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1. INTRODUCTION 5

1. Introduction

These lectures constitute an introduction to the theory of differential
invariants. Calculation of differential invariants is explained by means of
examples from the theory of ordinary differential equations.

In contrast to the Cartan’s method [11], we perform all calculations
and constructions of differential invariants in natural bundles of considered
objects. It seems to us that this approach is more natural.

These lectures were given during the autumn semester 2005 when I was
visiting Mathematical Institute of the Silesian University in Opava.

I would like to thank prof. Michal Marvan for invitation and fruitful
discussions over the contents of these lectures, prof. Oldřich Stoĺın, who
conducted the seminars, for discussions over exercises and problems for these
lectures. Special thanks are due to my Czech students Radek Hudeczek,
Ivana Kvasniaková, Roman Odstrčil and Petr Vojčák for numerous questions
they asked, helping me to improve the exposition of the material.

I am also grateful to Fond Rozvoje Vysokých Škol of Czech Republic for
financial support under project 3512/2005/F6c “Inovace výuky diferenciálńı
geometrie.”

Opava, December 20, 2005
Valeriy Yumaguzhin.





CHAPTER 1

Jet bundles

In our approach, differential invariants are defined on jet bundles. There-
fore, following [9], in this chapter we introduce jets and jet bundles. Next we
introduce the Cartan distribution, which is a necessary tool to investigate
jet bundles.

A different approach to differential invariants, connected with G-stru-
ctures, depends on the notion of k-frames. For later use (in Chapter 8) we
also introduce differential groups, their Lie algebras, and bundles of k-frames
on a smooth manifold. Here we follow [1].

Below, all manifolds and maps are supposed to be smooth. By R we
denote the field of real numbers and by Rn we denote the n-dimensional
arithmetic space.

We assume summation over repeated indices in all formulas. For exam-
ple, we will write

uij1...jk
∂

∂uij1...jk
instead of

n∑
i=1

m∑
j1=1

. . .

m∑
jk=1

uij1...jk
∂

∂uij1...jk
.

1. Jets

Let X be a smooth n-dimensional manifold and let p be some point of
X, let Y be a smooth m-dimensional manifold and let q be some point of Y .
By F we denote the set of all smooth maps from X to Y defined in neigh-
borhoods of p and sending p to q. Fix some coordinate system x1, . . . , xn

in a neighborhood of p and some coordinate system y1, . . . , ym in a neigh-
borhood of q. Consider two maps f, g ∈ F . In terms of these coordinate
systems, these maps are defined by collections of functions:

f = (f1(x1, . . . , xn), . . . , fm(x1, . . . , xn)),

g = (g1(x1, . . . , xn), . . . , gm(x1, . . . , xn)) .

We say that f and g are k-equivalent, k = 0, 1, 2, . . ., if

f(p) = g(p),
∂f i

∂xj
(p) =

∂gi

∂xj
(p), . . . ,

∂kf i

∂xj1 . . . ∂xjk
(p) =

∂kgi

∂xj1 . . . ∂xjk
(p)

i = 1, . . . ,m; j, j1, . . . , jk = 1, . . . , n

7



8 1. JET BUNDLES

Clearly, the introduced relation is an equivalence relation on F . By [f ]kp
denote the equivalence class of f w.r.t. this relation. It is easy to prove that
[f ]kp is well defined, that is [f ]kp is independent of the choice of the coordinate
systems in neighborhoods of p and q. The equivalence class [f ]kp is called the
k-jet of f at p. The point p and f(p) is said to be the source and the target
of the k-jet [f ]kp, respectively.

Consider two smooth maps of smooth manifolds f : X → Y and g : Y →
Z. Let p ∈ X. Suppose that the point f(p) is contained in the domain of g.
Then the formula

[f ]kp · [g]kf(p) = [g ◦ f ]kp

defines the multiplication of jets.

Some constructions based on jets:
1. Consider the set of all diffeomorphisms of Rn to itself preserving the

point 0 ∈ Rn. By Dk(n) we denote the set of all k-jets at 0 of these diffeo-
morphisms.

The jet multiplication

[d1]k0 · [d2]k0 = [d1 ◦ d2]k0

defines the group structure on Dk(n). Obviously, in this group,

([d]k0)
−1 = [d−1]k0 and [id]k0 is the unity of the group Dk(n) .

The standard coordinates x1, . . . , xn on Rn generate standard coordi-
nates xij , . . . , x

i
j1...jn

on Dk(n) so that for any [d]k0 ∈ Dk(n)

xij( [d]k0 ) =
∂di

∂xj
(0), . . . , xij1...jn( [d]k0 ) =

∂kdi

∂xj1 . . . ∂xjk
(0) .

Obviously, in this group, the group operation Dk(n) ×Dk(n) → Dk(n)
and the operation [d−1]k0 7→ ([d]k0)

−1 are smooth maps. It follows that Dk(n)
is a Lie group.

The Lie groupDk(n) is called the differential group of order k. Obviously,
D1(n) is the complete linear group GL(n).

By Dr
k(n), r = 0, 1, 2, . . . , k we denote the subgroup of Dk(n) defined by

Dr
k(n) = { [d]k0 ∈ Dk(n) | [d]r0 = [id]r0 } .

2. Consider the set of all vector fields ξ in Rn such that ξ
∣∣
0
= 0. By L0

k(n)
we denote the set of all k-jets at 0 of these vector fields.There exist a natural
structure of Lie algebra over R on L0

k(n). This structure is defined by the
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operations

λ[ξ]k0
df
= [λξ]k0 , [ξ1]k0 + [ξ2]k0

df
= [ξ1 + ξ2]k0 ,[

[ξ1]k0, [ξ2]
k
0

] df
=

[
[ξ1, ξ2]

]k
0

∀ λ ∈ R , ∀ [ξ1]k0 , [ξ2]
k
0 ∈ L0

k .

By Lrk, r = 0, 1, 2, . . . , k, we denote the subalgebra in L0
k defined by

Lrk =
{

[X]k0 ∈ L0
k

∣∣ [X]r0 = 0
}
.

The algebras L0
k and Lrk are identified with the Lie algebras of Dk(n)

and Dr
k(n) respectively.

3. By Jk(X,Y ) we denote the set of all k-jets of all smooth local maps
from X to Y . Obviously, J0(X,Y ) = X × Y . Introduce the map

π : Jk(X,Y ) → J0(X,Y )

by the formula π : [f ]kp 7→ [f ]0p = (p, f(p)).
Let x1, . . . , xn be a coordinate system on some open set U ⊂ X and

let u1, . . . , um be a coordinate system on some open subset V ⊂ Y . These
coordinate systems generate the coordinate system

xj , ui, uij , . . . , u
i
j1...jk

,

j, j1 . . . jk = 1, . . . , n; i = 1, . . . ,m

on the subset π−1(U × V ) ⊂ Jk(X,Y ) in the following way. Let [f ]kp ∈
π−1(U × V ), then

xj([f ]kp) = xj(p), ui([f ]kp) = ui(f(p)),

uij([f ]kp) =
∂f i

∂xj
(p), . . . , uij1...jk([f ]kp) =

∂kf i

∂xj1 . . . ∂xjk
(p).

The obtained coordinate systems generate the structure of a smooth mani-
fold on Jk(X,Y ).

2. Bundles

Suppose B and F are smooth manifolds. The map

pr1 : B × F → B , pr1 : (b, f) 7→ b

is called a trivial bundle.
A map S : B → B×F is called a section of the bundle pr1 if pr1 ◦S = idB.
Let x1, . . . , xn be a coordinate system on some open set U ⊂ B and

let u1, . . . , um be a coordinate system on some open subset V ⊂ F . Then
the coordinate system x1, . . . , xn, u1, . . . , um is defined on the open subset
U × V of the manifold B × F . Let S be a section of pr1 such that its image
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is contained in U × V . Then its domain contains in U and S is described in
terms of the coordinates x1, . . . , xn, u1, . . . , um on U × V by the formula

S(x1, . . . , xn) =
(
x1, . . . , xn, S1(x1, . . . , xn), . . . , Sm(x1, . . . , xn)

)
.

As usual, we write

S(x1, . . . , xn) =
(
S1(x1, . . . , xn), . . . , Sm(x1, . . . , xn)

)
.

Suppose there are given three smooth manifolds E, B, and F and a
smooth map π : E → B. The quadruple (E, π,B, F ) is called a locally
trivial bundle or simply a bundle if the following conditions hold:

(1) π is surjective,
(2) for any point p ∈ M , there exist a neighborhood U of p and a

diffeomorphism ϕ : π−1(U) → U ×F , such that for any e ∈ π−1(U)

π(e) = pr1 ◦ϕ(e) , (2.1)

where pr1 : U × F → U is the projection onto the first component,
that is pr1 : (x, y) 7→ x.

Instead of (E, π,B, F ), we can write π : E → B, or simply E.
E is called a total space, B a base, F a standard fiber, and diffeomor-

phisms ϕ : π−1(U) → U ×F a local trivializations. For any point b ∈ B, the
set π−1(b) is called the fiber over b.

From the second condition of this definition we get that the bundle π is
organized as a trivial bundle locally, on every subset π−1(U).

A map S : B → E is called a section of the bundle π if π ◦ S = idM .
Suppose dimB = n and dimE = n + m. Consider a local trivial-

isation ϕ : π−1(U) → U × F of π. Let x1, . . . , xn be a coordinate sys-
tem on U and let u1, . . . , um be a coordinate system on some open subset
V ⊂ F . Then x1, . . . , xn, u1, . . . , um is a coordinate system on the open sub-
set U×V ⊂ U×F . This coordinate system is transferred on the open subset
ϕ−1(U×V ) ⊂ E by the inverse diffeomorphism ϕ−1 . The coordinate system
x1, . . . , xn, u1, . . . , um obtained on ϕ−1(U × V ) is called special.

From (2.1), we get that in terms of the special coordinate system, the
map π is described by the formula

π(x1, . . . , xn, u1, . . . , um) = (x1, . . . , xn)

and a section S of π such that its image contains in ϕ−1(U ×V ) is described
by

S(x1, . . . , xn) =
(
S1(x1, . . . , xn), . . . , Sm(x1, . . . , xn)

)
. (2.2)

Examples.
1. Let M be a smooth n-dimensional manifold, Tp(M) its tangent space

at p ∈ M . Put T (M) =
⋃
p∈M TpM . Then the natural projection π :

T (M) → M sending a tangent vector vp at the point p to this point p
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is a locally trivial bundle. The standard fiber of this bundle is Rn. This
bundle is called the tangent bundle of M . Any section of a tangent bundle
is a vector field.

2. The cotangent bundle T ∗(M) of M . More generally, the bundle of
tensors of type (p, q) over M .

3. Let M be an n-dimensional smooth manifold. Consider all diffeomor-
phisms of neighborhoods of 0 ∈ Rn to M . By Pk(M) we denote the set of
k-jets at 0 of all these diffeomorphisms. The following natural projection
holds:

πk : Pk(M) →M , πk : [s]k0 7→ s(0) .
A local chart (U, (x1, . . . , xn) ) in M generates the local chart in Pk(M)

(π−1
k (U), (xi, xij , . . . , x

i
j1...jk

) ). In this chart, the coordinates of a point [s]k0 ∈
π−1
k (U) are calculated by the formula

xij1...jr([s]
k
0) =

∂r(xi ◦ s)
∂tj1 . . . ∂tjr

,

i, j1, . . . , jr = 1, . . . , n , r = 0, 1, . . . , k ,

where t1, . . . , tn are the standard coordinates on Rn. Now we see that Pk(M)
is a smooth manifold.

It is easy to prove that the quadruple (Pk(M), πk, M, Dk(n) ) is a
smooth locally trivial bundle. It is called the bundle of k-frames of M .

The group Dk(n) acts freely and transitively on the fibers of this bundle:

[s]k0 · [d]k0 = [s ◦ d]k0 ∀ [s]k0 ∈ Pk(M) , ∀ [d]k0 ∈ Dk(n) .

3. Jet bundles

By Jkπ denote the set of all k-jets of all sections of π. Obviously, J0π =
E. Consider the following natural maps:

πk,r : Jkπ → Jrπ , πk,r : [S]kp 7→ [S]rp ,

πk : Jkπ → B , πk : [S]kp 7→ p

The quadruple (Jkπ, πk, B, Jk(B,F )) is a locally trivial bundle. Indeed,
a special coordinate system xj , ui, on W = ϕ−1(U × V ) ⊂ E defines the
coordinate system xj , ui, uij , . . . , u

i
j1...jk

on the subset π−1
k,0(W ) of Jkπ in the

following way. Let θk ∈ π−1
k,0(W ) and πk(θ) = p. Then there exist a section

S of π such that [S]kp = θk. In the special coordinate system xj , ui, S is
described by (2.2). Then

xj(θk) = xj(p), ui(θk) = Si(p),

uij(θk) =
∂Si

∂xj
(p), . . . , uij1...jk(θk) =

∂kSi

∂xj1 . . . ∂xjk
(p).
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This coordinate system in Jkπ is called special, too. These special coordinate
systems define the structure of a smooth manifold on Jkπ. It is easy now to
check all the other conditions of a locally trivial bundle.

Any section S of π generate the section of Jkπ

jkS : B → Jkπ, jkS : p 7→ [S]kp.

In terms of special coordinates, this section is described by

S(x) =
(
Si(x),

∂Si

∂xj
(x), . . . ,

∂kSi

∂xj1 . . . ∂xjk
(x)

)
.

By LkS we denote the graph of the section jkS.

4. Cartan distributions

Let LkS be graph of some section jkS of πk and let θk ∈ LkS . By Tθk
LkS

denote the tangent space to LkS at θk. Suppose θk = (xj , ui, uij , . . . , u
i
j1...jk

)
in a special coordinate system, then Tθk

LkS is spanned by the vectors

∂

∂xj
+ uij

∂

∂ui
+ . . .+ uij1...jk−1j

∂

∂uij1...jk−1

+
∂k+1Si

∂xj1 . . . ∂xjk∂xj
(p)

∂

∂uij1...jk
, j = 1, 2, . . . , n . (4.1)

Let θk ∈ Jkπ. Consider all graphs LkS passing through θk. By Cθk
denote

the subspace of Tθk
Jkπ spanned by all subspaces Tθk

LkS of these graphs. The
space Cθk

is called the Cartan plane at the point θk.
From the description of Tθk

LkS in a special coordinate system we get that
Cθk

is spanned by the vectors

∂

∂xj
+ uij

∂

∂ui
+ . . .+ uij1...jk−1j

∂

∂uij1...jk−1

, j = 1, 2, . . . , n

and all vectors of the form
∂

∂uij1...jk
.

Obviously, Cθ0 = Tθ0J
0π.

The distribution Ck : θk → Cθk
is called the Cartan distribution on Jkπ.

In special coordinate system, the distribution Ck is defined by the fol-
lowing differential 1-forms, which are called the Cartan forms:

dui − uij dx
j , duij1 − uij1j dx

j , . . . , duij1...jk−1
− uij1...jk−1j

dxj ,

i = 1, 2, . . . ,m; j, j1, . . . , jk = 1, 2, . . . , n .
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In other words, ξ ∈ Tθk
belongs to Cθk

iff ξ is a solution of the system of
linear homogeneous equations

(dui − uij dx
j)(ξ) = 0 ,

. . .

(duij1...jk−1
− uij1...jk−1j

dxj)(ξ) = 0

i = 1, 2, . . . ,m; j, j1, . . . , jk = 1, 2, . . . , n .

5. Exercises

(1) Prove that the set Jk(X,Y ) consisting of all k-jets of all smooth
maps X → Y is a smooth manifold.

(2) Prove that special coordinate systems in Jkπ define the structure
of a smooth manifold on Jkπ.

(3) Prove that (Jkπ, πk, B, Jk(B,F )) is a locally trivial bundle.
(4) Prove that the bundle of k-frames of M is a locally trivial bundle.





CHAPTER 2

Lie transformations

Differential invariants are objects which are invariant w.r.t. Lie transfor-
mations of jet bundles. Therefore in this chapter, following [9], we introduce
Lie transformations of jet bundles. In particular, we introduce point and
contact transformations. We study lifts of these transformations both from
the geometric point of view and from the coordinate point of view.

1. Point transformations

An arbitrary diffeomorphism f : J0π → J0π is called a point transfor-
mation.

For any k = 1, 2, . . . a point transformation f can be lifted in a unique
way to the diffeomorphism f (k) : Jkπ → Jkπ so that for any k1 > k2 ≥ 0
the diagram

Jk1π
f (k1)

−−−−→ Jk1π

πk1,k2

y yπk1,k2

Jk2π −−−−→
f (k2)

Jk2π

is commutative (in the domain of f (k1)), here we suppose f (0) = f .

1.1. The geometric description. Let us describe f (k) in geometric
terms. Let θk+1 ∈ Jk+1π, let θk = πk+1,k(θk+1), and let S be a section of π
such that [S]k+1

p = θk+1.

Lemma 2.1. The k+ 1-jet θk+1 is identified in the natural way with the
tangent space Tθk

LkS

Proof. The proof follows from (4.1). �

The tangent space Tθk
LkS identified with θk+1 is called the R-plane of

θk+1.
Let us construct f (1). Consider an arbitrary point θ1 = [s]1p. The map

f∗ transforms the R-plane Tθ0L
0
s of θ1 onto the tangent plane f∗(Tθ0L

0
s)

at the point f(p). If this transformed plane projected onto TpB without
degeneration (that is π∗ : f∗(Tθ0L

0
s) → TpB is an isomorphism), then some

15
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neighborhood of s(p) in L0
s is transformed to L0S for some section S and

the transformed plane f∗(Tθ0L
0
S) is an R-plane of [S]1f(p). By definition, put

f (1)(θ1) = [S]1f(p) .

It is easy to check that f (1) is defined on some open almost everywhere dense
subset U ⊂ J1π.

Obviously, π1,0 ◦ f (1) = f ◦ π1,0.
Let us prove the uniqueness of f (1). Suppose there exist diffeomorphism

h : J1π → J1π such that π1,0 ◦ h = f ◦ π1,0. Then the diffeomorphism
f (1) ◦h−1 preserves all fibers of the bundle π1,0. It is easy to check now that
f (1) ◦ h−1 = id

Let us construct f (2). Consider an arbitrary point θ2 = [s]2p ∈ U . Suppose
f (1)(θ1) = [S]1f(p), where θ1 = π2,1(θ1). In the first step, we proved that f (1)

transforms L1
s onto L1

S . It follows that f (1)
∗ transforms the tangent space

to L1
s at θ1 to the tangent space to L1

S at f (1)(θ1). In other words, f (1)
∗

transforms the R-plane of θ2 = [s]2p to the R-plane of [S]2f(p). By definition,
put

f (2)(θ2) = [S]2f(p) .

