of the energy levels”. Moreover, while in the classical case solutions of
a given energy E are bound to stay in a compact interval, this is not the
case for the quantum harmonic oscillator. Even for the smallest value of the
energy there is a finite (albeit) small probability to find the particle outside
the interval [−1, 1], i.e. in the region that is forbidden by energy conservation
in the classical case. This is the so called Tunnel-Effect.
We should stress however that there is nevertheless no violation of the con-
servation of energy in the quantum case: H and x do not commute with each
other. Thus if the particle is found in the region outside [1,−1], i.e. after a
measurement of the position, it is no longer in an eigenstate of the energy (if
it was before the measurement).
Note that once we are given a complete set of eigenstates of H it is trivial to
calculate the solution ψ(t) for any given initial vector ψ: As there do exist
complex numbers αn such that

ψ =
∞∑
n=0

αnψn,
∑
n

|αn|2 <∞

the corresponding solution is by linearity of H given as

ψ(t) =
∞∑
n=0

ei(n+ 1
2

)αnψn.

4.2.4 Some comments on the Hydrogen atom

We shall finally consider the potential V (x) = −2
r

in 3 dimensions, where

r =
√
x2

1 + x2
2 + x2

3 is the distance to the origin. In classical physics this
potential describes e.g. the gravitational force between two massive bodies
(in natural units), one of which is located in the origin. Thus one of the two
bodies might e.g. be the sun, the other a planet. Thus obviously among the
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solutions of the classical equations of motion there are also ”bound states”
where the planet moves along an ellipse in a fixed plane around the sun.
As concerns these bound states, they all have negative energy (the potential
energy corresponding to the above potential is negative) and their maximal
radius depends on the energy: The larger the energy , the larger the radius,
which can, in fact, become arbitrarily large. On the other hand, there are
also solutions with arbitrarily small energy (i.e. |E| is very large, as E is neg-
ative for these solutions. The maximal radius tends to zero as E approaches
−∞.
The plane in R in which the orbit of the planet stays depends on the angular
momentum of the planet relative to the sun (which is also a conserved quan-
tity since the above potential is symmetric under rotations.) Every plane in
R3 is possible.

On the other hand the above potential also describes (in other natural
units) the electric (Coulomb-) force between to particles of opposite charge.
One would then expect that the solutions of the equations of motion look
the same as for the gravitational case, essentially. Well, there is a difference,
however: A charge that moves on a circular (or elliptical or any accelerated)
orbit radiates and thus looses energy to the outside electromagnetic field.
Accordingly, there are no stable solutions for the Coulomb-force: All particles
fall in into the particle at the origin after some finite time.
By Rutherford’s experiments it is also well known, that a hydrogen atom
consists of a proton (sitting in the center) and an electron, bound to it, but
being typically quite far away. As the electromagnetic force is by more than a
factor 1034 stronger than the gravitational (force) for these two particles (the
other forces play no role here and are even smaller than the gravitational
one, if present at all), it is clear that the electron must be bound by the
Coulomb-force.
According to classical physics one would thus expect that

• Any value of the energy of the electron is possible (i.e. is in the spec-
trum of the Hamilton-Operator)

• Depending on the energy, any radius of the atom is possible.

• To any value of the energy there exist infinitely many bound states

• The hydrogen atom is not stable. The electron typically drops into the
proton after 10−10 seconds.

Needless to say, none of the above predictions of classical physics is real-
istic, or even close to reality. To start with, hydrogen atoms are quite stable
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and typically exist since 1010 years. Moreover if a hydrogen atom is sub-
jected to electromagnetic radiation it only absorbs certain discrete values of
the energy, which are given by E0( 1

n2 − 1
m2 ) where n,m are any two strictly

positive integers and E0 = 13.6eV . Likewise the atom only admits radiation
according to this formula. Finally all energy levels have a finite degeneracy
and apprixametely the same radius of about 10−10m.

In fact, it turns out that the negative part of the Hamilton-Operator
∆ − 2

r
is given as −E0

n2 for all n = 1, 2 . . . and each level is (2n + 1) − fold
degenerate. In particular it is bound from below (unlike the classical energy)
by −E0.
This explains all the experimental findings (in contrast to classical physics,
which explained none) apart from one: Actually I was a bit unfair to classical
physics when mentioning that the classical solutions would be unstable: This
is only true if one takes into account the coupling of the electron to the elec-
tromagnetic field. However this has not been done for the quantum hydrogen
atom. Thus the discreteness of the spectrum of the quantized hydrogen atom
that is not coupled to the electromagnetic field explains nothing. In fact, the
coupled Hamilton-Operator has purely continuous spectrum. Nevertheless
one can prove the stability of the ground state of the hydrogen atom within
quantum electrodynamics (as has recently been done by Bach, Fröhlich and
Sigal), but that’s to be appreciated as the highly nontrivial result of an ex-
tremely difficult analysis.

4.3 Spin

As turned out in the Stern-Gerlach-experiment described below, the wave
function of the electron is not correctly described as a (square integrable)
section of a complex line bundle: A much more appropriate description is
obtained by using sections of a certain bundle of rank 2. The precise nature
of this bundle has only been understood later in the relativistic description
in terms of the Dirac equation. In fact, in general a bundle of rank 4 has
to be used. We shall describe the Dirac equation and Spin bundles later. It
will then be shown that, in the nonrelativistic limit on R3, Pauli’s approach
to describe the electron by the section of a trivial bundle of rank 2 is fully
justified as an excellent approximation. Further evidence for the existence
of the Spin is given by the Feinstructure and the Zeeman-effect, but also by
the Polarization effects in scattering of electrons. These effects will all be
explained in the discussion of the Dirac equation.
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To be more concrete, the Hilbert space is then given by

H = L2(R3)⊗ C2.

Besides the representations πt of C∞0 (R3) there are then also additional ob-
servables of the form id ⊗ m with m a two by two matrix acting on C2.
Obviously these observables together separate the states. The time evolu-
tion will then again be governed by a Hamilton-Operator which a priori is
now an operator on L2(R3) ⊗ C2. In the next subsection we shall describe
the form of this operator as derived from empirical facts. Later it shall then
be obtained as the nonrelativistic limit of the Dirac-Hamiltonian.

A relevant basis of two by two matrices is given by the identity and the
Pauli matrices:

σ1 =

(
0 1
1 0

)
, σ2 =

(
0 i
−i 0

)
, σ3 =

(
1 0
0 −1

)
.

The Spin-Operators Si = 1
2
σi then obey the commutation relations

[Si, Sj] = iεijkSk

of the Lie-algebra su(2). In fact, as we shall see the Spin can be interpreted as
an “internal” angular momentum of the electron. The total Spin S2 =

∑
i S

2
i

is an conserved quantity, i.e. it commutes with the Hamilton-operator for
all choices of the external (gravitational, electromagnetic, etc) fields, For the
electron one then has S2 = 1

2
(1

2
+ 1) = 3

4
. One says the electron has Spin 1

2
.

There are also particles with Spin 0 (e.g. the π-meson), Spin 1 (e.g. photons,
Gluons or the W - and Z- mesons) and higher Spins (e.g. the Ω-mesons with
Spin 3

2
).

4.3.1 The Stern-Gerlach-Experiment

As stated above, the relation of the Spin to the internal angular momentum,
and thus the dynamics of the Spin degrees of freedom, is only understood in
the relativistic theory, and we shall thus postpone the discussion thereof. In
the chapter on the Dirac-equation we shall discuss all the dynamical couplings
of the Spin and the corresponding observations in atomic physics. For this
and the next chapter it is fully sufficient to describe the coupling of the Spin
to the magnetic field, which historically also lead to the discovery of the Spin.

The relevant term is given as

HP = 2µBS ·B(x) = µB
∑
i

σiBi(x)
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where the constant µB = e
mc

is called the Bohr-Magneton. We should remark
that this term resembles the energy µBL·B of a magnetic dipole, i.e. a charge
with angular momentum L in the magnetic field B.
The total Hamiltonian is then given as

H = H0 +HP

where H0 = ∆∇ + V denotes the Spin-independent term considered above.
The resulting equations of motion in the Heisenberg picture are then given
as

ẍk = FL
k (x, ẋ) + FC

k (x) + 2µB
∑
i

σi
∂Bi

∂xk
.