Thus f (2) is defined on the open set (π2,1)−1(U). Obviously, π2,1 ◦ f (2) =
f (1) ◦ π2,1

The uniqueness is proved analogously. Continuing in the same way, we
obtain f (2), f (3), . . ., f (k) satisfying required condition.

1.2. The coordinate description. Let us describe f (k) in terms of
special coordinates.

At first consider the simplest example. Let π = pr1 : R1 ×R1 → R1 and
let a point transformation f be defined by

X = X(x, u) , U = U(x, u) (1.1)

Consider an arbitrary section s : x 7→ u = s(x) of π. Suppose f transforms
the graph L0

s of this section to the graph L0
S of some section S : X 7→ U =

S(X). Then corresponding points (x, s(x)) and f(x, s(x)) = (X,S(X)) of
these graphs satisfy the equations

X = X(x, s(x)), (1.2)

S(X(x, s(x))) = U(x, s(x)) . (1.3)

The first one means transformation of variable x of the section s to variable
X of the section S. The second one means that the a value of the section
S is expressed in the terms of the corresponding value of s. It means that
derivatives of the function S are expressed in the terms of derivatives of s.
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In other words, every jet [S]kX of S is expressed in terms of the jet [s]kx of s.
Indeed, differentiating equation (1.3) w.r.t. x, we obtain

S′X · (Xx + s′x ·Xu) = Ux + s′x · Uu .

It follows

S′ =
Ux + s′Uu
Xx + s′Xu

.

Differentiating equation (1.3) two times w.r.t. x, we obtain

S′′ =
1

(Xx + s′Xu)2
[ (
Uxx + s′′Uu + s′(Uxu + s′Uuu)

)
(Xx + s′Xu)

− (Ux + s′Uu)
(
Xxx + s′′Xu + s′(Xxu + s′Xuu)

) ]
And so on.

Note that the transformed jet [S]kX is expressed in the terms of k-jet [s]kx
and k-jet of f at the point (x, s(x)), which is the source and the target of
[s]kx. This means that the equations

X = X(x, u) , U = U(x, u) , U1 =
Ux + u1Uu
Xx + u1Xu

,

U2 =
1

(Xx + u1Xu)2
[ (
Uxx + u2Uu + u1(Uxu + u1Uuu)

)
(Xx + u1Xu)

− (Ux + u1Uu)
(
Xxx + u2Xu + u1(Xxu + u1Xuu)

) ]
,

. . .

Uk =
1

(Xx + u1Xu)k
[
. . .

]
define the diffeomorphism f (k) : Jkπ → Jkπ.

The operator

D =
∂

∂x
+ u1

∂

∂u
+ . . .+ uk+1

∂

∂uk
+ . . . (1.4)

is called the operator of total derivative w.r.t. x. It makes possible to rewrite
the equations defining f (k) in the following way

X = X(x, u) , U = U(x, u) , U1 = ∇(U) , . . . , Uk = ∇k(U) , (1.5)

where ∇ = (1/D(X))D.
Denominators of equations (1.5) contain D(X) = Xx + u1Xu. It fol-

lows that f (1) is defined only on the open set W = J1π \ V , where V =
{ (x, u, u1) ∈ J1π | Xx + u1Xu = 0 }. Clearly, every transformation f (k),
k > 1, is defined on the open set π−1

k,1(W ).
It follows from the definition that f (k) preserves the Cartan distribution

Ck.
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Consider the general case. Let f : J0π → J0π be a point transformation,
let xj , ui be a special coordinate system on an open set W belonging to
domain of f , and let Xj , U i be a special coordinate system on the open set
f(W ). Then in terms of these coordinates, f is described by the formulas

Xj′ = Xj′(xj , ui) ,

U i
′
= U i

′
(xj , ui) , i, i′ = 1, . . . , n; j, j′ = 1, . . . ,m

(1.6)

By the same way as above, we get

Si
′
j′(X

j′

xj +Xj′

uiu
i
j ) = U i

′

xj + U i
′

uiu
i
j

Finally, introducing operator of total derivative w.r.t. xj

Dj =
∂

∂xj
+ uij

∂

∂ui
+ . . .+ uij1...jkj

∂

∂uij1...jk
+ . . . , (1.7)

we obtain the following formula describing f (1):

Xj′ = Xj′(xj , ui) ,

U i
′
= U i

′
(xj , ui) , i, i′ = 1, . . . , n; j, j′ = 1, . . . ,m ,U1

1 . . . U
m
1

. . .
U1
n . . . U

m
n

 =

D1(X1) . . . D1(X1)
. . .

Dn(Xn) . . . Dn(Xn)

−1

·

D1(U1) . . . D1(Um)
. . .

Dn(U1) . . . Dn(Um)


It is clear that we can obtain formulas describing f (2), . . . , f (k). But they
are very cumbersome.

Clearly, f (1) is defined only on the open set W = J1π \ V , where

V =
{

(xj , ui, uij) ∈ π−1
1,0(W )

∣∣∣ det

D1(X1) . . . D1(X1)
. . .

Dn(Xn) . . . Dn(Xn)

 = 0
}

Similarly, every transformation f (k), k > 1, is defined on the open set
π−1
k,1(W ).

Thus a lifted point transformation f (k), k = 1, 2, . . . , is defined on some
open everywhere dense subset of Jkπ

Obviously, f (k) preserves the Cartan distribution Ck.

2. Contact transformations

2.1. Consider diffeomorphisms from J1π to itself. It is natural to con-
sider diffeomorphisms transforming every section of π1 of the form j1S to
some section of the same form. Clearly, these diffeomorphisms preserve the
Cartan distribution on J1π. It can be proved that a diffeomorphism of J1π
preserving the Cartan distribution on J1π transforms every section of of the
form j1S to some section of the same form.
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An arbitrary diffeomorphism f : J1π → J1π preserving the Cartan
distribution C1 is called a contact transformation.

Examples:
(1) Let f : J0π → J0π be a point transformation, then f (1) is a contact

transformation.
(2) Let π = pr1 : R1 ×R1 → R1. Consider a transformation f : J1π →

J1π defined by

X = −u1 , U = u− xu1 U1 = x

It is a contact transformation. Indeed, dU −U1dX = −u1dx+du−
xdu1−x(−du1) = du−u1dx. This transformation is called the Le-
gendre transformation. Obviously, there is no point transformation
g such that f = g(1).

Let n be dimension of the base B of the bundle π and let m be dimension
of the fiber of π.

Theorem 2.2. If m > 1, then for every contact transformation f :
J1π → J1π, there exist a point transformation g : J0π → J0π such that
f = g(1).

2.2. Let us obtain the general form of a contact transformation f in
terms of special coordinates.

Consider the case n = m = 1. In special coordinates, f is described by

X = X(x, u, u1) , U = U(x, u, u1) , U1 = U1(x, u, u1)

From definition of a contact transformation, we get dU − U1dX = λ(du −
u1dx). It follows

X = X(x, u, u1) , U = U(x, u, u1) , U1 = D(U)/D(X) (2.1)

where D is the operator of total derivative w.r.t. x, see (1.4). In the same
way, we obtain the expression of a contact transformation in the general
case.

2.3. In the same way as a point transformation, any contact trans-
formation f can be lifted to the unique diffeomorphism f (k) : Jkπ → Jkπ,
k = 2, 3, . . ., so that πk,1 ◦ f (k) = f ◦ πk,1.

3. Lie transformations

Consider diffeomorphisms from Jkπ to itself. It is naturally consider
diffeomorphisms transforming every section of πk of the form jkS to some
section of the same form. Clearly, these diffeomorphisms preserve the Car-
tan distribution on Jkπ. It can be proved that a diffeomorphism of Jkπ
preserving the Cartan distribution on Jkπ transforms every section of πk of
the form jkS to some section of the same form.
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Theorem 2.3. If m = 1, then for every Lie transformation is a lifted
contact transformation.

If m > 1, then for every Lie transformation is a lifted point transforma-
tion.

4. Exercises

(1) Let a point transformation f be defined by

X = u , U = x

Find f (1), f (2).
(2) Applying the computer-algebraic system MAPLE, prove that an

arbitrary point transformation (1.1) transforms an arbitrary lin-
ear ODE y′′ = a(x)y′ + b(x)y + c(x) to ODE of the form y′′ =
a(x, y)(y′)3 + b(x, y)(y′)2 + c(x, y)y′ + d(x, y).

(3) Consider a general point transformation (1.6). Prove that if

det

D1(X1) . . . D1(X1)
. . .

Dn(Xn) . . . Dn(Xn)

 = 0

on an open set of J1π, then f is not a diffeomorphism.
(4) Let a contact transformation f be defined by

Xi = −ui , U = u− x1u1 − x2u2 , Ui = xi , i = 1, 2

Find f (1).
(5) Prove formula (2.1)



CHAPTER 3

Lie vector fields

Scalar differential invariants are 1st integrals of the corresponding Lie
vector fields. This provides a general approach to calculate scalar differential
invariants. Therefore in this chapter, we derive the formula describing Lie
vector fields in special coordinates of jet bundles. Here we follow [8].

1. Liftings of vector fields

Let π : E → B be an arbitrary bundle. Any vector field on J0π is called
a point vector field if its flow consists of point transformations. A vector
field on J1π is called a contact vector field if its flow consists of contact
transformations.

Let

ξ = aj
∂

∂xj
+ b

∂

∂u
+ cj

∂

∂uj

be an arbitrary contact vector field. Put ϕ = b − uja
j . It is easy to check

that

ξ = −ϕuj

∂

∂xj
+ (ϕ− ujϕuj )

∂

∂ui
+ (ϕxj + ujϕu)

∂

∂uj
(1.1)

The function ϕ is called the generating function of contact vector field ξ.
Often we will write ξϕ instead ξ.

Finally, a vector field on Jkπ is called a Lie vector field if its flow consists
of Lie transformations.

The lifting of point (contact) transformations to Lie transformations
induces the lifting of point (contact) vector fields to Lie vector fields. Indeed,
let ξ be a point (contact) vector field and let ft be its flow. Then f

(k)
t is a

flow on Jkπ (Jk+1π). By ξ(k) we denote the vector field generated by f (k)
t .

This field is said to be a lifted vector field. Obviously, for k1 > k2

(πk1,k2)∗(ξ
(k1)) = ξ(k2)

Clearly, a Lie vector field is either a lifted point vector field or a lifted contact
vector field.

21
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2. The coordinate description of lifted vector fields

Let us obtain the formula describing a Lie vector field ξ(k) in terms of
special coordinates. Suppose for definiteness that ξ is a point vector field

ξ = aj
∂

∂xj
+ bi

∂

∂ui
, (2.1)

where aj and bi are smooth functions of x1, . . . , xn, u1, . . . , um. Then

ξ(∞) = aj
∂

∂xj
+ bi

∂

∂ui
+ bij

∂

∂uij
+ . . .+ bij1...jk

∂

∂uij1...jk
+ . . .

where bij , . . . , b
i
j1...jk

, . . . are smooth functions in corresponding jet bundles
Jkπ. Consider the value ξ(∞)

∣∣
θ∞

of the vector field ξ(∞) at the point θ∞ ∈
J∞π. Let s be a section of π such that [s]∞p = θ∞. Then ξ(∞)

∣∣
θ∞

can be
decomposed in the sum

ξ(∞)
∣∣
θ∞

= ajDj

∣∣
θ∞

+
(
ξ(∞)

∣∣
θ∞
−ajDj

∣∣
θ∞

)
,

where Dj is the operator of total derivative w.r.t. xj , see (1.7). The vector
ajDj

∣∣
θ∞

tangents to the graph L∞s of section j∞s at the point θ∞. Obviously,

ξ(∞)
∣∣
θ∞
−ajDj

∣∣
θ∞

= (bi − uija
j)

∂

∂ui
+ . . . (2.2)

Let ft be the flow of vector field ξ. Then the flow f
(∞)
t transforms the graph

L∞s to the graph f
(∞)
t (L∞s ) The vector ajDj

∣∣
θ∞

is tangent to L∞s . This

means that its contribution in the transformation velocity of L∞s by f
(∞)
t

is zero. Therefore (2.2) is the transformation velocity L∞s by f
(∞)
t . Let us

calculate this velocity. In the special coordinates xj , ui, . . . , uij1...jk , . . . the

transformed graph f (∞)
t (L∞s ) is described by parametric equations

x 7→
(
Si(t, x) ,

∂Si

∂xj
(t, x) , . . . ,

∂kSi

∂xj1 . . . ∂xjk
(t, x) , . . .

)
=

(
Si(t, x) , Dj(Si)(t, x) , . . . , Dj1...jk(Si)(t, x) , . . .

)
,

here x = x1, . . . , xn and Dj1...jk = Dj1 ◦ . . . ◦Djk . Therefore the transforma-
tion velocity of L∞s by f (∞)

t is the following vector

d

dt
Si

∣∣
t=0

∂

∂ui
+ . . . +

d

dt
Dj1...jk(Si)

∣∣
t=0

∂

∂uij1...jk
+ . . .

)
=

( d

dt
Si

∣∣
t=0

∂

∂ui
+ . . . + Dj1...jk

( d

dt
Si

∣∣
t=0

) ∂

∂uij1...jk
+ . . .

)
(2.3)
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Comparing (2.2) and (2.3) and putting ϕi = bi − uija
j , we get that the

transformation velocity of L∞s by f (∞)
t is the vector

�ϕ = ϕi
∂

∂ui
+ . . . + Dj1...jk(ϕi)

∂

∂uij1...jk
+ . . . (2.4)

A vector field of the form (2.4) is called an operator of evolution derivative
and ϕ = (ϕ1 , . . . , ϕm ) is called the generating function of this operator.

Thus for the point vector field ξ = aj∂/∂xj + bi∂/∂ui we obtain the
formula describing the lifted vector field ξ(∞):

ξ(∞) = ajDj + �(bi−ui
ja

j) . (2.5)

Obviously,

ξ(k) = (π∞,k)∗( ajDj + �(bi−ui
ja

j) )

= aj
( ∂

∂xj
+ uij

∂

∂ui
+ . . .+ uij1...jkj

∂

∂uij1...jk

)
+ (bi − uija

j)
∂

∂ui
+ . . . + Dj1...jk(bi − uija

j)
∂

∂uij1...jk
(2.6)

Obviously, if ξ = aj∂/∂xj + bi∂/∂ui + cij∂/∂u
i
j is a contact vector field,

then taking into account (1.1), the vector field ξ(∞) is described by the
formula

ξ(∞) = −ϕujDj + �ϕ , (2.7)

where ϕ is the generating function of the contact vector field ξ and

ξ(k) = (π∞,k)∗(−ϕujDj + �ϕ) . (2.8)

3. The Lie algebra of lifted vector fields

It is easy to prove the following statements:

Proposition 3.1. For any i, j = 1, 2, . . . , n and any generating function
ϕ = (ϕ1 , . . . , ϕm ) the following equalities hold

[Di , Dj ] = 0 , [Di , �ϕ ] = 0

Proposition 3.2. The map

ξ 7→ ξ(k)

is a homomorphism of the Lie algebra of all point (contact) vector fields into
the Lie algebra of all vector fields on Jkπ (Jk+1π).
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4. Exercises

(1) Prove formula (1.1).
(2) Prove proposition 3.1.
(3) Prove proposition 3.2



CHAPTER 4

Lie pseudogroups

Sets of transformations considered during calculation of differential in-
variants are traditionally called groups of transformations. Remark that, as
a rule, they are not groups in the present day sense of the word. For ex-
ample, consider the “group” Γ of all contact transformations. Let f, g ∈ Γ.
Then by definition the group operation in Γ we get f · g = f ◦ g. But the
transformation f ◦ g is defined iff image of g coincides with domain of f .
From (2.1) we see that, in general, image of g does not coincide with do-
main of f . Hence the “group operation” is not everywhere defined on Γ. The
considered “groups” of transformations are actually pseudogroups.

In this chapter, following [13] and [12] we introduce Lie pseudogroups,
their Lie algebras, and consider examples of these notions.

1. Pseudogroups

Definition 4.1. Let M be a smooth manifold and let Γ be a collection
of diffeomorphisms of open subsets of M into M . Γ is called a pseudogroup
if the following hold:

(1) Γ is closed under restriction: if f ∈ Γ and U is domain of f , then
f |V ∈ Γ for any open V ⊂ U .

(2) if f : U →M is a diffeomorphism, U = ∪αUα, and f |Uα ∈ Γ, then
f ∈ Γ.

(3) Γ is closed under inverse: if f ∈ Γ, then f−1 ∈ Γ.
(4) Γ is closed under composition: f : U →M and g : f(U) →M both

belong to Γ, then g ◦ f ∈ Γ.
(5) The identity diffeomorphism M →M belongs to Γ.

By Jk(M) we denote the manifold of all k-jets of all diffeomorphisms
of open subsets of M into M . By JkΓ we denote the set of all k-jets of all
diffeomorphisms belonging to Γ.

Definition 4.2. A pseudogroup Γ is a Lie pseudogroup if there exists
an integer k ≥ 0, called the order of Γ, such that

(1) The set JkΓ is a smooth submanifold of Jk(M).
(2) A diffeomorphism f : U → M belongs to Γ iff [f ]kp ∈ JkΓ for all

p ∈ U .

25
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The submanifold JkΓ of a Lie pseudogroup Γ is called a system of PDEs
defining Γ.

Examples:

(1) The set of all diffeomorphisms of M is a Lie pseudogroup. J1(M)
is the system of PDEs defining this pseudogroup.

(2) Let Γ be the pseudogroup of all contact transformations in the
case n = m = 1. In special coordinates, a contact transformation
is described by

X = X(x, u, u1) , U = U(x, u, u1) , U1 = U1(x, u, u1)

where vector-function
(
X(x, u, u1), U(x, u, u1), U(x, u, u1)

)
satisfies

to the system of PDEs{
U1(Xx + u1Xu)− (Ux + u1Uu) = 0,
U1Xu1 − Uu1 = 0

Thus Γ is a Lie pseudogroup.
(3) Let Γ be the pseudogroup of all point transformations of the form

X = x , U = uϕ(x) .

This pseudogroup acts on the arithmetic space R2 of variables x
and u. Let f ∈ Γ, then it is defined by some function ϕ. By U we
denote the open subset of R such that ϕ(x) 6= 0 for all x ∈ U .
Obviously, f is defined on the open set U × R ⊂ R2. Clearly, the
system of PDEs

X − x = 0,
∂2U

∂u∂u
= 0,

∂U

∂u
u− U = 0

is defined Γ. Hence, Γ is a Lie pseudogroup.

A pseudogroup Γ is transitive if for any p1, p2 ∈ M there exists f ∈ Γ
such that f(p1) = p2.

Obviously the pseudogroups of the first two examples are transitive. The
pseudogroup of the last example is not transitive.

2. Lie algebras of pseudogroups

Let Γ be a Lie pseudogroup acting on manifold M , let ξ be a vector field
in M , and let ϕt be the flow of ξ.

The vector field ξ is Γ-vector field if its flow consists of diffeomorphisms
belonging to Γ, that is ξ ∈ Γ for all t.

Proposition 4.3. The set of all Γ-vector fields is a Lie subalgebra in
the Lie algebra of all vector fields in M .
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Proof. Let ξ be Γ-vector field and ϕt be its flow. Then for any λ ∈ R
ϕλt is the flow of λ ξ and ϕλt ∈ Γ.

Suppose ξ1 and ξ2 are Γ-vector fields and ϕ1 t, ϕ2 t are their flows re-
spectively. Then ϕ1 t ◦ ϕ2 t ∈ Γ and it is the flow of ξ1 + ξ2.

Let us prove if ξ1 and ξ2 are Γ-vector fields, then [ξ1, ξ2] is a Γ-vector
field. Let ξ be a vector field in M and let ϕt be its flow. Then the flow ϕkt is
defined in Jk(M) by the formula

ϕkt ([f ]kp) = [ϕt]kf(p) · [f ]kp = [ϕt ◦ f ]kp

This flow generate the vector field ξk in jk(M). The following lemmas are
easily proved:

Lemma 4.4. Suppose ξ1 and ξ2 are vector fields in M . Then

[ξk1 , ξ
k
2 ] = [ξ1, ξ2]k

Lemma 4.5. A vector field ξ1 in M is a Γ-vector field iff the vector field
ξk is tangent to the equation JkΓ.

Our statement follows now from these lemmas. �

The Lie algebra of all Γ-vector fields is called the Lie algebra of Γ. We
denote it by G

3. Exercises

(1) Prove lemma 4.4.
(2) Prove lemma 4.5.
(3) Complete proposition 4.3.





CHAPTER 5

Differential invariants

In this chapter, we introduce differential invariants of the action of a
Lie pseudogroup on jet bundles of a bundle π and differential invariants
of sections of π. We formulate the equivalence problem. Following [16], we
introduce scalar differential invariants as well as the general approach to cal-
culate them. We also explain the method of reduction to a fiber. We point
out connection between differential invariants of a section and its symme-
tries. Finally, we illustrate the general approach by a simple example.

1. Differential invariants on the jet bundles. The equivalence
problem

Let π : E → B be a locally-trivial bundle, let Γ be a Lie pseudogroup
acting on E, and let G be the Lie algebra of Γ.

The pseudogroup Γ acts on every Jkπ by its lifted transformations.
A function or a vector field or a differential form or any other object

defined in Jkπ is a differential invariant of the action of Γ on Jkπ if for any
f ∈ Γ the lifted transformation f (k) preserves this object. These differen-
tial invariants are called also differential invariants (of order k) or simply
differential invariants (of order k).

Let S : U → E be a section of π and I a differential invariant of order
k. Then the restriction I|

L
(k)
S

is called a differential invariant of order k of

the section S. As jkS : U → L
(k)
S ⊂ Jkπ is always a diffeomorphism, I|

L
(k)
S

is essentially an object on the domain of S.
Suppose S1 and S2 are an arbitrary sections of π. Consider the following

problem.
Find necessary and sufficient conditions to exist a transformation f ∈ Γ

such that it transforms locally (in its domain) S1 to S2. This problem is
called the equivalence problem of sections of π w.r.t. the pseudogroup Γ.

Suppose S1 and S2 are (locally) equivalent, that is there exist a trans-
formation f ∈ Γ transforms (locally) S1 to S2. Then obviously, the lifted
transformation f (k) transforms I|

L
(k)
S1

to I|
L

(k)
S2

, for any kth order differential

invariant I, k = 0, 1, . . ..

29
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This means that differential invariants of sections give necessary condi-
tions to solve the equivalence problem. In many of cases, differential invari-
ants give sufficient conditions to solve this problem. Below, we consider that
cases.

2. Scalar differential invariants

Functions that are differential invariants are also called scalar differential
invariants.

As a result of the action of Γ on the jet bundles Jkπ, every Jkπ is divided
into nonintersecting orbits of this action. Obviously, a scalar differential
invariant of order k is constant on every orbit of the action Γ on Jkπ.

By Ak we denote the set of all scalar differential invariants of order
≤ k. It is clear that Ak is an R-algebra. This means that Ak satisfies to the
following two conditions:

(1) Ak is a vector space over the field R.
(2) if I1, I2 ∈ Ak, then I1 · I2 ∈ Ak.
(3) In addition, Ak satisfies to the condition: let I1, . . . , Ir ∈ Ak and

let ϕ(·, . . . , ·) be an arbitrary smooth function of r arguments, then
ϕ(I1, . . . , Ir) ∈ Ak.

We have a sequence of inclusions

A0 ⊂ A1 ⊂ . . . ⊂ Ak ⊂ Ak+1 ⊂ . . .

The R-algebra A =
⋃∞
k=0Ak is called the algebra of scalar differential in-

variants.
The following obvious statement is very important.

Theorem 5.1. Let I be a kth order scalar differential invariant of the
action of Γ on Jkπ. Then for any Γ-vector field ξ, the Lie derivative of I
w.r.t. the vector field ξ(k) is equal to zero:

LX(k)(I) = 0 .

This theorem means, that kth order scalar differential invariants are 1st
integrals of all Γ-vector fields lifted to Jkπ. This gives the general method
to calculate scalar differential invariants:

(1) Lift all Γ-vector fields ξ to vector fields ξ(k) in Jkπ. At every point
θk ∈ Jkπ, these lifted fields generate the subspace Dk

θk
spanned by

all vectors ξ(k)θk
. Thus the distribution Dk : θk 7→ Dk

θk
is generated

in Jkπ. This distribution has constant maximal dimension almost
everywhere on Jkπ.

(2) Find vector fields ν1 , . . . , νN in Jkπ so that they generate Dk on
some open subset and they are linear independent at every point
of this subset.
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(3) Calculate all functionally independent common 1-st integrals of the
vector fields ν1 , . . . , νN . The number of these integrals is given by

Proposition 5.2. The number of functionally independent
common 1-st integrals of the vector fields ν1 , . . . , νN is equal to
dim Jkπ − dim Dk.

Proof. By the same way as proposition 3.2 it can be proved
that the map ξ 7→ ξ(k) is a Lie algebra homomorphism. It follows
that the distribution Dk is completely integrable. By the Frobenius
theorem, in a neighborhood of almost every point of Jkπ, there
exist a coordinate system y1, . . . , yN , . . . , ydim Jkπ such that Dk is
generated by the vector fields ∂/∂y1, . . . , ∂/∂yN . In the terms of
this coordinate system, the proposition is obvious now. �

Remark 5.3. Let Ãk be the R-algebra of all 1-st integrals calculated by
this method. Obviously,

Ak ⊂ Ãk .

We have the equality Ak = Ãk if, for example, Γ is a connected Lie group,
or the pseudogroup Γ satisfies to some regularity conditions, see [12].

2.1. The reduction to a fiber. Suppose Γ acts transitively on the
base B of π. It follows that every orbit of the action of Γ on Jkπ intersects
the fiber Jkp π = (πk)−1(p). As a result Jkp π is divided into nonintersect
subsets. Clearly, these subsets are orbits w.r.t. the action of the group

Gkp = { f (k) | f ∈ Γ, f(p) = p } .

Suppose we have an scalar differential invariant I on Jkp π w.r.t. the action
of Gkp. Then, acting by all lifted transformations f (k) on I, we obtain scalar
differential invariant on Jkπ.

Let U ⊂ B be a coordinate domain with coordinate x1, . . . , xn in neigh-
borhood of p and let x1(p) = 0, . . . , xn(p) = 0. Suppose there exist a neigh-
borhood V ⊂ U of p such that Γ contains all transformations f : V → U
of the form x 7→ x + x0, where x0 ∈ V . Then if the scalar invariant I on
Jkp π has the form I = I(u, . . . , uk), then the function I(u, . . . , uk) is scalar
differential invarian on (πk)−1(V ) ⊂ Jkπ w.r.t. the action of Γ. Indeed, shifts
f(x) = x − x0 transfer I from Jkp π to (πk)−1(V ) so that the expression of
the obtained invariant is the same I = I(u, . . . , uk).

Thus in the case when Γ contains shifts, the problem of calculation of
k-order scalar differential invariants w.r.t. Γ is reduced to the problem of
calculation of k-order scalar differential invariants on Jkp π w.r.t. Gkp.

Further details of this method we explain by examples in following chap-
ters.
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3. Symmetries and invariants

Let ξ be a vector field in J0π and S be a section of π.
We say that ξ is a symmetry of S if ξ tangent to the graph L0

S .
Suppose ξ is a symmetry of S, and I

∣∣
L

(k)
S

be a scalar differential invariant

of order k of S. Taking into account that the lifted vector fields ξ(k) tangent
to the graph LkS of the section jkS of πk, we get that

ξ(k)
∣∣
L

(k)
S

( I
∣∣
L

(k)
S

) = 0

This means that the function I
∣∣
L

(k)
S

is constant along integral lines of the

vector field ξ(k)
∣∣
L

(k)
S

. The following statement is obvious now.

Proposition 5.4. Suppose a section S of π has n symmetries linearly
independent in every point of L0

S. Then every scalar differential invariant
I
∣∣
L

(k)
S

is a constant.

4. Example

Let us illustrate the general method of calculation of scalar differential
invariants by the calculation of invariants of ODEs of the form

y′ = a(x)y + b(x) (4.1)

w.r.t. transformations of the form

x = X, y = Y g(X) (4.2)

According to our approach, we consider the natural bundle of these
ODEs:

π : R× R2 → R , π : (x, u1, u2) 7→ x

Any section S(x) = (S1(x), S2(x)) of π is identified with the ODE y′ =
S1(x)y + S2(x). Obviously this identification is a bijection between the set
of all considering ODEs and the set of all sections of π. The transformation
law of coefficients of these equations under considering transformations of
variables generates the Lie pseudogroup Γ acting on J0π by the formula

X = x , U1 = u1 − g′(x)/g(x) , U2 = u2/g(x) ,

where g(x) is an arbitrary smooth function. Hence an arbitrary Γ-vector
field has the form

ξ = −h′(x) ∂

∂u1
− u2h(x)

∂

∂u2
,

where h(x) is an arbitrary smooth function of x and h′(x) its derivative
w.r.t. x. Below, it is convenient use notation ξh instead ξ. It follows that

ξ
(∞)
h = �ϕ = −Dj(ϕ1)

∂

∂u1
j

− Dj(ϕ2)
∂

∂u2
j

,
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where ϕ = (ϕ1, ϕ2) = (h′(x), u2h(x)). Thus

ξ
(∞)
h = −h′ ∂

∂u1
− u2h

∂

∂u2

− h(2) ∂

∂u1
1

− (u2
1h+ u2h′)

∂

∂u2
1

− . . .− h(j+1) ∂

∂u1
j

−Dj(u2h)
∂

∂u2
j

− . . .

Let us find zero order scalar differential invariants. It is easy that the
collection of vector fields

ν1 = ξ1 = −u2 ∂

∂u2
, ν2 = ξx − xξ1 = − ∂

∂u1

generates the distribution D0. From these formulas, we get that the action
Γ on J0π divides J0π onto two intersected orbits:

J0π = {u2 = 0} ∪ {u2 6= 0}

On the 1-st orbit, dimension of D is equal to 1, on the 2-nd one it is equal
to 2.

Let us investigate the case u2 6= 0.
Obviously the common 1-st integrals of these vector fields are functions

of x. Thus
A0 = {All smooth functions of x}

These zero-order scalar differential invariants are trivial for our pseudogroup
Γ.

Let us find 1-st order scalar differential invariants. It is clear that the
collection of vector fields

ν1 = ξ
(1)
1 = −u2 ∂

∂u2
− u2

1

∂

∂u2
1

,

ν2 = ξ(1)
x − xξ

(1)
1 = − ∂

∂u1
− u2 ∂

∂u2
1

,

ν3 = ξ
(1)
x2 − 2xν2 − x2ν1 = −2

∂

∂u1
1

generates the distribution D1. Common 1-st integrals of the vector fields ν1,
ν2, and ν3 are solutions of the following PDEs system w.r.t. an unknown
function I of x, u1, u2, u1

1, and u2
1
ν1(I) = 0

ν2(I) = 0

ν3(I) = 0
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From the 3-rd equation, we have I = I(x, u1, u2, u2
1). From the 1-st one,

we have I = I(x, u1, u2
1/u

2). Finally, from the 2-nd equation, we have I =
I(x, u2

1/u
2 − u1). Thus

A1 = {All smooth functions of two arguments: x and u2
1/u

2 − u1}
In particular, u2

1/u
2 − u1 is 1-st order scalar differential invariant.

5. Exercises

(1) Prove that all ODEs of the form y′ = a(x)y are equivalent w.r.t.
transformations (4.2).

(2) Classify all ODEs (4.1) up to equivalence w.r.t. pseudogroup of all
transformations (4.2).

(3) Calculate the algebra of all scalar invariants of ODEs (4.1) w.r.t.
pseudogroup of transformations (4.2).

(4) Prove that the scalar differential invariant I = b′/b− a of an equa-
tion y’=a(x)y+b(x) is a constant iff this ODE has symmetry of the
form h(x)∂/∂x.

(5) Prove that dimension of the algebra of symmetries of the form
h(x)∂/∂x for an equation y’=a(x)y is ≥ 2.

(6) Solve the equivalence problem of ODEs y′′ = a(x)y′ + b(x)y + c(x)
w.r.t. of transformations (4.2).

(7) Classify all ODEs y′′ = a(x)y′+b(x)y+c(x) up to equivalence w.r.t.
pseudogroup of all transformations (4.2).



CHAPTER 6

Classification of linear ODEs up to equivalence

From theorem 2.3 of chapter 2, we know that a most general transfor-
mation of variables for ODEs is a contact transformation. It is natural to
have a classification of all linear ODEs up to a contact transformation.

In this chapter, we solve this problem for linear ODEs of order 3 for
the simplicity. The solution of this problem for an arbitrary order can be
found in [18]. Here on the example of these equations, we clarify in details
our general approach to calculate scalar differential invariants on a natural
bundles. We also investigate in details the equivalence problem for these
ODEs. Finally, we get the complete classification of 3rd order linear ODEs
up to equivalence.

1. Reduction to the lesser pseudogroup

Solving the problem of classification of some objects up to a transforma-
tion of some pseudogroup, it is useful to investigate the possibility to reduce
the problem to a lesser pseudogroup. As usually, the solution of the reduced
problem is more easy.

The problem of classification of linear ODEs up to a contact transforma-
tions can be reduced to lesser pseudogroups. We use one of these reductions.
The other one is represented in exercises in the end of this chapter.

Consider an arbitrary 3rd order linear ODEs

y(3) = a2(x)y(2) + a1(x)y′ + a0(x)y + b(x) ,

Obviously that the point transformation

x = X , y = Y + y0(X) ,

where y0(x) is a solution of the initial equation, transforms this ODE to the
homogeneous equation

Y (3) = a2(X)Y (2) + a1(X)Y ′ + a0(X)Y

It is easy to check that the point transformation

X = x , Y = ye
1
3

R
a2(x)dx

reduces the obtained ODE to an ODE of the form

y(3) = a1(x)y′ + a0(x)y . (1.1)

35
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The following important statement is proved by direct calculations using
some facts about symmetries of linear ODEs, see [17] or [18].

Theorem 6.1. Let f be a contact transformation, transforming an ODE
E1 of the form (1.1) to an ODE E2 of the same form. Then there exist a
point transformation of the following form transforming E1 to E2

X = f(x) , Y = y · f ′ . (1.2)

It is easy to check that an arbitrary point transformation (1.2) trans-
forms an arbitrary ODE (1.1) to an ODE of the same form.

Thus, the problem of classification of 3rd order linear ODEs w.r.t. con-
tact transformations is reduced to the classification of ODEs (1.1) w.r.t. the
Lie pseudogroup of all transformations (1.2).

2. The natural bundle of linear ODEs

Consider the trivial bundle

π : E = R1 × R2 → R1 , π : (x, u1, u2) 7→ x ,

where x is the standard coordinate on the base R1 and u1, u2 are the standard
coordinates on the fiber R2.

We identify any linear ODE of form (1.1)

E = { y(3) = a1(x)y′ + a0(x)y . }
with the section SE of π defined by the formula

SE : x 7→ ( a1(x) , a0(x) ) .

Clearly, this identification E 7→ SE is a bijection. By ES we denote the
equation corresponding to the section S under this identification and by SE

the section corresponding to the ODE E under this identification.
Let us obtain the transformation law of coefficients of equations (1.1)

w.r.t. transformations (1.2). Suppose the ODE Y (3) = A1(X)Y ′ + A0(X)Y
is transformed to y(3) = a1(x)y′ + a0(x)y. Applying equations (1.5), we get

a1(x) = −2
(f ′′(x)
f ′(x)

)′
+

(f ′′(x)
f ′(x)

)2
+ (f ′(x))2A1(f(x)) ,

a0(x) = −
(f ′′(x)
f ′(x)

)′′
+
f ′′(x)
f ′(x)

(f ′′(x)
f ′(x)

)2

+ f ′(x)f ′′(x)A1(f(x)) + (f ′(x))3A0(f(x))

(2.1)

This transformation law can be considered as the transformation law of
the sections of π generated by the transformation f of the base of π. More
exactly, let Γ be the Lie pseudogroup of all transformations of the base R of
π. Then we can define the lifting of every f ∈ Γ to diffeomorphism

f (0) : R× R2 → R× R2
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of the total space R1 × R2 of π by the formula

X = f(x)

U1 = −2
(g′′
g′

)′
+

(g′′
g′

)2
+ (g′)2u1 ,

U2 = −
(g′′
f ′

)′′
+
g′′

g′

(g′′
g′

)′
+ g′g′′u1 + (g′)3u2 ,

(2.2)

where g = f−1. We can now represent the transformation of sections of π
corresponding the transformation of ODEs (2.1) by the formula

S = f (0) ◦ s ◦ f−1 (2.3)

Thus, the problem of classification of 3rd order linear ODEs w.r.t. con-
tact transformations is reduced to the classification of sections of π w.r.t.
the action of Γ on the total space of π.