Thus, unless the magnetic field is constant, there is an additional Force that
results from the coupling of the Spin to the magnetic field.

Let us now consider an electrically neutral atom. Then the Lorentz Force
FL
k and the Coulomb-Force FC

k will vanish. Assuming then that the atom
has an effective Spin 1

2
only the term HP will lead to a nonvanishing force.

An example for such an atom is Ag (silver). To a very good approximation
another example is, of course, provided by the Hydrogen atom: Note that
(as for any atom) the nucleus has a much larger mass mN than the electron,
which is 2000 times lighter than the proton. Hence the coupling of the Spin
of the nucleus (the proton has Spin 1

2
) given by 2 e

mN
σP · B can to a good

approximated be negelected as compared to the same term for the electron.
Suppose further that the magnetic field depends only on one coordinate, x3

say, i.e. ∂B
∂x1

= ∂B
∂x2

= 0. (Such a magnetic field is easily realized experimen-
tally). Then, if a beam of electrons is subjected to B it will obviously split
in two beams corresponding to the two different eigenvalues ±1

2
of S3. This

is the (result of the ) classical experiment performed in 1924 by Stern and
Gerlach. Actually they intended to investigate whether the Ag-atom has a
magnetic dipole moment, i.e. whether there is a nontrivial contribution of
the form L ·B to the classical (unquantized) Hamiltonian. One would then
expect, classically, as this term can take a continuum of values, that the
width of the beam in the x3 direction will be enlarged. The outcome of the
experiment therefor came as a complete surprise.

Note that if the experiment is performed with a magnetic field that has
a gradient only in the x3-direction, one may take one of the two beams,
corresponding to the eigenvalue +1

2
say, and subject it to another magnetic

field with a gradient only in a direction perpendicular to x3. E.g. the x2-
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direction. As the two eigenspinors of the matrix σ2 are given by

1√
2

(
1
±1

)
the beam will then split again in two beams that contain equally many atoms
(as the probability to find each of the eigenvalues ±1 of σ2 is 1

2
if the system

is in the eigenstate (
1
0

)
of σ3.
It is an easy excercise to show that from these experimental observations and
the Ansatz 2µBσ ·B the above form of the matrices σk and their commutation
relations can be deduced.

Note that it then follows, and more importantly from the necessary in-
variance of the term σ · B , that the 3-tupel Sk transforms like a vector
under the change of orthonormal frame xi of R3. Thus if O is any orthogonal
3× 3-matrix, then

S ′i =
∑
k

OkiSi

will be the components of the Spin with respect to the rotated (by O) or-
thonormal frame.
The same statement of course also applies to the tuple of matrices σk. We
may then introduce the component of the Spin with respect to any normal-
ized vector a ∈ R3, a2 =

∑
k a

2
k = 1, as

Sa =
1

2
a · σ =

1

2

∑
k

akσk.

The eigenvalues of Sa will then obviously correspond to measurements of the
Spin along the a-axis (e.g. by a Stern-Gerlach-type experiment).

4.3.2 Two particles with Spin 1
2

It is worthwile to consider the case of two identical electrically neutral atoms
(as described above) in more detail. The Hilbert space may then be described
as H = L2(R6) ⊗ C2 ⊗ C2 with a typical wavefunction given as a linear
combination of terms of the form ψ(x1, x2)⊗ξ1⊗ξ2. Here x1, x2 ∈ R3 denote
the position of the two particles. The Hamilton-Operator is then given as

H = H1
0 +H2

0 + µB(σ1 + σ2) ·B(x1, x2) =: H1
0 +H2

0 +H1
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if we neglect the gravitational interaction of the two atoms (as they are
neutral there is no elctromagnetic interaction).
We shall in the sequel only consider the Spin part C2 ⊗ C2. Let then

σ1
k = 1⊗ σk σ2

k = σk ⊗ 1

denote the observables corresponding to the Spin of the first, respectively
second particle. Note that H above commutes with the operator

σ2
total =

∑
k

(σ1
k + σ2

k)
2

and with the operator τ that interchanges the two particles, in particular

τ(ξ1 ⊗ ξ2) = ξ2 ⊗ ξ1.