3. Differential invariants of linear ODEs

3.1. Lifts of Γ-vector fields. The Lie algebra of all Γ-vector fields is
the Lie algebra of all vector fields on the base R of π.

Let

ξϕ = ϕ(x)
∂

∂x

be an arbitrary field on the base R of π. Then from (2.2), we get

ξ(0)
ϕ = ϕ(x)

∂

∂x
+ (2ϕ(3) − 2ϕ′u1 − ϕu1

1)
∂

∂u1

+ (ϕ(4) − ϕ′′u1 − 3ϕ′u2 − ϕu2
1)

∂

∂u2
(3.1)

It follows

ξ(k)ϕ = ϕ(x)D
∣∣
Jkπ

+�ψ

∣∣
Jkπ

= ϕ(x)
( ∂

∂x
+ u1

1

∂

∂u1
+ u2

1

∂

∂u2
+ . . .+ u1

k+1

∂

∂u1
k

+ u2
k+1

∂

∂u2
k

)
+

(
ψ1 ∂

∂u1
+ ψ2 ∂

∂u2
+ . . . + Dk(ψ1)

∂

∂u1
k

+Dk(ψ2)
∂

∂u2
k

)
(3.2)

where ψ = (ψ1, ψ2) and

ψ1 = 2ϕ(3) − 2ϕ′u1 − ϕu1
1 , ψ2 = ϕ(4) − ϕ′′u1 − 3ϕ′u2 − ϕu2

1

.
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3.2. The reduction to a fiber. Obviously, Γ acts transitively on the
base R of π. Indeed, for any point x0 ∈ R there exist f ∈ Γ such that
f(0) = x0, for example f(x) = x + x0. It follows that every orbit of the
action of Γ on Jkπ intersects the fiber Jk0 π = (πk)−1(0). As a result Jk0 π is
divided into nonintersect subsets. Clearly, these subsets are orbits w.r.t. the
action of the group

Gk = { f (k) | f ∈ Γ, f(0) = 0 } .

Suppose we have an invariant I = I(u, . . . , uk) on Jk0 π w.r.t. the action of
Gk. Then, I = I(u, . . . , uk) is invarian on Jkπ w.r.t. the action of Γ. Indeed,
the transformations of the form f(x) = x−x0 transfer I from Jk0 π to Jkπ so
that the expression of the obtained invariant is the same I = I(u, . . . , uk).

Thus the problem of calculation of k-order scalar differential invariants
w.r.t. Γ is reduced to the problem of calculation of k-order scalar differential
invariants on Jk0 π w.r.t. Gk.

The last problem, is solved in the following way:
(1) Calculate the Lie algebra of the group Gk, that is calculate all lifted

Γ-vector fields ξ(k) such that their values at 0 ∈ R is a zero vector,
that is ξ

∣∣
0
= 0. We call these fields as Gk-vector fields.

(2) At every point θk ∈ Jk0 π,Gk-vector fields generate the subspaceDk
θk

spanned by all their values at θk. Thus the distribution Dk : θk 7→
Dk
θk

is generated in Jk0 π. This distribution has constant maximal
dimension almost everywhere on Jk0 π.

(3) Find vector fields ν1 , . . . , νN in Jk0 π so that they generate Dk on
some open subset and they are linear independent at every point
of this subset.

(4) Calculate the algebra of all common 1st integrals ofGk-vector fields.
This problem is reduced to the calculation of all functionally inde-
pendent common 1-st integrals of the vector fields ν1 , . . . , νN .

3.3. The calculation of distributions Dk. Let ξ(k)ϕ

∣∣
x=0

be a Gk-
vector field. Decomposing the function ϕ in the Taylor series with remainder
term at the point 0 ∈ R, we obtain

ϕ = λ1x + λ2x
2 + . . . + λk+4x

k+4 + R(x)xk+5 ,

where λi =
1
i!
diϕ

(dx)i
(0). Obviously,

ξ(k)ϕ

∣∣
x=0

= λ1ξ
(k)
x

∣∣
x=0

+λ2ξ
(k)
x2

∣∣
x=0

+ . . . + λk+4ξ
(k)

xk+4

∣∣
x=0

It follows that the distribution Dk is generated by the Gk-vector fields

ξ(k)x

∣∣
x=0

, ξ
(k)
x2

∣∣
x=0

, . . . , ξ
(k)

xk+4

∣∣
x=0
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Reducing this system of vector fields to the step form, we obtain vector fields
ν1, . . . , νN .

It is easy to get that the distribution D0 on J0
0π is spanned by the

following vector fields linearly independent at every point of J0
0π:

ν1 =
∂

∂u1
, ν2 =

∂

∂u2
. (3.3)

This means, dim J0
0π = dim D0. It follows, J0

0π is an orbit of the action G0

on J0
0π. Hence trivial (that is constant) scalar differential invariants only

live on J0π.
The distribution D1 is spanned by the following vector fields on J1

0π:

ν1 =
∂

∂u1
, ν2 =

∂

∂u2
+ 2

∂

∂u1
1

, ν3 = (u1
1 − 2u2)

∂

∂u1
1

, ν4 =
∂

∂u2
1

. (3.4)

These fields are linearly independent at every point of the subset of J1
0π

describing by the inequality u1
1 − 2u2 6= 0. Obviously, this subset is an orbit

of the action of G on J1
0π. We denote it by Orb1. System (3.4) is degenerated

to the system

ν1 =
∂

∂u1
, ν2 =

∂

∂u2
+ 2

∂

∂u1
1

, ν4 =
∂

∂u2
1

.

on the subset of J1
0π describing by the equation u1

1 − 2u2 = 0. Obviously,
this subset is an orbit of the action of G on J1

0π. We denote it by Orb2.
Thus J1

0π is divided into two orbits of the action of G1: J1
0π = Orb1 ∪Orb2

so that dim Orb1 = dim J1
0π, dim Orb2 = dim J1

0π − 1, and u1
1 − 2u2 = 0 is

the equation describing Orb2 as a submanifold of J1
0π.

The equality dim Orb1 = dim J1
0π means that Orb1 is open everywhere

dense subset of J1
0π. This means that trivial scalar differential invariants

only live on J1π.
Recall that an orbit of maximal dimension is called a generic orbit. An

orbit of lesser dimension is called a degenerate orbit.
The distribution D2 is spanned by the following vector fields linearly

independent almost everywhere on J2
0π:

ν1 = 2
∂

∂u1
, ν2 =

∂

∂u2
+ 2

∂

∂u1
1

,

ν3 = −3(u1
1 − 2u2)

∂

∂u1
1

− 4(u1
2 − 2u2

1)
∂

∂u1
2

,

ν4 =
∂

∂u2
1

+ 2
∂

∂u1
2

, ν5 = −3(u1
1 − 2u2)

∂

∂u1
2

, ν6 =
∂

∂u2
2

.

(3.5)

Clearly, J2
0π is divided into some orbits and dimension of the unique generic

orbit is equal to dim J2
0π. Therefore trivial scalar differential invariants only

live on J2π.
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The distribution D3 is spanned by the following vector fields linearly
independent almost everywhere on J3

0π:

ν1 = 2
∂

∂u1
− 3h

∂

∂u1
3

, ν2 =
∂

∂u2
+ 2

∂

∂u1
1

,

ν3 = −3h
∂

∂u1
1

− 4h′
∂

∂u1
2

− (5h′′ + 3u1h)
∂

∂u1
3

, ν4 =
∂

∂u2
1

+ 2
∂

∂u1
2

,

ν5 = −3h
∂

∂u1
2

− 7h′
∂

∂u1
3

, ν6 =
∂

∂u2
2

+ 2
∂

∂u1
3

, ν7 =
∂

∂u2
3

,

(3.6)

where h = u1
1 − 2u2. Clearly, J3

0π is divided into some orbits and dimension
of the unique generic orbit is equal to dim J3

0π − 1. Therefore nontrivial
scalar differential invariants live on J3π. More exactly, the algebra A3 of
all scalar differential invariants of order 3 is generated by one functionally
independent invariant.

It is not hard to get now the following table, where by Nk we denote
the number of functionally independent scalar differential invariants on Jkπ,
Nk = dim Jk0 π − dim Dk:

k dim Jk0 π dim Dk Nk

0 2 2 0
1 4 4 0
2 6 6 0
3 8 7 1
4 10 8 2
5 12 9 3

. . . . . . . . . . . .

r 2r + 2 r + 4 r − 2
. . . . . . . . . . . .

(3.7)

3.4. The calculation of the 1st nontrivial invariant. It is not hard
to calculate a common 1st integral of vector fields (3.6). As a result, we
obtain the following scalar differential invariant on J3π

I =
[ 2

3
D

(D(u1
1 − 2u2)

u1
1 − 2u2

)
− 1

9

(D(u1
1 − 2u2)

u1
1 − 2u2

)2
+ u1

]
(u1

1 − 2u2)−2/3 , (3.8)

where D is the total derivative operator.

3.5. Nonscalar differential invariants. Consider equations (2.2) de-
fining the action of Γ on the total space J0π of π. Subtracting the second
equation differentiated by x from the doubled third equation, we get

(U1
1 − 2U2)1/3 = g′(u1

1 − 2u2)1/3.
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From the transformation law of coefficients of differential 1-form over a dif-
feomorphism, we get that the differential form on J0π

ω = (u1
1 − 2u2)1/3dx (3.9)

is invariant w.r.t. the action of Γ on J1π. Thus ω is differential invariant of
order 1 of the action of Γ.

From (3.4), we have

Theorem 6.2. The unique degenerate orbit Orb2 of J1π is defined by
the equation ω = 0, that is

Orb2 = { θ1 ∈ J1π
∣∣ω|θ1 = 0 }

Let s : x 7→ ( s1(x) , s2(x) ) be a section of π. Then the restriction

ω
∣∣
L1

s
= (

ds1
dx

(x)− 2s2(x) )1/3dx (3.10)

of ω on the graph L1
s of the section

j1s : x 7→ ( s1(x) , s2(x) ,
ds1
dx

(x) ,
ds2
dx

(x) )

is a differential 1-form on L1
s. It is a differential invariant of order 1 of s

w.r.t. the action of Γ on π. Tacking into account that π projects L1
s onto the

base of π diffeomorphically, we can think that ω
∣∣
L1

s
is a differential 1-form

on the base of π. It makes possible to think that this form is a (nonscalar)
differential invariant of order 1 of the equation y(3) = s1(x)y′ + s2(x)y,
corresponding the section s, w.r.t. transformations (1.2).

The following vector field on the graph L1
s

(
ds1
dx

(x)− 2s2(x))−1/3 ∂

∂x
. (3.11)

is dual to form (3.10). Therefore it is a differential invariant of order 1 of s
w.r.t. the action of Γ on π (or invariant of the equation y(3) = s1(x)y′+s2(x)y
w.r.t. transformations (1.2)). We stress that this means the following: let
f ∈ Γ then f (1) transforms L1

s to L1
S for some section S of π and (f (1))∗

transforms the vector field ( s′1(x) − 2s2(x) )−1/3∂/∂x on L1
s to the vector

field (S
′
1(X)− 2S2(X) )−1/3∂/∂X on L1

S .
Note that the vector field on J1π

(u1
1 − 2u2)−1/3 ∂

∂x

is not invariant w.r.t. action of Γ on J1π.



42 6. CLASSIFICATION OF LINEAR ODES UP TO EQUIVALENCE

3.6. Algebras of scalar differential invariants. Consider the oper-
ator

ζ = (u1
1 − 2u2)−1/3D ,

where D is the total derivative operator. It is easy to prove the following

Theorem 6.3. Let I be a k-order scalar differential invariant of the
action of Γ on Jkπ. Then ζ(I) is a k + 1-order scalar differential invariant
of the action of Γ on Jk+1π.

From table (3.7) and this theorem, we get

Theorem 6.4. The algebra A3+k, k = 0, 1, . . ., of 3 + k- order scalar
differential invariants of the action of Γ on J3+kπ is generated by the in-
variants

I , ζ(I) , . . . , ζk(I) .

4. The equivalence problem

Suppose s : x 7→ ( s1(x) , s2(x) ) and S : X 7→ (S1(X) , S2(X) ) are an
arbitrary sections of π. The sections s and S are locally equivalent if there
exist transformation (2.2) transforming locally s to S.

Clearly, s and S are locally equivalent iff there exist a transformation
g(X) = x in Γ satisfying to the system of ODEs

S1 = −2
(g′′
g′

)′
+

(g′′
g′

)2
+ (g′)2s1(g) ,

S2 = −
(g′′
f ′

)′′
+
g′′

g′

(g′′
g′

)′
+ g′g′′s1(g) + (g′)3s2(g) .

Subtracting the first equation differentiated by x from the doubled second
one, we get the equivalent system of ODEs

S1 = −2
(g′′
g′

)′
+

(g′′
g′

)2
+ (g′)2s1(g) , (4.1)

S
′
1 − 2S2 = (g′)3( s′1(g)− 2s2(g) ) . (4.2)

Theorem 6.5. (1) If ω
∣∣
L1

s
= 0 and ω

∣∣
L1

S
= 0, then s and S are lo-

cally equivalent.
(2) If one of the forms ω

∣∣
L1

s
and ω

∣∣
L1

S
is equivalent and the other one

is not equivalent to zero, then s and S are not locally equivalent.
(3) If ω

∣∣
L1

s
6= 0 and ω

∣∣
L1

S
6= 0, then s and S are locally equivalent iff a

solution g(X) of ODE (4.2) satisfies to the equality

I
∣∣
L3

S
(X) = I

∣∣
L3

s
(g(X)), (4.3)

where I is scalar differential invariant (3.8)
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Proof. The first statement follows from the existence of solution of
ODE (4.1).

The second statement holds because one of the sections j1s and j1S
belongs to the orbit Orb1 and the other one belongs to Orb2.

Substituting

g′ =
( S

′
1 − 2S2

s′1 − 2s2

)1/3

in ODE (4.1), we obtain (4.3). It follows the third statement. �

5. The classification of linear ODEs

Let E be an arbitrary ODE (1.1) and let S be the section of π identified
with E. We will write ω

∣∣
E

and I
∣∣
E

instead of ω
∣∣
L1

S
= 0 and I

∣∣
L3

S
respectively.

5.1. The case ω
∣∣
E
= 0.

Theorem 6.6. Suppose E satisfies to the condition ω
∣∣
E
≡ 0. Then E is

locally equivalent to the ODE

y(3) = 0 .

Proof. Obviously, the zero-section Z : x 7→ ( 0 , 0 ) of π satisfies to
condition ω

∣∣
L1

Z
= 0. The theorem follows now from theorem 6.5. �

5.2. The case ω
∣∣
E
6= 0 and

(
I
∣∣
E

)′ = 0.

Theorem 6.7. (1) Suppose E satisfies to the conditions ω
∣∣
E
6= 0

and I
∣∣
E
≡ C, where C is a constant. Then E is locally equivalent to

the ODE
y(3) = 22/3Cy′ + y .

(2) If the constants C1 and C2 are not equal, then the ODEs y(3) =
22/3C1y

′ + y and y(3) = 22/3C2y
′ + y are not locally equivalent.

Proof. It is easy to check that ω
∣∣
L1

S
= C for the constant section S :

x 7→ ( 22/3C , 1 ) The theorem follows now from theorem 6.5. �

5.3. The case ω
∣∣
E
6= 0 and

(
I
∣∣
E

)′ 6= 0. Suppose E satisfies to the
conditions ω

∣∣
E
6= 0 and

(
I
∣∣
E

)′ 6= 0. Then I
∣∣
E

can be considered as the new
independent variables. The transformation I = I

∣∣
E
(x) generates the point

transformation of the form (1.2)

I = I
∣∣
E
(x) , Y = y · ( I

∣∣
E

)′(x) .
The inverse transformation transforms E to ODE, which we call the canonical
form of E.
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Proposition 6.8. Suppose E1 and E2 are ODEs (1.1) satisfying to con-
ditions ω

∣∣
Ei
6= 0 and

(
I
∣∣
Ei

)′ 6= 0, i = 1, 2. Then E1 and E2 are locally
equivalent iff their canonical forms are the same.

Proof. Let us denote by Si the section corresponding to Ei and denote
by Ii the restriction I

∣∣
Ei

, i = 1, 2. Then

(Ii)(0) ◦ Si ◦ (Ii)−1

is the canonical form of section Si.
Suppose E1 and E2 are locally equivalent, that is S1 and S2 are locally

equivalent. This means that there exist f ∈ Γ such that S2 = f (0) ◦S1 ◦f−1.
Substituting this expression of S2 in the canonical form of S2, we get

(I2)(0) ◦ S2 ◦ (I2)−1 = (I2)(0) ◦ f (0) ◦ S1 ◦ f−1 ◦ (I2)−1

= (I2 ◦ f)(0) ◦ S1 ◦ (I2 ◦ f)−1 = (I1)(0) ◦ S1 ◦ (I1)−1,

where the last equality follows from (4.3) of theorem 6.5. This means that
the canonical forms of E1 and E2 are the same. The necessity is proved. The
sufficiency is obvious. �

Let E be the equation y(3) = a1(x)y′ + a0(x)y. It is obvious that E is an
ODE of canonical form iff the following equality holds

IE(x) ≡ x . (5.1)

Suppose the equation E has the canonical form. We set w = (a′1 − 2a0)1/3.
Then from (3.8) it follows, that the coefficients a1 and a0 of this equation
can expressed in the terms of w

a1 = xw2 − 2
(w′
w

)′
+

(w′
w

)2
, a0 =

1
2

[(
xw2 − 2

(w′
w

)′
+

(w′
w

)2)′
− w3

]
.

The following statement is proved by a direct verification of identity
(5.1)

Proposition 6.9. Any ODE

y(3) =
[
xw2 − 2

(w′
w

)′
+

(w′
w

)2]
y′

+
1
2

[(
xw2 − 2

(w′
w

)′
+

(w′
w

)2)′
− w3

]
y , (5.2)

where w is an arbitrary nowhere vanishing function of x, is an ODE of
canonical form.

From this proposition, we get

Theorem 6.10. (1) Let E be an arbitrary ODE of the form (1.1)
satisfying to the conditions ω

∣∣
E
6= 0 and

(
I
∣∣
E

)′ = 0. Then E is
locally equivalent to some ODE of the form (5.2).
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(2) Suppose functions w1 and w2 are nowhere vanishing and are not
equal in any neighborhood, then the corresponding equations of form
(5.2) are not locally equivalent.

6. Exercises

(1) Check that transformation (1.2) preserves the form of equations
(1.1).

(2) Using computer-algebraic system MAPLE, calculate vector fields
(3.3)-(3.6).

(3) Find common 1st integrals of vector fields (3.6).
(4) Let ξ = a(x)∂/∂x be an arbitrary vector field on the base R of π

and S be an arbitrary section of π. Then ξ is a symmetry of S if
ξ(0) tangent to the graph L0

S .
(a) Find all symmetries of S.
(b) Prove that dimension of the algebra SymS of all symmetries

of S is equal to one of the numbers 0, 1, 3.
(c) Prove that a section S of π is locally equal to the zero-section

iff dim SymS = 3.
(d) Prove that I

∣∣
L3

S
is a constant iff dim SymS = 1.

(e) Prove that
(
I
∣∣
L3

S

)′ 6= 0 iff dim SymS = 0.
(5) ∗ Prove theorem 6.1
(6) The problem of classification of linear ODEs up to a contact trans-

formations can be reduced to the pseudogroup of projective trans-
formations. This reduction is represented here by the following
problems:
(a) Prove that a point transformation of the form

x = f(X) , y = Y · f ′ ,

where f ′ is a solution of the ODE

2f ′f ′′′ − 3(f ′′)2 − (f ′)4a1(f) = 0 , (6.1)

transforms an arbitrary ODE (1.1) to an ODE of the Laguerre-
Forsyth form

y(3) = a0(x)y . (6.2)

(b) Prove that projective transformation

f =
αx+ β

γx+ δ
, α, β, γ, δ ∈ R , det

(
α β
γ δ

)
6= 0 . (6.3)

is the general solution of equation (6.3).
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(c) Prove that point transformations of the form

X =
αx+ β

γx+ δ
, Y = y ·X ′ , (6.4)

transform ODEs of the Laguerre-Forsyth form to ODEs of the
same form. Thus, the problem of classification of 3rd order
linear ODEs up to a contact transformation is reduced to the
classification of ODEs (6.2) up to transformation (6.4).

(d) Calculate the algebra of all scalar differential invariants of
ODEs (6.2) w.r.t. the pseudogroup of all transformations (6.4).



CHAPTER 7

Differential invariants in natural bundles

In this chapter, we explain the general approach to construct nonscalar
differential invariants of natural bundles by the example of the natural bun-
dle of nonlinear equations

y′′ = u0(x, y) + u1(x, y)y′ + u2(x, y)(y′)2 + u3(x, y)(y′)3 .

We construct in details the first nontrivial differential invariant of this bun-
dle. It is a differential 2-form on the bundle of 2-jets of considering bundle.
Its values belong to some algebra. We prove that this invariant is a unique
obstruction to linearizability of the considering ODEs by a point transfor-
mations.

As a preliminary, in this chapter, we introduce geometric structures fol-
lowing [15] and [14]. We clarify in details the lifting of diffeomorphisms
and vector fields in a natural bundle of geometric structures. Following [4],
we explain necessary facts concerning formal vector fields and Spencer δ-
cohomologies.

1. Differential groups and geometric structures

Let M be an n-dimensional smooth manifold and Dk(n) be the differen-
tial group of order k. Now we shall give the classic definition of a geometric
structure. One says that a geometric structure is defined on M if the follow-
ing conditions hold:

(1) a collection of functions q(x) = ( q1(x), . . . , qN (x) ) is defined for
every local coordinate system x = (x1, . . . , xn ) in M . These func-
tions are called the components of the geometric structure in the
coordinate system x;

(2) an action F : Dk(n)× RN → RN of the group Dk(n) is defined on
RN ;

(3) suppose q(x) and q̃(y) are the collections of components of the
structure in a coordinate systems x and y respectively, suppose y =
y(x) is the transformation of these coordinates; then the collections
q(x) and q̃(y) are related in the following way:

q̃(y) = F (
∂yi

∂xj
, . . . ,

∂kyi

∂xj1 . . . ∂xjk
, q(x) ) . (1.1)

47



48 7. DIFFERENTIAL INVARIANTS IN NATURAL BUNDLES

The number k is called the order of this structure and F is called the trans-
formation law of the components of the structure.

Examples.
1. Any smooth function f on M is a k-order geometric structure on

M . The expression of f in terms of a coordinate system x = (x1, . . . , xn )
in M is the component of the structure f in this coordinate system. The
transformation law F : Dk(n) × R1 → R1 of components of the structure f
is trivial, that is F (dk, q) = q.

2. Any vector field ξ on M is an 1-order geometric structure on M . For
any coordinate system x = (x1, . . . , xn ) in M , we have

ξ = ξ1(x1, . . . , xn)
∂

∂x1
+ . . .+ ξn(x1, . . . , xn)

∂

∂xn

It means, that the functions ξ1(x), . . . , ξn(x) are the components of the
structure ξ in the coordinate system x = (x1, . . . , xn ). The transformation
law of components of the structure ξ is defined by the formula

ξ̃i(x̃(x)) =
∂x̃i

∂xj
(x)ξj(x) , i, j = 1, . . . , n ,

where the functions ξ̃1(x̃), . . . , ξ̃n(x̃) are the components of the structure ξ
in the coordinate system x̃ = ( x̃1, . . . , x̃n ).

3. By the same way it can be shown that any smooth differential 1-form
on M or more generally any smooth tensor field of type (p, q) on M is a 1st
order geometric structure.

4. A classical example of 2nd order geometric structure on M is a linear
connection on M . It is defined in every coordinate system x = (x1, . . . , xn )
by n2(n + 1)/2 components Γ1

11(x), . . . ,Γ
n
nn(x), satisfying the conditions

Γijk(x) = Γikj(x), i, j, k = 1, . . . , n. The transformation law of components of
this structure is defined by the formula

Γ̃ijk(x̃) =
∂2xr

∂x̃j∂x̃k
∂x̃i

∂xr
+ Γrlm(x)

∂xl

∂x̃j
∂xm

∂x̃k
∂x̃i

∂xr

5. Differential equations can be considered as a geometric structures. For
example, from previous lectures we have that an arbitrary 3rd order linear
ODE E of the form y(3) = a1(x)y′ + a0(x)y can be considered as a 4rt order
geometric structure on R1. Its transformation law of components is defined
by formula (2.1).

In this chapter, we will investigate the 2nd order geometric structure on
R2 generates by coefficients of the ODE

y′′ = u0(x, y) + u1(x, y)y′ + u2(x, y)(y′)2 + u3(x, y)(y′)3

.
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The following equivalent definition of a geometric structure for the first
time was given by V. V. Vagner in his paper [15]. Recall that by Pk(M) we
denote the bundle of k-frames of M , see chapter 1, section 2.

A map
Ω : Pk(M) → RN ,

is called a geometric structure of type F on M if

Ω(θk · dk) = F ( (dk)−1 , Ω(θk) ) ∀ θk ∈ Pk(M) , ∀ dk ∈ Dk(n) .

Consider the manifold Pk(M)×RN . Let us define the action of the group
Dk(n) on this manifold by the rule

dk : ( θk, q ) 7→
(
θk · dk, F ( dk, q )

)
On the manifold Pk(M)× RN , we introduce the equivalence relation

( θk, q ) ∼ ( θ′k, q
′ )

if there is dk ∈ Dk such that ( θ′k, q
′ ) =

(
θk · dk, F ( dk, q )

)
.

By F (M) we denote the quotient space of Pk(M)× RN by this equiva-
lence relation. By π we denote the natural projection of F (M) onto M . It
is easy to verify that the quadruple (F (M), π, M, RN ) is a locally-trivial
bundle. This bundle is called the bundle of geometric structures of type F

Now we can give a third equivalent definition of a geometric structure.
Any section of the bundle π is a geometric structure of type F on M .

2. Natural bundles

2.1. The definition and examples. Let

π : E → B

be a bundle. The bundle π is called a natural bundle if the following condi-
tions hold:

(1) Any diffeomorphism f : B → B can be lifted to a diffeomorphism
f (0) : E → E such that the following diagram is commutative

E
f (0)

−−−−→ E

π

y yπ
B −−−−→

f
B

(2) The lifted identity diffeomorphisms is the identity diffeomorphism,

(idB)(0) = idE .

(3) For any two diffeomorphisms f, g of B, it is held

(f ◦ g)(0) = f (0) ◦ g(0) .
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Obviously, these conditions define f (0) uniquely.
Let S be an arbitrary section of π. Then any diffeomorphism f of B

generates the transformation of this section to the section f(S ) defined by

f(S ) = f (0) ◦ S ◦ f−1 . (2.1)

Examples.
1. Let M be a smooth manifold and T (M) its tangent bundle. Then the

natural projection

π : T (M) →M , π : ξp 7→ p ,

is a natural bundle. The lifted diffeomorphism f (0) is denoted here as f∗.
2. By the same way, a cotangent bundle T ∗(M) over M is a natural

bundle. More generally, a bundle of tensors of type (p, q) over M is a
natural bundle.

3. Consider the bundle of k-frames of M , see chapter 1, section 2,

π : Pk(m) →M , π : [s]k0 7→ s(0) .

An arbitrary diffeomorphism f of M is lifted to diffeomorphism

f (0) : Pk(M) → Pk(M)

by the formula f (0)( [s]k0 ) = [f ]ks(0) · [s]
k
0 = [f ◦ s]k0. It is easy to check, that

Pk(m) is a natural bundle.
4. The following example gives the main way to construct natural bun-

dles. Let F : Dk(n)×RN → RN be an action of the differential group Dk(n)
on RN . Then the bundle of geometric structures F (M) is a natural bundle.
The action F defines the lifting of diffeomorphisms of M to diffeomorphisms
of F (M).

2.2. The lifting of diffeomorphisms in jet bundles. Any lifted
diffeomorphism f (0) can be lifted to the Lie transformation f (k) of Jkπ,
k = 1, 2, . . ., by the formula

f (k)( [S]kp ) =
[
f (0) ◦ S ◦ f−1

]k
f(p)

. (2.2)

Obviously, for any l > m, the diagram

J lπ
f (l)

−−−−→ J lπ

πl,m

y yπl,m

Jmπ −−−−→
f (m)

Jmπ

is commutative (in the domains of f (l)).
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By Γ we denote the Lie pseudogroup of all diffeomorphisms of the base
of π. Γ acts on every Jkπ by its lifted transformations.

2.3. The lifting of vector fields. Let ξ be a vector field in the base
of π and let ft be its flow. Then the flow f

(k)
t in Jkπ defines the vector field

ξ(k) in Jkπ which is called the lifting of ξ to Jkπ. Obviously

(πl,m )∗
(
ξ(l)

)
= ξ(m) , ∞ ≥ l > m ≥ −1 , (2.3)

where ξ(−1) = ξ.
By x1, . . . , xn, uiσ , i = 1, . . . ,m , 0 ≤ |σ| ≤ k, we denote the standard

coordinates in the jet bundle Jkπ, here σ is the multi-index {j1 . . . jr} , |σ| =
r , j1, . . . , jr = 1, . . . , n. By definition, put σj = {j1 . . . jrj}

Let

ξ = a1(x1, . . . , xn)
∂

∂x1
+ . . .+ an(x1, . . . , xn)

∂

∂xn
,

then the infinite lifted vector field ξ(∞) is defined by (2.5)

ξ(∞) = a1D1 + . . .+ anDn + �ψ(ξ) ,

where Dj is the operator of total derivation w.r.t. xj , �ψ(ξ) is the operator
of evolution differentiation corresponding to the generating function ψ(ξ) =
(ψ0(ξ), . . . , ψm(ξ))t, see (2.4). The function ψ(ξ) is defined in the following
way. Let S be a section of π defined in the domain of ξ, let θ1 = [S]1p; then

ψ(ξ)(θ1) =

 ψ0(ξ)(θ1)
· · ·

ψm(ξ)(θ1) .

 =
d

dt
( f (0)

t ◦ S ◦ f−1
t )

∣∣∣
t=0

(p) (2.4)

Obviously, ψ(ξ)(θ1) is the transformation velocity of the section S at the
point p under the action of the flow ft.

It is clear that

ξ(k) = X1
( ∂

∂x1
+

k∑
|σ|=0

m∑
i=1

uiσ1

∂

∂uiσ

)
+ . . .

+Xn
( ∂

∂xn
+

k∑
|σ|=0

m∑
i=1

uiσn
∂

∂uiσ

)

+
k∑

|σ|=0

m∑
i=1

Dσ

(
ψi(ξ)

) ∂

∂uiσ
. (2.5)

Let VectB and VectJkπ be the Lie algebras of all vector fields in the
base B of π and in Jkπ respectively.
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Proposition 7.1. The map

VectB → VectJkπ , ξ 7→ ξ(k) ,

is a Lie algebra homomorphism.

Proof. The map Γ → Γ(k) , f 7→ f (k), is a homomorphism of Lie pseu-
dogroups. It has as a consequence the statement of the proposition. Indeed,
let X ,Y be vector fields on B and let ft , gs be their flows respectively. Then

[X(k), Y (k) ] = lim
t→0

1
t

(
Y (k) − (f (k)

t )∗(Y (k) ◦ f (k)
−t )

)
= lim

t→0

1
t

( d

ds

∣∣∣
s=0

g(k)
s − (f (k)

t )∗
( d
ds

∣∣∣
s=0

g(k)
s ◦ f (k)

−t
) )

= lim
t→0

1
t

( d

ds

∣∣∣
s=0

g(k)
s

− d

ds

∣∣∣
s=0

f
(k)
t ◦ g(k)

s ◦ f (k)
−t

)
= lim

t→0

1
t

d

ds

∣∣∣
s=0

(
g(k)
s ◦ f (k)

t ◦ g(k)
s ◦ f (k)

−t

)
= lim

t→0

1
t

d

ds

∣∣∣
s=0

(
gs ◦ ft ◦ gs ◦ f−t

)(k)
= lim

t→0

1
t

( d

ds

∣∣∣
s=0

gs

− d

ds

∣∣∣
s=0

ft ◦ gs ◦ f−t
)(k)

= lim
t→0

1
t

(
Y − (ft)∗(Y ◦ f−t)

)(k) = [X, Y ](k) .

The R – linearity of the map X 7→ X(k) is obvious. �

3. Formal vector fields. Spencer cohomologies

LetM be an arbitrary n-dimensional smooth manifold. ByWp we denote
the set of ∞–jets at p ∈M of all vector fields defined in a neighborhoods of
p. There exist a natural structure of Lie algebra over R onWp. This structure
is defined by the operations

λ[X]∞p
df
= [λX]∞p , [X]∞p + [Y ]∞p

df
= [X + Y ]∞p ,[

[X]∞p , [Y ]∞p
] df

=
[
[X,Y ]

]∞
p

∀ λ ∈ R , ∀ [X]∞p , [Y ]∞p ∈Wp .

By Lkp , k = −1, 0, 1, 2, . . ., we denote the subalgebra in Wp defined by

Lkp =
{

[X]∞p ∈Wn

∣∣ [X]kp = 0
}
, k ≥ 0 , L−1

p = Wp .

Let M = Rn. In this case, we write W and Lk instead of W0 and Lk0 re-
spectively. Recall, see chapter 1, section 1, that the Lie algebra of differential
group Dk(n) is identified with the Lie algebra L0/Lk and the Lie algebra of
subgroup Dk−1

k (n) ⊂ Dk(n) is identified with the Lie algebra Lk−1/Lk.
By definition, put

Vp = Wp/L
0
p .

Obviously, Vp ∼= TpM . We have the filtration

Wp = L−1
p ⊃ L0

p ⊃ L1
p ⊃ . . . ⊃ Lkp ⊃ Lk+1

p ⊃ . . . .
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For any i > j ≥ 0, we denote by ρi,j the natural projection

ρi,j : Wp/L
i
p →Wp/L

j
p , ρi,j : [X]ip 7→ [X]jp

and by definition, put
ρi = ρi,0 .

Taking into account that

[Lip , L
j
p ] ,= Li+jp , i, j = −1, 0, 1, 2, . . . ,

we see that the bracket operation [ · , · ] on Wp generates the following maps

[ · , · ] :Wp/L
k
p ×Wp/L

k
p →Wp/L

k−1
p , (3.1)

[ · , · ] :Vp × Lkp/L
k+1
p → Lk−1

p /Lkp . (3.2)

Let gk be a subspace of Lk−1
p /Lkp. The subspace g(1)

k ⊂ Lkp/L
k+1
p defined

by
g
(1)
k =

{
X ∈ Lkp/Lk+1

p

∣∣ [ v , X ] ∈ gk ∀ v ∈ Vp
}

is called the 1-st prolongation of gk.
Suppose the sequence of subspaces

g1 , g2 , . . . , gi , . . .

satisfies to the property
[V , gi+1 ] ⊂ gi .

Then for every gi, we have the complex

0 → gi
∂i,0−−→ gi−1 ⊗ V ∗

p

∂i−1,1−−−−→ gi−2 ⊗ ∧2V ∗
p

∂i−2,2−−−−→ 0 , (3.3)

where the operators ∂k,l : gk ⊗ ∧lV ∗
p → gk−1 ⊗ ∧l+1V ∗

p are defined in the
following way: any element ξ ∈ gk ⊗ ∧lV ∗

p can be considered as an exterior
form on Vp with values in gk, then

( ∂k,l(ξ) )(v1, . . . , vl+1) =
l+1∑
i=1

(−1)i+1[ vi , ξ(v1, . . . , v̂i, . . . , vl+1) ] .

We denote by Hk,l
p the cohomology group of this complex in the term gk ⊗

∧lV ∗
p . It is called a Spencer δ-cohomology group.

4. The construction of differential invariants of natural bundles

In this section, we construct in details the first nontrivial differential
invariant of the natural bundle of nonlinear equations

y′′ = u0(x, y) + u1(x, y)y′ + u2(x, y)(y′)2 + u3(x, y)(y′)3 . (4.1)

This invariant is differential 2-form with values in some algebra.
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The set of all ODEs (4.1) is invariant w.r.t. the pseudogroup of all point
transformations, that is an arbitrary point transformation transforms an ar-
bitrary ODE (4.1) to an ODE of the same form. It can be easily checked by
direct calculations. This set contains the set of all 2nd order linear ODEs.
This implies the following problem. For ODE (4.1) find necessary and suf-
ficient conditions to exist a point transformation transforming this ODE to
linear form.

The above mentioned invariant gives the solution of this problem. We
prove that this invariant is a unique obstruction to linearizability of ODE
(4.1) by a point transformation, that is ODE (4.1) is linearizable by a point
transformation iff the invariant is zero for this ODE.

Note that the equivalence problem of 2nd order ODEs w.r.t. contact
transformations is trivial because any two 2nd order ODEs are equivalent
w.r.t. contact transformations, see, for example, [3].