Thus we also have
[τ, σ2

total] = 0.

Hence every eigenspace to these operators is invariant under the time evo-
lution. Note that the eigenspace to the eigenvalue −1 of the operator τ is
one-dimensional the elements being of the form

ξ1 ⊗ ξ2 − ξ2 ⊗ ξ1,

while the eigenspace to the eigenvalue +1 is three-dimensional. If e1, e2

denotes a basis of C2 then a basis of the latter eigenspace is given as

e1 ⊗ e1, e2 ⊗ e2, e1 ⊗ e2 + e2 ⊗ e1.

One easily checks that

σ2
total(ξ

1 ⊗ ξ2 − ξ2 ⊗ ξ1) = 0

while e.g.
σ2
total(e1 ⊗ e1) = 2e1 ⊗ e1

and in fact σ2
totalξ = 2ξ for all ξ ∈ C2 ⊗ C2 with τξ = ξ.

Let ξs denote the (up to multiplication with a phase factor) unique nor-
malized eigenvector to the eigenvalue −1 of τ in C2 ⊗ C2. Then we have

eiHtσ2
totale

−iHtξs = σ2
totalξs = 0 ∀t ∈ R.

Thus if the system is at some moment of time in Spin-state ξs it will remain
in this Spin-state at all times.
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Then, if we measure for some component of the Spin, e.g. the component S3,
say, for particle one the eigenvalue 1

2
the measurement of the same component

of the Spin for particle two will necessarilly give the value −1
2
, as one easily

checks that b ∈ R3 one has

(b · σ1)(b · σ2)ξs = −ξs.

To see this one may use a basis β+, β− of C2 of eigenvectors of b · σ. Then it
is clear that there exists a complex number z such that

ξs = z(β+ ⊗ β− − β− ⊗ β+).

Next let a,b ∈ R3 are two orthogonal normalized vectors, a2 = b2 = 1
and a · b = 0. We shall denote the basis of eigenvectors of a · σ, respectively
b · σ, by α±, respectively β±. One then computes that there exist a complex
number w such that

α± = w(β+ ± β−)

and from this it follows that

(a · σ2)(b · σ1)ξs = wz(β− ⊗ β− + β+ ⊗ β+).

Hence the vectors ξs and (a · σ2)(b · σ1)ξs are orthogonal. Therefore the
expectaion value (

ξs, (a · σ2)(b · σ1)ξs
)

= 0

vanishes in this case. Here we have denoted the sscalar product in C2 ⊗ C2

by (·, ·).
If a,b ∈ R3 are two arbitrary normalized vectors, we may decompose a =
(a · b)b + ã where ã · b = 0. We then obtain for the expectation value for
the measurement of (a · σ2)(b · σ1) in the state ξs:(

ξs, (a · σ2)(b · σ1)ξs
)

= −(a · b).
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Chapter 5

In how far can the Quantum
description of reality be
considered complete ?

The title of this chapter refers to the 1935 paper by Einstein, Podolski
and Rosen, entitled “Can the Quantum Mechanical description of reality
be considered complete.” One may expect that the answer to such a simple
YES/NO question may not be found. However, one may also expect that
the question can be modified in such a way that the answer is within reach
of an experimental test. For instance, one may ask, whether the quantum
mechanical description of reality can be considered complete, if, in addition,
we assume that any such description must necessarily be a “local” theory.
In fact, this is the modification J.S. Bell proposed in 1964 (including a clear
and rather general definition of locality). He then showed that this question
can indeed be answered with the help of certain experiments he proposed.
A.Aspect and others then carried out these experiments and obtained the
answer “Yes”. We shall comment on the interpretation of this outcome later.
First we shall have a closer look on these questions, Bell’s ingeniously simple
idea and the experimental verification.

5.1 Hidden variables and the EPR paradoxon

In the paper mentioned in the introduction above, Einstein and his coau-
thors intended to show that quantum mechanics can’t be a complete theory,
whether or not one believes – as Einstein did – in “local realism”.By that
Einstein meant that any property of the system that can be measured with
a sharp value in an experiment must be a real (existing) property of the
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system. “ The Moon is still there, even if nobody looks at it” as he said. We
already saw in the discussion of beables and deterministic theories that this
point of view is not in accordance with quantum theory. For example, the
electron does not have a well-defined position: We can only measure such
a sharp position of the electron at some instant of time, but at the next
instance the electrons wave function will again be spread over some large
region of space. It is worthwhile to discuss Einstein’s objection and the way
out that he suggested in some detail. We shall however not consider the
systems used in the original paper respectively for the experimental test. In-
stead we shall use a simpler system, where the argument is most transparent.

Consider two electrically neutral atoms (e.g. hydrogen atoms) in the
singlet Spin-state ξs, as defined in the last chapter. Let us now reintroduce
the spatial part ψ(x1, x2) of the wave function for this system. We may then
prepare an initial state in which the two particles are most likely found to
be in two distant points x, y ∈ R3 say. The separation of the particles might
be achieved in such a way that the Spin part of the wave function is always
the singlet state ξs (e.g. by using gravitational forces).
Choosing a normalized vector a ∈ R3 we may then measure the component
a · σ1 of the Spin for the atom at the point x. Denoting as before the
eigenvectors of a ·σ1 in C2 to the eigenvalues ±1 by α± the system will then
be in the state

α− ⊗ α+

if we assume for definiteness that we have found the value −1 in the mea-
surement. A subsequent measurement of a ·σ2 in the point y after some time
t will thus give the value +1, irrespective of t. In particular one may choose
t to be short enough, so that no signal (in particular light) that is emitted

at x can reach y in the time t, i.e. t < |x−y|
c

, where c denotes the speed of
light. The result of the measurement then seemingly contradicts causality,
as the atom at the point y cannot know that we performed a measurement
of the spin of its partner at the point x. One may still object that it will
take long enough to prepare the measurement, i.e. to adjust the magnets,
and that the state of the atoms may be influenced by the arrangement of
this setup. However, as pointed out by D.Bohm, one may of course measure
another component b · σ2 of the Spin at y, and it is easily seen that the
apparatus (i.e. the magnet) can be rotated quickly enough from a to b so
that no signal emitted at x can reach y during the time of the rotation and
the subsequent measurement. Indeed, if the measurements is performed with
an ensemble of such pairs of atoms, then one would find for the expectation
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value of measurement of a · σ1 followed by that of b · σ2 in the state ξs:(
ξs, (b · σ1)(a · σ2)ξs

)
= −a · b.

Thus, unless a ·b = 0 the two eigenvalues of b ·σ2 are not equally distributed,
once the measurement of a ·σ1 has been performed. Thus also in this general
case the result of the measurement of b · σ2 is predetermined to some extent
by that of a · σ1.

Einstein, Podolsky and Rosen argued that, as the atom at y cannot know
about the result and the measurement at x the only way it can happen that
the result of the measurement at y is predetermined must be that it has been
predetermined all the time. However, then the question arises why in the
measurement of a · σ1 both eigenvalues are found with equal probability.
They then proposed that there do exist hidden parameters, i.e. degrees of
freedom of the system which can (or simply are) not measured , and which
determine the outcome of any measurement uniquely. We shall describe this
idea in the next section. Before we come to that, however, a few remarks are
in order.

Note that it is not possible for the two experimentalists at x and y to
submit any information faster than the speed of light by this experimental
setup. The point is that they cannot know about the result of each others
experiment, unless they they communicated about it, which however will re-
quire some signal that can at most propagate with the speed of light. This,
of course, has been clear to Einstein. However he did assume that the atoms
also need to know about this measurement.