4.1. Natural bundles of ODEs. The lifting of diffeomorphisms.
Consider the trivial bundle

π : E = R2 × R4 → R2 , π : (x1, x2, u0, u1, u2, u3) 7→ (x1, x2) ,

where x1, x2 are the standard coordinate on the base of π and u0, u1, u2, u3

are the standard coordinates on the fiber of π.
Let E be an arbitrary equation (4.1). We identify E with the section SE

of π defined by the formula

SE : (x1, x2) 7→
(
x1, x2, u0(x1, x2), u1(x1, x2), u2(x1, x2), u3(x1, x2)

)
.

Clearly, this identification is a bijection between the set of all equations (4.1)
and the set of all sections of π.

An arbitrary point transformation

f : (x1, x2) 7→
(
x̃1 = f1(x1, x2), x̃2 = f2(x1, x2)

)
. (4.2)

transforms an arbitrary equation E of form (4.1) to the equation Ẽ of the
same form. The coefficients of the obtained equation are expressed in terms
of the coefficients of the initial one and the derivatives of order ≤ 2 of the
inverse transformation to f :

ũα = Φα
(
uβ ,

∂gi

∂x̃j
,

∂ 2gi

∂x̃j1∂x̃j2

)
, (4.3)

α, β = 0, 1, 2, 3 , g =
(
g1, g2

)
= f−1 , i, j, j1, j2 = 1, 2 .

Equations (4.2) and (4.3) define the lift of f to the diffeomorphism f (0)

of the total space of π.
For any point transformation f , the transformation of sections of π is

defined by formula (2.1)

S 7→ f(S ) = f (0) ◦ S ◦ f−1 .
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Equations (4.3) can be represented now as

SẼ = f(SE ) .

Now the following statement is obvious.

Proposition 7.2. Let E , Ẽ be equations of form (4.1). Then a point
transformation f takes E to Ẽ iff SẼ = f(SE ).

By x1, x2, uiσ , i = 0, . . . , 3 , 0 ≤ |σ| ≤ k, we denote the standard coor-
dinates in the jet bundle Jkπ, here σ is the multi-index {j1 . . . jr} , |σ| =
r , j1, . . . , jr = 1, 2. By definition, put σj = {j1 . . . jrj}

Any point transformation f can be lifted to the diffeomorphism f (k) of
Jkπ by formula (2.2)

f (k)( [S]kp ) =
[
f (0) ◦ S ◦ f−1

]k
f(p)

.

By Γ we denote the Lie pseudogroup of all point transformation of the
base of π. Γ acts on every Jkπ by its lifted transformations.

4.2. The lifting of vector fields. Let

X = X1(x1, x2)
∂

∂x1
+X2(x1, x2)

∂

∂x2
,

then we have the following formula

X(∞) = X1D1 +X2D2 + �ψ(X) , (4.4)

where where Dj is the operator of total derivation w.r.t. xj , �ψ(ξ) is the
operator of evolution differentiation, see (2.4), corresponding to the gener-
ating function ψ(ξ) = (ψ0(ξ), . . . , ψm(ξ))t. The function ψ(ξ) is defined by
formula (2.4).

Let θ1 = (x1, x2, ui, uij ), i = 0, 1, 2, 3, j = 1, 2; then it can be calculated
that

ψ(X)(θ1) =



−u0
1X

1 − u0
2X

2

−2u0X1
1 + u0X2

2 − u1X2
1 +X2

11

−u1
1X

1 − u1
2X

2

−3u0X1
2 − u1X1

1 − 2u2X2
1 −X1

11 + 2X2
12

−u2
1X

1 − u2
2X

2

−2u1X1
2 − u2X2

2 − 3u3X2
1 − 2X1

12 +X2
22

−u3
1X

1 − u3
2X

2

−u2X1
2 + u3X1

1 − 2u3X2
2 −X1

22


, (4.5)

where Xi
j =

∂X i

∂xj
(p) and Xi

j1j2
=

∂2Xi

∂xj1∂xj2
(p) .
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4.3. Orbits of the action of Γ. Obviously, Γ acts transitively on the
base R2 of π. Indeed, for any point x0 ∈ R2 there exist f ∈ Γ such that
f(0) = x0, for example f(x) = x + x0. It follows that every orbit of the
action of Γ on Jkπ intersects the fiber Jk0 π = (πk)−1(0). As a result Jk0 π is
divided into nonintersect subsets. Clearly, these subsets are orbits w.r.t. the
action of the group

Gk = { f (k) | f ∈ Γ, f(0) = 0 } .

Suppose, some orbit Orbθk
∩Jk0 π of the action of Gk on Jk0 π is described

as a submanifold of Jk0 π by the equations Ii(u, . . . , uk) = 0. Then, the these
equations Ii(u, . . . , uk) = 0 is described the orbit Orbθk

of the action of Γ
on Jkπ. Indeed, for any x0 ∈ R2 the transformations f(x) = x0− x transfer
Orbθk

∩Jk0 π onto Orbθk
∩Jkx0

π so that the orbit of the fiber Jkx0
π is described

by the same equations Ii(u, . . . , uk) = 0.
Thus the problem to describe orbits of the action of Γ on Jkπ is reduced

to the problem describe orbits of the action of Gk on Jk0 π.
The last problem, can be investigated in the following way: Consider

the Lie algebra of the group Gk. It consists of all lifted Γ-vector fields X(k)

such that X(0) = 0. We call these fields as Gk-vector fields. At every point
θk ∈ Jk0 π, Gk-vector fields generate the subspace Dk

θk
spanned by all their

values at θk. Thus the distribution Dk : θk 7→ Dk
θk

is generated in Jk0 π. Let
X(k)

∣∣
x=0

be a Gk-vector field. Decomposing its components X1 and X2 in
the Taylor series with remainder term at the point 0 ∈ R, we obtain

Xi = λijx
j + . . . + λij1...jkx

j1 · · ·xjk+2 + R(x)xj1 · · ·xjk+3 , i = 1, 2

Setting

Xj1...jk
i = xj1 · · ·xjk ∂

∂xi
, i = 1, 2 , k = 1, 2, . . . ,

we get

X(k)
∣∣
x=0

= λij(X
j
i )(k)

∣∣
x=0

+ . . . + λij1...jk(Xj1...jk+2

i )(k)
∣∣
x=0

From (4.5) and (2.5), it follows that the distribution Dk is generated by the
all Gk-vector fields

(Xj
i )(k)

∣∣
x=0

, . . . , (Xj1...jk+2

i )(k)
∣∣
x=0

, i, j, j1, . . . , jk+2 = 1, 2 .

Reducing this system of vector fields to the step form, we can obtain descrip-
tion of orbits of the action of Γ on Jkπ. The following theorem is obtained
in this way.

Theorem 7.3. (1) Jkπ is an orbit of the action of Γ iff k = 0, 1,
(2) J2π is divided into two orbits J2π = Orb1 ∪Orb2 such that

dim Orb1 = dim Jkπ and dim Orb2 = dim Jkπ − 2,
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4.4. Isotropy algebras. Let θk ∈ Jkπ and p = π(θk). By Gθk
we

denote the isotropy group of θk, that is

Gθk
=

{
[f ]2+k

p

∣∣ f ∈ Γ , f (k)(θk) = θk
}

By gθk
we denote the Lie algebra of Gθk

. It can be considered as a Lie
subalgebra in L0

p/L
2+k
p :

gθk
=

{
[X]2+k

p ∈ L0
p/L

2+k
p

∣∣ X ∈ Vect R2 , X
(k)
θk

= 0
}

The subalgebra gθk
⊂ L0

p/L
2+k
p is called the isotropy algebra of θk.

From this definition and (4.12), (4.13), and (4.14), we get

Proposition 7.4. [X]2+k
p ∈ gθk

iff it is a solution of the system of linear
algebraic equations (

Dσ(ψiX )
)
(θk) = 0 , 0 ≤ |σ| ≤ k . (4.6)

(We write Dσ(ψiX ) )(θk) in (4.6) instead Dσ(ψiX ) )(θk+1) because from
Xp = 0 we have that system (4.6) depends on θk and it is independent of
θk+1.)

Let θ0 ∈ J0π and p = π(θ0). From (4.6), we get that the isotropy algebra
gθ0 of the point θ0 is defined by the equations

−2u0X1
1 + u0X2

2 − u1X2
1 +X2

11 = 0

−3u0X1
2 − u1X1

1 − 2u2X2
1 −X1

11 + 2X2
12 = 0

−2u1X1
2 − u2X2

2 − 3u3X2
1 − 2X1

12 +X2
22 = 0

−u2X1
2 + u3X1

1 − 2u3X2
2 −X1

22 = 0

(4.7)

It follows from (4.7) that

ρ2,1( gθ0 ) = L0
p/L

1
p .

Let
gθ0 = gθ0 ∩ (L1

p/L
2
p) .

Obviously, it is a commutative subalgebra in gθ0 . From (4.7), we get that
gθ0 is defined by the equations

X2
11 = 0

X1
11 − 2X2

12 = 0

2X1
12 −X2

22 = 0

X1
22 = 0

(4.8)

It is clear that gθ0 and gθ̃0 are isomorphic for any θ0, θ̃0 ∈ J0π. Below,
we shall write g instead gθ0 .
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It follows from (4.8) that

dim g = 2 (4.9)

and we can choose

e1 = 2
∂

∂x1
⊗ (dx1 � dx1) +

∂

∂x2
⊗ (dx1 � dx2) ,

e2 = 2
∂

∂x2
⊗ (dx2 � dx2) +

∂

∂x1
⊗ (dx1 � dx2)

(4.10)

as independent generators of g.
It is easy to check that the 1–prolongation g(1) of g is trivial, that is

g(1) = {0} . (4.11)

4.5. Isotropy spaces. Let θk+1 ∈ Jk+1π, let θk = πk+1,k(θk+1), and
let [S]k+1

p = θk+1. Then the tangent space to the image of the section jkS at
the point θk is defined by θk+1. We denote this tangent space by Hθk+1

. We
have the following direct sum decomposition of the tangent space to Jkπ at
the point θk

Tθk
Jkπ = Hθk+1

⊕ Tθk

(
π−1(p)

)
.

Let X be a vector field in the base of π defined in a neighborhood of p.
Then the value X(k)

θk
of X(k) at the point θk has a unique decomposition

X
(k)
θk

= Hθk+1
X(k) + Vθk+1

X(k) , (4.12)

where Hθk+1
X(k) ∈ Hθk+1

and Vθk+1
X(k) ∈ Tθk

(
π−1(p)

)
. It follows from

(4.4) and (2.3) that if X = X1∂/∂x1 +X2∂/∂x2, then

Hθk+1
X(k) = X1D

θk+1

1 +X2D
θk+1

2 , Vθk+1
X(k) = �θk+1

ψ(X) , (4.13)

where

D
θk+1

j =
∂

∂xj
+

∑
0≤|σ|≤k

3∑
i=0

uiσj(θk+1)
∂

∂uiσ
,

�θk+1

ψ(X) =
∑

0≤|σ|≤k

3∑
i=0

(
Dσ

(
ψi(X)

) )
(θk+1)

∂

∂uiσ
. (4.14)

It follows from (4.5) that the value X(k)
θk

of the vector field X(k) at the
point θk is depended on the jet [X]k+2

p .
By definition, put

Aθk+1
=

{
[X]2+k

p ∈Wp/L
2+k
p

∣∣ X(k)
θk

∈ Hθk+1

}
, (4.15)

k = 0, 1, . . . ,∞ .

From (4.12), (4.13), and (4.14), we get
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Proposition 7.5. [X]2+k
p ∈ Aθk+1

iff [X]2+kp is a solution of the system
of linear equations(

Dσ(ψiX )
)
(θk+1) = 0 , 0 ≤ |σ| ≤ k . (4.16)

We say that Aθk+1
is the isotropy spase of θk+1.

Theorem 7.6. (1) ρk+2,k+1(Aθk+1
) ⊂ Aθk

.
(2) [ · , · ] : Aθk+1

×Aθk+1
→ Aθk

.

Proof. The first statement is obvious.
Prove the second one. Let [X]2+k

p , [Y ]2+kp ∈ Aθk+1
, let θ∞ ∈ π−1

∞ (p) ,
θk = π∞,k(θ∞) , θk−1 = πk,k−1(θk), and let

X = X1 ∂

∂x1
+X2 ∂

∂x2
, Y = Y 1 ∂

∂x1
+ Y 2 ∂

∂x2
.

Then [
[X]2+k

p , [Y ]2+k
p

]
=

[
[X ,Y ]

]2+k−1

p

and [
[X ,Y ]

]2+k−1

p
∈ Aθk

iff [X, Y ](k−1)
θk−1

∈ Hθk
.

We have

[X, Y ](k−1)
θk−1

= (π∞,k−1)∗
[
X, Y

](∞)

θ∞
= (π∞,k−1)∗

[
X(∞), Y (∞)

]
θ∞

= (π∞,k−1)∗
[
X1D1 +X2D2 + �ψ(X), Y

1D1 + Y 2D2 + �ψ(Y )

]
θ∞
.

Taking into account the well known relations, see Proposition 3.1 of Chapter
3,

[D1, D2 ] = [D1, �ψ ] = [D2, �ψ ] = 0 and [�φ, �ψ ] = �{φ,ψ} ,

where {φ, ψ} = �φ(ψ)−�ψ(φ), we get

[X, Y ](k−1)
θk−1

= (π∞,k−1)∗
(

(X1Y 1
1 +X2Y 1

2 − Y 1X1
1 − Y 2X1

2 )D1+

+ (X1Y 2
1 +X2Y 2

2 − Y 1X2
1 − Y 2X2

2 )D2 + [�ψ(X) , �ψ(Y ) ]
)
θ∞

=

= Hθk
[X, Y ](k−1) + �θk

{ψ(X),ψ(Y )} .

From (4.5), we obtain

{ψ(X), ψ(Y )}i = ψi
′
(X)

∂ψi(Y )
∂ui′

+Dj(ψi
′
(X))

∂ψi(Y )
∂ui

′
j

− ψi
′
(Y )

∂ψi(X)
∂ui′

−Dj(ψi
′
(Y ))

∂ψi(X)
∂ui

′
j

.

From (4.14), we get now that �θk

{ψ(X),ψ(Y )} = 0. �
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4.6. Horizontal subspaces. We shall say that a 2-dimensional sub-
space H ⊂Wp/L

k
p is horisontal if

ρk(H) = Vp .

Let θk ∈ Jkπ and θk+1 ∈ π−1
k+1,k(θk); then it is clear that

gθk
⊂ Aθk+1

∀ θk+1 ∈ π−1
k+1,k(θk) . (4.17)

It is obvious that a 2-dimensional subspace H ⊂ Aθk+1
is horizontal iff

Aθk+1
= H ⊕ gθk

.

Any two horizontal subspaces H, H̃ ⊂ Aθk+1
define the linear function

fH,H̃ : Vp → gθk
, fH,H̃ : X 7→ (ρk+2|H)−1(X)− (ρk+2|H̃)−1(X) .

It is clear that for any horizontal subspace H ⊂ Aθk+1
and for any linear

function f : V → gθk
, there exist a unique horizontal subspace H̃ ⊂ Aθk+1

with f = fH,H̃ .

Further in this subsection, we shall investigate horizontal subspaces of
Aθ1 .

By Hp we denote the horizontal subspace in Wp/L
1
p generated by con-

stant vector fields.
By Hθ1 we denote a horizontal subspace in Aθ1 with

ρ2,1(Hθ1) = Hp . (4.18)

From
ρ2,1(Aθ1) = Wp/L

1
p ,

we have that horizontal subspaces Hθ1 exist. Obviously, Hθ1 is defined by

Hθ1 =
{

[X]2p = (Xi, 0, X i
σ ) , i = 1, 2 , |σ| = 2

}
(4.19)

in the standard coordinates.
It is clear now that for any two horizontal subspaces Hθ1 , H̃θ1 satisfying

to (4.18), we get
fHθ1

,H̃θ1
: Vp → g .

Taking into account that g 6= {0}, we obtain that there exist a lot of
horizontal subspaces satisfying to (4.18). We choose one of them in the
following way.

A horizontal subspace Hθ1 defines the form ωHθ1
∈ L0

p/L
1
p ⊗ ∧2V ∗

p by
the formula

ωHθ1
(X,Y ) =

[
(ρ|Hθ1

)−1(X), (ρ|Hθ1
)−1(Y )

]
∀X,Y ∈ Vp .

From the Spenser complex

0 → g(1) ∂3,0−−→ g ⊗ V ∗
p

∂2,1−−→ L0
p/L

1
p ⊗ ∧2V ∗

p

∂1,2−−→ 0 , (4.20)
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we get that ωHθ1
defines the Spenser cohomology class {ωHθ1

} ∈ H1,2
p .

Proposition 7.7. The cohomology class {ωHθ1
} is trivial.

Proof. From (4.11) we get that ∂2,1 is an injection in (4.20). From
(4.9), we obtain dim g ⊗ V ∗

p = 4. Obviously, dimL0
p/L

1
p ⊗ ∧2V ∗

p = 4. As a
result, we obtain Im ∂2,1 = ker ∂1,2 in (4.20). �

Corollary 7.8. There exists a unique horizontal subspace Hθ1 ⊂ Aθ1

with ωHθ1
= 0.

Proof. Prove the uniqueness. Suppose Hθ1 , H̃θ1 are horizontal subspa-
ces of Aθ1 with ωHθ1

= ωH̃θ1
= 0. We have ωHθ1

= ωH̃θ1
+ ∂2,1(fHθ1

,H̃θ1
).

Therefore, ∂2,1(fHθ1
,H̃θ1

) = 0. Taking into account that ∂2,1 is an injection,

we get that fHθ1
,H̃θ1

= 0. This means that Hθ1 = H̃θ1

Prove the existence. We have {ωHθ1
} = {0}. Therefore there exist h ∈

g ⊗ V ∗
p with ωHθ1

= ∂2,1(h). It follows that the horizontal subspace

H̃θ1 =
{

(ρ2|Hθ1
)−1(X)− h(X) , X ∈ Vp

}
satisfies to the property ωH̃θ1

= 0. �

Now, we express the horizontal space Hθ1 with ωHθ1
= 0 in terms of

standard coordinates x1, x2, ui(θ1), uij(θ1). Let

(
ρ2|Hθ1

)−1(X) = (Xi, 0 , f ijk,rX
r ) , ∀X ∈ Vp .