The latter however need not be the case. In fact, Einstein did mistakingly
assign an individual existence to the spins of the two atoms. This, however,
is, from the modern point of view, not possible for the “entangled” singlet
spate ξs. In fact the state Einstein, Podolsky and Rosen constructed in their
paper can be viewed as the first example of an entangled state. The fact that
such states can be realized experimentally nowadays is expected to cause –
e.g. via the development of quantum computation and quantum cryptog-
raphy – another technical revolution. Einstein, in the above paper was the
first to realize that the most important difference of quantum and classical
mechanics is the existence of such states in quantum theory.

In fact, what make these states – first shown to exist by Einstein, Podol-
sky and Rosen – so remarkable is that they are highly nonlocal, but have to
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be viewed as a single entity. The (Spins of ) the two atoms behave just as
one irrespective of how far the two atoms have been separated.
Schrödinger was the first to point out that Einsteins argument rather than
constructing a contradiction in the Kopenhagen interpretation of quantum
theory in fact clearly pointed out the nonlocal character of quantum mechan-
ics as compared to classical mechanics. He also introduced the fashionable
term “entangled states” for such nonlocal states.

5.2 Bell’s inequalities

Einstein’s idea to resolve the problem he thought to be raised by the Gedanken-
experiment (which became a real experiment only later) considered above has
been that there exist hidden parameters. Thus, to stay in our operational
language, the set of all observables does not separate the states, but to any
state ω and any observable O there is a unique value o(ω) that can be found
in measurements of O in the state ω.

Recall that for a system that admits hidden parameters it is not necessar-
ily true that the sum (respectively the product) of two different observables
is an observable. Thus, when dealing with hidden parameters we have to re-
frain from the C∗-algebraic framework advocated so far. This has first been
observed by D.Bohm and later been stressed by J.S.Bell. In fact, after the
appearance of the paper by Einstein, Podolsky and Rosen several authors
published proofs that a theory of hidden parameters can not be consistent
with the already existing empirical facts. The first such proof is due to von
Neumann. Later Jauch and Pirron and then Gleason pointed out some im-
portant refinements of von Neumann’s argument. However all these proofs
made essential use of the assumption that the sum of two observables is al-
ways an observable.
Yet, in 1951 D.Bohm gave a concrete counterexample that showed that there
do exist operationally well defined hidden variable theories which do not ful-
fill this linearity assumption but are in accordance with most empirical facts.

Thus it had become clear that to dismiss Einstein’s idea – if that is possi-
ble at all – additional assumptions that are physically well motivated would
be needed. J.S.Bell then pointed out in 1962 that such an additional assump-
tion is locality. In fact, Einstein was mainly concerned with the apparent lack
of locality in quantum theory. The main purpose of the hidden parameters
then has been to restore this locality. Thus Bell assumed that the theory
with hidden parameters should be a local theory.
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To become more explicit Bell made the following assumptions on the
hypothetical theory with hidden parameters that describes the Gedankenex-
periment by Einstein, Podolsky and Rosen:

1. Besides the vector ξs the state of the system is described as a point
λ ∈ X in some probability space X.

2. Given a normalized vector a ∈ R3 the measurement of the observable
a ·σ1 in the state corresponding to the state λ ∈ X will give the unique
answer A(a, λ) ∈ {−1,+1}. Thus for any such normalized a ∈ R3 there
is a random variable

A(a, ·) : X → {−1,+1}

3. Likewise, to the measurement of the observable b ·σ2 with b2 = 1 there
is a random variable

B(b, ·) : X → {−1,+1}.

4. Given a state the corresponding point λ ∈ X can not be determined
by experiments. However one may assume that for any given ensemble
of N such systems there is a probability distribution ρ i.e.

ρ(λ) ≥ 0

∫
X

ρ(λ) dλ = 1

such that ρ(λ)N is the number of systems in the state λ ∈ X.

5. The expectation value of the observable a ·σ1 for that ensemble is then
given as

P 1
a =

∫
X

A(a, λ)ρ(λ) dλ.