Then the property ωHθ1
= 0 means that

f ijk,r = f ijr,k . (4.21)

From proposition 7.5 we obtain that elements (Xi, 0 , f ijk,rX
r ) ∈ Hθ1 is a

solutions of the system
−u0

1X
1 − u0

2X
2 + f2

11,rX
r = 0

−u1
1X

1 − u1
2X

2 − f1
11,rX

r + 2f2
12,rX

r = 0

−u2
1X

1 − u2
2X

2 − 2f1
12,rX

r + f2
22,rX

r = 0

−u3
1X

1 − u3
2X

2 − f1
22,rX

r = 0
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From this system and (4.21), we obtain

f2
11,1 = u0

1 , f2
11,2 = f2

12,1 = u0
2 ,

f2
12,2 = f2

22,1 =
1
3
( 2u1

2 − u0
1 ) ,

f2
22,2 = −2u3

1 + u2
2 ,

f1
22,2 = −u3

2 , f1
22,1 = f1

12,2 = −u3
1 ,

f1
12,1 = f1

11,2 =
1
3
(u1

2 − 2u2
1 ) ,

f1
11,1 = 2u0

2 − u1
1 .

(4.22)

4.7. The obstruction to linearizability of ODEs. Let θ2 ∈ J2π
and θ1 = π2,1(θ2). It is not difficult to prove that

ρ3,2(Aθ2) = Aθ1 . (4.23)

Let Hθ1 be the horizontal subspace of Aθ1 with ωHθ1
= 0. From (4.23) and

gθ1 ∩(L2
p/L

3
p) = {0}, we get that there exist a unique horizontal subspace

Hθ2 ⊂ Aθ2 with
ρ3,2(Hθ2) = Hθ1 . (4.24)

It follows from item (2) of theorem 7.6 that Hθ2 defines the 2–form
ωθ2 ∈ Aθ1 ⊗ ∧2V ∗

p by the formula

ωθ2(X,Y ) =
[
(ρ3|Hθ2

)−1(X), (ρ3|Hθ2
)−1(Y )

]
∀X,Y ∈ Vp .

From ωHθ1
= 0 we obtain

ωθ2 ∈ g ⊗ (V ∗
p ∧ V ∗

p )

Now we can define the horizontal differential 2-form ω(2) on J2π with
values in g by the following formula

ω(2) : θ2 7−→ π∗2(ωθ2) . (4.25)

Obviously, Hθ2 is defined by

Hθ2 =
{

[X]2p = (Xi, 0, f ij1j2,rX
r, f ij1j2j3,rX

r )
}

in the standard coordinates. Hence,

ωθ2 = 2f ij1j2[k,r]

( ∂

∂xi
⊗ (dxj1 � dxj2)

)
⊗ (dxk ∧ dxr) .

Taking into account (4.9) and (4.10), we get

ω(2) = ( F 1 · e1 + F 2 · e2 )⊗ (dx1 ∧ dx2) , (4.26)

where F 1 = f1
11[1,2] and F 2 = f2

22[1,2].
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Calculate the functions F 1 , F 2. From proposition 7.5 we obtain that
elements

(Xi, 0, f ij1j2,rX
r, f ij1j2j3,rX

r ) ∈ Hθ2

is a solutions of system (4.16) for k = 1. From this system and (4.22), we
get

F 1 = 3u0
22 − 2u1

12 + u2
11

+ 3u3u0
1 − 3u2u0

2 + 2u1u1
2 − u1u2

1 − 3u0u2
2 + 6u0u3

1 , (4.27)

F 2 = u1
22 − 2u2

12 + 3u3
11

− 3u0u3
2 + 3u1u3

1 − 2u2u2
1 + u2u1

2 + 3u3u1
1 − 6u3u0

2 . (4.28)

Note that first the coefficients F 1 and F 1 were obtained by Cartan in [2] as
unique nonzero coefficients of the curvature form of the projective connection
corresponding to equation (4.1).

Thus we obtain the following expession of ω(2) in the standard coordi-
nates

ω(2) =
(
F 1

(
2
∂

∂x1
⊗ (dx1 � dx1) +

∂

∂x2
⊗ (dx1 � dx2)

)
+ F 2

(
2
∂

∂x2
⊗ (dx2 � dx2) +

∂

∂x1
⊗ (dx1 � dx2)

))
⊗ (dx1 ∧ dx2) , (4.29)

where F 1 and F 2 are defined by (4.27) and (4.28) respectively.

We recall, that a differential form defined on Jkπ is a differential invari-
ant of the action of Γ on π if it is invariant w.r.t. the pseudogroup Γ(k).

Theorem 7.9. The form ω(2) is a differential invariant of the action of
Γ on π.

Proof. Let f ∈ Γ, let p be a point from the domain of f , and let
θ2 ∈ J2

pπ. We should check that

(f (2))∗
(
ω(2)

∣∣
f (2)(θ2)

)
= ω(2)

∣∣
θ2
. (4.30)

We shall check it in the standard coordinates. It is clear that the left side of
(4.30) is depend of [f ]4p. This jet can be represented in the following way

[f ]4p = [f1]4p · [f2]4p ,

where [f1]4p is jet of the affine transformation and [f2]1p = [id]1p . It can easily
be checked that ω(2) is invariant w.r.t. affine transformations. Therefore it
remains to check that equation (4.30) holds for an arbitrary point transfor-
mation f with [f ]1p = [id]1p. Taking into account that ω(2) is horizontal, we
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get that equation (4.30) holds for a point transformation f with [f ]1p = [id]1p
iff

F 1
(
f (2)(θ2)

)
= F 1(θ2) , F 2

(
f (2)(θ2)

)
= F 2(θ2)

It is clear that the last equations hold iff the restrictions of F 1 , F 2 to
J2
pπ are 1-st integrals for any vector field ξ(2)

∣∣
J2

pπ
with [ξ]∞p ∈ L1

p. The last

statement about F 1 and F 2 can be easy checked by direct calculations in
standard coordinates. �

In his paper [2], Cartan proved that equation (4.1) can be reduced to
the linear form by a point transformation iff the collection of its coefficients
is a solution of the system of PDEs

F 1 = 0 , F 2 = 0 . (4.31)

This means that ω(2) is a unique obstruction to the linearizability of equa-
tions (4.1) by point transformations.

Below, we give the independent proof of this fact.
Let

M =
{
θ2 ∈ J2π

∣∣∣ ω(2)
∣∣
θ2

= 0
}
.

From (4.26), it follows that M is defined by system of algebraic equations
(4.31).

By 0 we denote the zero section of π, by 0k we denote [0]k0 , k = 0, 1, 2, . . .

Lemma 7.10. M = Orb02.

Proof. It is clear that dim Orb02 = dimW0/L
4
0 − dim g02 . We have

dimW0/L
4
0 = 30. It is easy to calculate that dim g02 = 6. Hence dim Orb02 =

24. From (4.31), we have that dimM = dim J2π − 2 = 24 too.
Obviously, ω(2)

∣∣
02

= 0. Now from theorem 7.9, we get that Orb02 ⊂ M .
At last, the sets M and Orb02 are connected subsets in J2π. This concludes
the proof. �

Lemma 7.11. Let θ2 ∈ Orb02 and let θ1 = π2,1(θ2); then the natural
projection of the isotropy groups of these points

Gθ2 → Gθ1 , [f ]4p 7→ [f ]3p ,

is a bijection.

Proof. It is easy to prove that the natural projection G02 → G01 is an
injection and that dimG01 = dimG02 = 6. Therefore the natural projection
G02 → G01 is a bijection. The projection π2,1 : Orb02 → J1π is a surjective.
This implies the proof. �

For any section S of π, by ω(2)
S we denote the form

(
j2S

)∗(ω(2)).
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Theorem 7.12. The section S can be transformed (locally) to 0 by a
point transformation iff ω

(2)
S ≡ 0.

Proof. The necessity is obvious.
Prove the sufficiency. To this end, we should prove that the system of

PDEs w.r.t. an unknown point transformation f

0 = f (0) ◦ S ◦ f−1

has a solution. By E(0, S) we denote this system. It easy to prove that the
symbol of this PDE system at any point is the same as the subalgebra g
defined above by (4.8). From (4.11), we obtain that the first prolongation
E(1)(0, S) of E(0, S) has the zero symbol at every point. Therefore E(1)(0, S)
has a solution if the natural projection E(2)(0, S) → E(1)(0, S) , [f ]4p 7→ [f ]3p,
is a surjection (see [10]).

Let us check that this projection is a surjection. Let [f ]3p ∈ E(1)(0, S). It
takes [S]1p to [0]1f(p). By assumption, ω(2)([S]2p) = 0. It follows from lemma
7.10 that [S]2p ∈ Orb02 . Obviously, [0]2f(p) ∈ Orb02 too. Hence there exist a
point transformation f ′ such that its jet [f ′]4p takes [S]2p to [0]2f(p). This means

that [f ′]4p ∈ E(2)(0, S) , [f ′]3p ∈ E(1)(0, S), and [f ′]3p takes [S]1p to [0]1f(p).
From the last, we obtain that there exist g ∈ G[S]1p

with [f ′]3p ·g = [f ]3p. From
lemma 7.11, we get that there exist g′ ∈ G[S]2p

with ρ4,3(g′) = g. Obviously,
[f ′]4p · g′ ∈ E(2)(0, S) and it is clear that [f ]3p is the image of [f ′]4p · g′ under
the natural projection E(2)(0, S) → E(1)(0, S). Thus, this natural projection
is a surjection. �

Corollary 7.13. The form ω(2) is a unique obstruction to the lineariz-
ability of ODEs (4.1) by point transformations.

Proof. It is well known that any two 2–order linear ODEs are (locally)
equivalent w.r.t. point transformations. This implies the proof. �

5. Exercises

(1) Prove that a bundle of geometric structures is a locally trivial bun-
dle.

(2) Prove equivalence of all definitions of a geometric structure.
(3) Prove that o(n)(1) = {0}, where o(n) ⊂ L0/L1 denotes the orthog-

onal algebra.
(4) Denoting by sl(n) ⊂ L0/L1 the special linear algebra, prove that

sl(n)(k) 6= {0} for all k = 1, 2, . . .
(5) Let g ⊂ L0/L1 be a Lie subalgebra. It is called an algebra of infinite

type if g(k) 6= {0} for all k. Prove that if a Lie algebra g ⊂ L0/L1

contains a matrix of range 1 then g is an algebra of infinite type.
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(6) Applying the computer-algebraic system MAPLE, write the pro-
gram to calculate prolonged spaces g(r), r = 1, 2, . . ., for a arbitrary
space g ⊂ Lk/Lk+1.

(7) Prove that the sequence (3.3) is a complex.
(8) Applying the computer-algebraic system MAPLE, solve the follow-

ing problems:
(a) Prove that an arbitrary point transformation (4.2) transform

an arbitrary ODE (4.1) to an equation of the same form.
(b) Calculate the transformation velocity of section of the natural

bundle of ODEs (4.1) w.r.t. a vector field on the base, (that is
calculate formula (4.5)).

(c) Prove theorem 7.3.
(d) Find the equations describing the degenerate orbit Orb2 in

theorem 7.3 as a submanifold of J2π.
(9) ∗ Consider the bundle of all symmetric linear connections on M .

Locally, this bundle can be represented as the trivial bundle

π : Rn × Rn2(n+1)/2 −→ Rn.

(a) Following to the construction of the invariant 2-form ω(2), see
section 4.7, to construct invariant 2-form on the 1-jet bundle
J1π of the trivial bundle of all symmetric linear connections
on M .

(b) Prove that the 2-form obtained in item (9a) is the curvature
form considering as a 2-form on J1π.



CHAPTER 8

G-structures

This chapter is devoted to the theory of G-structures, which is an al-
ternative approach to investigate differential invariants and the equivalence
problem.

In this chapter, we state necessary facts concerning bundles of k-frames.
We introduce G-structures of higher orders and investigate connection be-
tween the equivalence problem of geometric structures and the equivalence
problem of the corresponding G-structures. Further, we construct in details
the structure function of a G-structure of higher order. This function is a
map from the G-structure to some Spencer δ-cohomology group and is a dif-
ferential invariant. Further, we apply this invariant to solve the integrability
problem of G-structures. Finally, we illustrate the obtained solution of the
integrability problem by examples from the theory of ordinary differential
equations.

In this part, by W we denote the Lie algebra of ∞–jets at 0 ∈ Rn of all
vector fields defined in a neighborhoods of 0. By Lk , k = −1, 0, 1, 2, . . ., we
denote the subalgebra in W defined by

Lk =
{

[X]∞0 ∈W
∣∣ [X]k0 = 0

}
, k ≥ 0 , L−1 = W .

Put
V = W/L0 .

1. Frame bundles

Let M be a smooth n-dimensional manifold. Consider the bundle

πk : Pk(M) →M

of k-frames of M , see chapter 1, section 2. By πl,m, l ≥ m, we denote the
natural projection

πl,m : Pl(M) → Pm(M) , πl,m([s]l0) = [s]m0 .

Let θk ∈ Pk(M), let p = πk(θk), and let Tθk
Pk(M) be the tangent space

to Pk(M) at the point θk.

Proposition 8.1. Let θk+1 ∈ π−1
k+1,k(θk). Then:

67
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(1) θk+1 defines the isomorphism of vector spaces

Tθk
Pk(M) −→W/Lk .

We will denote this isomorphism by θk+1 too.
(2) The reduction of the inverse isomorphism (θk+1)−1 to L0/Lk is

the canonical isomorphism of the Lie algebra of the structure group
Dk(n) to the space Tθk

(π−1
k (p) ) tangent to the fiber of πk over the

point p.

Proof. Let [s]k+1
0 = θk+1 and s(0) = p. By T kp (M) we denote the space

of k-jets at p of all vector fields in M passing through p. Obviously, the map

α : T kp (M) → Tθk
Pk(M) , α : [X]kp 7→

d

dt
( [ϕt ◦ s]k0 )

∣∣∣
t=0

,

where ϕt is the flow of X, is an isomorphism of vector spaces. Also, the map

β : T kp (M) → T k0 Rn , β : [X]kp 7→
d

dt
( [s−1 ◦ ϕt ◦ s]k0 )

∣∣∣
t=0

is an isomorphism of vector spaces. The isomorphism θk+1 is defined now
by the formula

θk+1 = β ◦ α−1 .

The canonical isomorphism L0/Lk → Tθk
(π−1

k (p) ) is defined by the
formula

d/dt( [dt]k0 )
∣∣
t=0

7→ d/dt( [s ◦ dt]k0 )
∣∣
t=0

.

This formula can be rewritten in the following way:

d/dt( s−1 ◦ (s ◦ dt ◦ s−1) ◦ s )
∣∣
t=0

7→ d/dt( [(s ◦ dt ◦ s−1) ◦ s]k0 )
∣∣
t=0

.

This completes the proof. �

The diffeomorphism s−1 is a local chart in M . It generates the local
chart (xi, xij , . . . , x

i
j1...jk

) in Pk(M) as stated above. Obviously, within this
chart, the isomorphism θk+1 is defined by

θk+1 : Xi ∂

∂xi
+ . . .+Xi

j1...jk

∂

∂xij1...jk
7−→ (Xi, . . . , Xi

j1...jk
) . (1.1)

Suppose θk+1, θ̃k+1 ∈ (πk+1,k)−1(θk). Then there exists a unique element
[d]k+1

0 = (δij , 0, . . . , 0, d
i
j1...jk+1

) ∈ Dk
k+1 such that θ̃k+1 = θk+1 · [d]k+1

0 . It is
easy to prove the following statement.

Proposition 8.2. Let ξ ∈ Tθk
Pk(M) and

θk+1(ξ) = (Xi, . . . , Xi
j1...jk−1

, X i
j1...jk

).

Then
θ̃k+1(ξ) = (Xi, . . . , Xi

j1...jk−1
, X i

j1...jk
+ dij1...jkrX

r).
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Let f be an arbitrary diffeomorphism of M to itself. Then the diffeo-
morphism f (k) : Pk(M) → Pk(M) is defined by

f (k)( [s]k0 ) = [ f ◦ s ]k0 .

The diffeomorphism f (k) is called the lift of f to the bundle Pk(M).

2. Geometric structures and their prolongations

Let M be an arbitrary smooth n-dimensional manifold. Recall the con-
venient here definition of a geometric structure on M . Let

F : Dk(n)× RN → RN (2.1)

be an action of Dk(n) on RN . Then a map

Ω : Pk(M) → RN ,

is called a geometric structure of order k on M if

Ω(θk · dk) = F ( (dk)−1 , Ω(θk) ) ∀ θk ∈ Pk(M) , ∀ dk ∈ Dk(n) .

The number k is called the order of this structure and F is called the trans-
formation law of the components of the structure.

Any local coordinate system (U, h = (x1, . . . , xn) ) in M generates the
section of Pk(M) by the formula

U → π−1
k (U) , p 7→

[
(h− h(p) )−1

]k
0
. (2.2)

The reduction of Ω to the image of this section is the collection of the
components q1(x), . . . , qN (x) of Ω in the coordinates x1, . . . , xn.

A geometric structure Ω is called homogeneous if Im Ω is an orbit of the
action F of the group Dk(n).

Suppose Ω1 and Ω2 are geometric structures with the same transforma-
tion law of their components. We say that these structures are equivalent if
there exists a diffeomorphism f of M such that

Ω1 = Ω2 ◦ f (k) .

Suppose Ω is a geometric structure and the transformation law of its
components is defined by (2.1). Then its first prolongation

Ω(1) : Pk+1(M) → RN(1+n)

is defined in the following way. Suppose q1(x), . . . , qN (x) are the components
of Ω in the coordinates x1, . . . , xn. Then

qα(x) ,
∂

∂xj
( qα(x) ) , α = 1, . . . , N , j = 1, . . . , n ,
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are the components of Ω(1) in the coordinates x1, . . . , xn. Obviously, the
transformation law of components of Ω(1) is defined by

q̃α = Fα( dij1 , . . . , d
i
j1...jk

, q1, . . . , qN ) ,

∂iq̃
α · dij =

∂Fα

∂dij1
dij1j + . . .+

∂Fα

∂dij1...jk
dij1...jkj +

∂Fα

∂qβ
∂jq

β .
(2.3)

The i-th prolongation of Ω is defined by induction on i:

Ω(i+1) = (Ω(i) )(1) , i = 1, 2, . . . .

3. G-structures and geometric structures. The equivalence
problem

Let G ⊂ Dk(n) be a closed Lie subgroup and let B ⊂ Pk(M) be a
reduction of Pk(M) to G. Then B is called a G-structure of order k over M .

Let Ω : Pk(M) → RN be an arbitrary homogeneous geometric structure,
q0 ∈ Im Ω, and G ⊂ Dk(n) be the isotropy group of q0. Then the inverse
image B = Ω−1(q0) ⊂ Pk(M) is a G-structure of order k over M .

Examples
1. If G = Dk(n), then G-structure B is Pk(M).
2. Let Ω : P1(M) → Rn(n+1)/2 be an arbitrary Riemannian metric on

M . Then Ω−1(E), where E is the unite n × n-matrix, is the a principal
O(n)-bundle of orthonormal frames on M .