Likewise we have the expectation value

P 2
b =

∫
X

B(b, λ)ρ(λ) dλ.
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6. (Locality) By choosing the time interval between the measurement of
a · σ1 and b · σ2 short enough we may assume that A(a, ·) and B(b, ·)
are independent random variables. Thus the expectation value for the
measurement of a · σ1 followed by that of b · σ2 is given as

P (a,b) =

∫
X

A(a, λ)B(b, λ)ρ(λ) dλ

Theorem (Bell’s inequality):
Under the above six assumptions one has for any three normalized vectors
a,b, c ∈ R3:

1 + P (b, c) ≥ |P (a,b)− P (a, c)|
Proof:

Note that in view of the properties 2,3 and 4 P (a,b) can not be less than
−1. Moreover it can be −1 at a = b (which is the experimentally observed
value) only if

A(a, λ) = −B(a, λ)

for almost all λ ∈ X,i.e. except at a set of points λ of zero probability. Thus
we may write

P (a,b) = −
∫
X

A(a, λ)A(b, λ)ρ(λ) dλ.

Then we have

P (a,b)− P (a, c) = −
∫
X

[A(a, λ)A(b, λ)− A(a, λ)A(c, λ)] ρ(λ) dλ

=

∫
X

A(a, λ)A(b, λ) [A(b, λ)A(c, λ)− 1] ρ(λ) dλ

where (A(·, ·))2 = 1 has been used. Thus from the triangle inequality we
obtain

|P (a,b)− P (a, c)| ≤ −
∫
X

[1− A(b, λ)A(c, λ)] ρ(λ) dλ

The statement of the theorem now follows, since the second term on the right
hand side is P (b, c).

The remarkable fact about this seemingly innocent inequality is that it is
not obeyed by the quantum mechanical expectation value

(ξs, (b · σ2)(a · σ1)ξs) = −a · b
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computed in the last chapter. To see this one may take the explicit example
of normalized vectors a,b, c ∈ R3 chosen such that

a · c = 0, a · b = −b · c =
1√
2
.

Thus, the above inequality gives a possibility to distinguish hidden vari-
able theories from quantum mechanics experimentally. Such experiments re-
quire a very high accuracy (in particular because the set of vectors in R3 for
which the quantum mechanical prediction for the expectation value contra-
dicts the inequality is extremely small) and could only have been performed
in the 1980ies. The result of these experiments clearly rules out hidden pa-
rameter theories that obey the above 6 assumptions.

However, Bell himself stressed that this result does not rule out the pos-
sibility that, after all, the fundamental theory is a completely deterministic
theory admitting hidden variables. But it can , in view of these experimen-
tal findings, not be a local theory in the above sense. Bell and Bohm gave
explicit examples of nonlocal hidden variable theories that do describe the
above Gedankenexperiments correctly and do not obey Bell’s inequalities.
Thus, in view of the fact that most theoretical physicists no longer consider
locality as an indespensable pillar of physics, hidden variable theories are not
ruled out at all. Yet, as I should stress, they do not seem to appealing to me
either, as they imply that there is an important part of reality that we will
never know about.

101



102



Chapter 6

Bibliography

Here a selection of references will be given, ordered by subject and with some
additional remarks.

Excellent introductions to functional analysis and operator algebras
are

• B.Blackaddar Operator Algebras, Enzycl. of Mathematical Sciences
Vol.122, Springer 2006

• O.Bratteli and D.W.RobinsonOperator Algebras and Quantum Sta-
tistical Mechanics Vol I, Springer 1979; Vol II, Springer 1981

• J.Dixmier C∗-algebras North Holland 1977

• M.Reed and B.Simon Methods of Modern Mathematical Physics Vol
I 1980, Vol II 1975

• F.Riesz and B.Sz.Nagy Functional Analysis Fred.Ungar Publ., New
York 1955 (Reprint: Dover 1990)

• S.Sakai C∗-algebras and W ∗-algebras Springer 1971 (reprint 1998)

• R.V.Kadison and J.R.Ringrose Fundamentals of the Theory of Op-
erator Algebras Vol I.-IV Academic Press 1983

Some (of) many good introductions to Differential geometry that
mainly consider aspects that are important for applications in physics (except
the rather general introduction given by Spivak) include
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