3. Let Ω : P1(M) → Rn2(n+1)/2 be an arbitrary linear symmetric con-
nection on M . Then the group G of the G-structure B = Ω−1(0) is defined
by

G = { [d]20 = (dij , 0) ∈ D2(n) } .
Let [s]20 ∈ B, then (π2,1)−1( [s]10 )∩B = {[s]20}. It follows that G-structure B
is a section of the bundle π2,1 : P2(M) → P1(M).

Suppose B1 and B2 are G-structures over M . They are equivalent if there
exists a diffeomorphism f of M such that

f (k)(B1) = B2 .

It is easy to prove the following statement.

Theorem 8.3. Suppose Ω1 and Ω2 are homogeneous geometric struc-
tures with the same transformation law of the components, suppose that
Im Ω1 = Im Ω2, and suppose q ∈ Im Ω1. Then Ω1 and Ω2 are equivalent iff
the G-structures Ω−1

1 (q) and Ω−1
2 (q) are equivalent.

Let B be a G-structure of order k over M and let g ⊂ L0/Lk be the Lie
algebra of G. By definition, put

gk = g∩ (Lk−1/Lk) .
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By g(i)
k , i = 0, 1, . . . denote the i-th prolongation of gk, where g(0)

k = gk.
By definition, B is a finite type G-structure if there exists a nonnegative

integer r such that g(r)
k = {0}, otherwise B is an infinite type G-structure.

Obviously, g(i)
k = {0} if i > r. By r(B) we denote the least nonnegative

integer r such that g(r)
k = {0}.

Let Ω be an arbitrary geometric structure and let B = Ω−1(q) be one of
its G-structures. We say that Ω has finite or infinite type if B has respec-
tively finite or infinite type. Clearly, the type of a geometric structure is well
defined.

Examples.
1. O(n)-structure is a finite type structure such that r(B) = 1.
2. SL(n)–structure, almost complex structure are 1st order structures of

infinite type.
3. The geometric structure on R1 generated by coefficients of a linear

ODE of order k is a kth order finite type structure such that r(B) = 0.
4. The geometric structure on R2 generated by coefficients of an equation

y′′ = u0(x, y) + u1(x, y)y′ + u2(x, y)(y′)2 + u3(x, y)(y′)3

is a 2nd order finite type structure such that r(B) = 1.
5. Geometric structure on R3 generated by coefficients of an arbitrary

equation of the form

y′′′ = u0(x, y, y′) + u1(x, y, y′)y′′ + u2(x, y, y′)(y′′)2 + u3(x, y, y′)(y′′)3

is a 3rd order infinite type structure.

4. The integrability problem

Let F : Dk(n) × RN → RN be an arbitrary action of Dk(n) on RN , let
q ∈ RN , and let G ⊂ Dk(n) be the isotropy group of q.

The standard coordinate system on Rn generates the section Pk(Rn) by
formula (2.2). Subjecting image of this section to the action of G, we obtain
the G-structure B over Rn. It is called flat. Obviously, the G-structure B, q,
and the transformation law F define the geometric structure Ω : Pk(Rn) →
RN uniquely. This geometric structure is called a flat structure too.

A geometric structure (G-structure) on M is called a locally-flat or in-
tegrable if it is locally equivalent to a flat structure (G-structure).

Obviously, a G-structure B on M is integrable iff there exists a local
chart of M such that the section of Pk(M) generated by this chart is a
section of B. In other words, a geometric structure on M is integrable iff
there exists a local chart in M such that the components of this structure
are constants in this chart.

In the sequel, we use the following
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Theorem 8.4. Let Ω be an arbitrary geometric structure and let q be
some value of Ω. Then Ω is integrable iff the G-structure B = Ω−1(q) is
integrable.

5. Structure functions of G-structures and their prolongations

Consider a homogeneous geometric structure Ω: Pk(M) → RN . Trans-
formation law (2.1) of its components can be interpreted as the system
of partial differential equations w.r.t. unknown functions yi(x1, . . ., xn),
i = 1, 2, . . . , n. We treat this PDE system as the submanifold E in the bun-
dle of k-jets Jkτ of sections of the trivial bundle

τ : Rn × Rn → Rn .

We suppose that E satisfies the condition

τk,k−1( E ) = Jk−1τ , (5.1)

where τl,m : J lτ → Jmτ, l ≥ m, is the natural projection that takes a l-jet
to its m-jet.

Let q0 ∈ RN be some value of Ω. Consider the G-structure B = Ω−1(q0).
Then condition (5.1) means that

πk,k−1( B ) = Pk−1(M). (5.2)

For the group G, condition (5.1) means that

ρk,k−1( G ) = Dk−1 . (5.3)

For the Lie algebra g of the group G, the last condition means that

ρk,k−1( g ) = L0/Lk−1 . (5.4)

5.1. Structure functions of G-structures. Let θk ∈ B. Then θk
defines the linear isomorphism θk : Tθk−1

Pk−1(M) → W/Lk−1 as it was
shown above. ByHk−1 we denote the subspace inW/Lk−1 which is generated
by the vectors of the form (Xi, 0, . . . , 0 ). Obviously, the quotient space
W/Lk−1 is decomposable to the direct sum

W/Lk−1 = Hk−1 ⊕ L0/Lk−1 .

Consider the subspace Hθk−1
⊂ Tθk−1

Pk−1(M) which is defined by

Hθk−1
= ( θk )−1(Hk−1 ) . (5.5)

We say that H ⊂ Tθi
Pi(M) , i = 1, 2, . . . ,∞ is horizontal if it is n-

dimensional and is naturally projected onto the space tangent to M without
degeneration.

Clearly, subspace (5.5) is horizontal.
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Let θk+1 ∈ Pk+1(M) and let πk+1,k(θk+1) = θk ∈ B. Then the isomor-
phism θk+1 : Tθk

Pk(M) →W/Lk defines the injective linear map

θk+1

∣∣
Tθk

B
: Tθk

B →W/Lk

such that the following diagram is commutative:

Tθk
B

θk+1

∣∣
Tθk

B

−−−−−−−→ W/Lk

(πk,k−l)∗

y yρk,k−l

Tθk−1
Pk−1(M) −−−−→

θk

W/Lk−1 .

Let us choose a horizontal subspace Hθk
⊂ Tθk

B such that

(πk,k−1)∗(Hθk
) = Hθk−1

. (5.6)

Then
∀X ∈ Hθk+1

, θk(X) = ( Xi, 0, . . . , 0, X i
j1...jk

) .

The pair (Hθk
, θk+1 ) defines the linear map

f(Hθk
, θk+1 ) : V → Lk−1/Lk

by the formula

f(Hθk
, θk+1 ) : Xi 7→ (Xi

j1...jk
) = ( f ij1...jk,rX

r ) .

Suppose Hθk
, H̃θk

⊂ Tθk
B are horizontal subspaces satisfying Eq. (5.6).

Then, obviously,

( f(Hθk
, θk+1 ) − f( H̃θk

, θk+1 ) ) : V → gk , (5.7)

where gk = g∩ (Lk−1/Lk).
Let θk ∈ B and θk+1, θ̃k+1 ∈ (πk+1,k)−1(θk). Then there exists a unique

element [d]k+1
0 = (δij , 0, . . . , 0, d

i
j1...jk+1

) ∈ Dk
k+1 such that θ̃k+1 = θk+1 ·

[d]k+1
0 .
Let f(Hθk

, θk+1 ) = ( f ij1...jk,r ) and f(Hθk
, θ̃k+1 ) = ( f̃ ij1...jk,r ). Then from

Proposition 8.2 it follows that

( f̃ ij1...jk,r ) = ( f ij1...jk,r + dij1...jkr) . (5.8)

Suppose X,Y ∈ Hθk
. Consider the bracket [ θk+1(X), θk+1(Y ) ], see

Eq. (3.1). We have

[ θk+1(X), θk+1(Y ) ] = (XrY i
j1...jk−1r

− Y rXi
j1...jk−1r

)

= (XrY s( f ij1...jk−1r,s
− f ij1...jk−1s,r

) ) . (5.9)
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By definition, put

c(Hθk
, θk+1 ) = ( f ij1...jk−1r,s

− f ij1...jk−1s,r
) .

From (5.8) it follows that c(Hθk
, θk+1 ) is independent of the choice of

the point θk+1 over θk ∈ B. Therefore we will write c(Hθk
) instead of

c(Hθk
, θk+1 ).

Consider the Spencer complex

0 → g
(1)
k

∂k+1,0−−−−→ gk ⊗ V ∗ ∂k,1−−→ Lk−2/Lk−1 ⊗ ∧2V ∗ ∂k−1,2−−−−→ · · · . (5.10)

Obviously,
c(Hθk

) ∈ Lk−2/Lk−1 ⊗ ∧2V ∗ .

From (5.7) it follows that if Hθk
and H̃θk

are horizontal subspaces in Tθk
B

and satisfy (5.6), then

c(Hθk
)− c( H̃θk

) ∈ Im ∂k,1

This means that the class c(Hθk
) mod (Im ∂k,1) is independent of the choice

of the horizontal subspace Hθk
over Hθk−1

. We denote this class by c(θk). It
is easy to check that

c(Hθk
) ∈ ker ∂k−1,2 .

Consequently, c(θk) is a Spencer δ-cohomology class, that is,

c(θk) ∈ Hk−1,2.

We say that the map

c : B → Hk−1,2 , c : θk 7→ c(θk)

is the structure function of the G-structure B.

Proposition 8.5. Structure functions of flat G-structures are trivial.

Proof. Let B be a flat G-structure of order k on Rn and let (h = (x1,
. . ., xn) ) be the standard chart in Rn. An arbitrary element g ∈ G defines
the diffeomorphism ĝ of Rn to itself by the formula

ĝ(x1, . . . , xn) =
1
1!
gijx

j + . . .+
1
k!
gij1...jkx

j1 . . . xjk ,

where ( gij , . . . , g
i
j1...jk

) = g−1. By sgr , r = 0, 1, . . ., we denote the section of
Pr(Rn) that is generated by the chart ( ĝ ◦ h = (y1, . . . , yn) ) on Rn. Then
sgk is a section of B. Indeed, let e be the unit of G, then sek is a section of
Pk(Rn) generated by the standard chart in Rn. This section is a section of
B. It is clear that

sgk(p) = sek(p) · g ∀ p ∈ Rn .

Let θk = sgk(p) and let θk+1 = sgk+1(p). Then it is obvious that Hθk
=

(sgk)∗(TpR
n) is a horizontal subspace in Tθk

B and

θk+1 : X 7→ (Xi, 0, . . . , 0 ) ∀X ∈ Hθk
.
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It is clear now that the structure function of the G-structure B is equal
to zero for any point of Im sgk. Taking into account that images of sections
Im sgk , g ∈ G, cover B completely, we conclude that the structure function
is equal to zero at each point of B. �

In general, the structure functions give only necessary conditions to solve
the local equivalence problem for G-structures.

Theorem 8.6. Suppose B and B̃ are G-structures on M , c and c̃ are
their structure functions, respectively, and let f be a diffeomorphism of M
to itself such that f (k)(B) = B̃. Then (f (k))∗(c̃) = c.

Proof. Let [s]k0 = θk ∈ B and let X ∈ Tθk
B. Then for any point

θk+1 ∈ π−1
k+1,k(θk) we have

θk+1(X) = f (k+1)(θk+1)( (f (k))∗(X) ) .

Indeed, from the construction of the isomorphism θk+1, see the proof of
proposition 8.1, it follows that there exists a vector field ξ with the flow ϕt
in M such that X = d/dt( [ϕt ◦ s]k0 )

∣∣
t=0

and

θk+1(X) = d/dt( [s−1 ◦ ϕt ◦ s]k0 )
∣∣
t=0

.

It follows that

f (k+1)(θk+1)( (f (k))∗(X) )

=
d

dt
( [(f ◦ s)−1 ◦ (f ◦ ϕt ◦ f−1) ◦ (f ◦ s)]k0 )

∣∣∣
t=0

=
d

dt
( [s−1 ◦ ϕt ◦ s]k0 )

∣∣∣
t=0

= θk+1(X) .

It is obvious now that the cohomology classes c(θk) and c( f (k)(θk) ) coincide.
�

5.2. Structure functions of prolongations. Let Ω be an arbitrary
geometric structure on M , F be its components’ transformation law, and
q0 ∈ RN be some value of Ω. Consider a G-structure B = Ω−1(q0). Let
g ⊂ L0/Lk be the Lie algebra of G and let gk = g∩Lk−1/Lk. Suppose that
the structure function of B is equal to zero. Let θk ∈ B and let θk+1 ∈
(πk+1,k)−1(θk). Consider an arbitrary horizontal subspace Hθk

⊂ Tθk
B sat-

isfying (5.6). Let f(Hθk
, θk+1 ) = ( f ij1...jk,s ) . From the Spencer complex

in Eq. (5.10) and the equation c(Hθk
, θk+1 ) = 0 mod (Im ∂k,1) , it follows

that there exists ( gij1...jk,s ) ∈ gk ⊗ V ∗ such that

( f ij1...jk−1r,s
− f ij1...jk−1s,r

) = ∂k,1( ( gij1...jk,s ) ) .

Therefore,
f ij1...jk,s = gij1...jk,s + dij1...jks ,
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where ( dij1...jks ) ∈ g(1)
k . By H̃θk

we denote a horizontal subspace in Tθk
B such

that f( H̃θk
, θk+1 ) = ( dij1...jks ) . Let θ̃k+1 = θk+1 ·d, where d = (−dij1...jks) ∈

G ∩Dk(n)k+1. Then it is clear that

∀X ∈ H̃θk
θ̃k+1(X) = ( Xi, 0, . . . , 0 ) . (5.11)

By B(1) we denote the set of all θ̃k+1, which are obtained in this way.
Obviously,

πk+1,k(B(1)) = B .

Proposition 8.7. We have

B(1) = (Ω(1))−1( ( q0, 0 ) ) ,

i.e., B(1) is a G(1)-structure. Here G(1) is the isotropy group of the point
( q0, 0 ) ∈ RN(1+n).

Proof. Let [s]k+1
0 = θk+1 ∈ B(1). The local chart s−1 = (y1, . . . , yn)

generates the local chart in Pk(M). From (2.1) it follows that theG-structure
B is defined within this chart by the equations

q̃α(y) = Fα( yij , . . . , y
i
j1...jk

, q0 ) . (5.12)

Let Hθk
⊂ Tθk

B be a horizontal subspace that satisfies (5.6) and (5.11).
Then a vector X ∈ Hθk

is

X = Xi ∂

∂yi
+ 0 · ∂

∂yij
+ . . .+ 0 · ∂

∂yij1...jk

within this chart. From (5.12) we deduce that X satisfies the equation

∂jq
α(0) ·Xj = 0 .

This means that

∂jq
α(0) = 0 ∀ α = 1, 2, . . . , N , j = 1, 2, . . . , n .

whence,
Ω(1)(θk+1) = ( q0, 0 ) .

Thus we obtain
B(1) ⊂ (Ω(1))−1( q0, 0 ) .

From (2.3) it follows that G(1)-structure (Ω(1))−1( q0, 0 ) is defined by the
equations

q̃α(y) = Fα( dij1 , . . . , d
i
j1...jk

, q0 ) ,

∂iq̃
α(y) · dij =

∂Fα

∂yij1
yij1j + . . .+

∂Fα

∂yij1...jk
yij1...jkj .

Therefore,

B(1) ∩ π−1
k+1,k(θk) = (Ω(1))−1( q0, 0 ) ∩ π−1

k+1,k(θk) ∀ θk ∈ B .
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Now it is clear that
B(1) = (Ω(1))−1( q0, 0 ) .

�

In the same way as above, we construct the structure function

c(1) : B(1) → Hk,2

of the G(1)-structure B(1). If c(1) = 0, then, in the same way as above, we
can construct G(2)-structure B(2) = (Ω(2))−1( ( q0, 0, 0 ) ) and its structure
function c(2), and so on.

5.3. Integrability of the finite type structures.

Theorem 8.8. Let B be a finite type G-structure and let c be its structure
function. Then B is integrable iff c = 0 , c(1) = 0 , . . . , c(r(B)) = 0.

Proof. First, we consider the case r(B) = 0. Let Ω be a geometric
structure of order k such that B = Ω−1(q0) and let y = ( y1, . . . , yn ) be a
local chart of M . This chart generates the local chart of Pk(M). In terms of
this chart, the submanifold B is defined by the equations

q̃(y) = F ( yij , . . . , y
i
j1...jk

, q0 ) . (5.13)

We interpret these equations as a system of partial differential equations
E w.r.t. the unknown functions y1(x1, . . . , xn), . . . , yn(x1, . . . , xn) that define
the coordinate transformation x→ y. If there exists a solution of this PDE
system, then x = (x1, . . . , xn ) is a local chart of M and the components of
Ω in this chart are constant, i.e., Ω is integrable.

The condition gk = {0} means that the symbol of the PDEs system is
equal to zero. Thence, the natural projection πk+1,k : B(1) → B is surjective.
This means that the natural projection E(1) → E, where E(1) is the first
prolongation of E, is surjective too. Thus the system E of partial differential
equations is completely integrable, see [10], therefore it has a solution. This
completes the proof for the case r(B) = 0.

The proof for the case r(B) > 0 is obvious now. �

6. Applications of G-structures to ordinary equations

6.1. Second order equations. Consider an ODEs of the form (4.1)

y′′ = u0(x, y) + u1(x, y)y′ + u2(x, y)(y′)2 + u3(x, y)(y′)3 .

It is well-known that an arbitrary point transformation takes equation (4.1)
to the equation of the same form. This means that equation (4.1) defines
the second-order geometric structure on R2 such that the coefficients of the
equation are the components of this structure in the standard coordinates
in R2. We denote this structure by Ω. Thus,

Ω : P2(R2) → R4 .
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This structure has finite type and r(B) = 1.
Consider the G-structure B = Ω−1(0). Its structure function c is equal

to zero. It can be proved that equation (4.1) can be reduced to linear form by
a point transformation iff the structure function c(1) of its first prolongation
B(1) is equal to zero (see [5], [20]).

6.2. Third order equations. Consider ordinary differential equations
of the form

y′′′ = u0(x, y, y′) + u1(x, y, y′)y′′ + u2(x, y, y′)(y′′)2 + u3(x, y, y′)(y′′)3 (6.1)

It is easy to prove that an arbitrary contact transformation takes equation
(6.1) to the equation of the same form. This means that equation (6.1)
defines the geometric structure of third order on the space R3 such that
the coefficients of the equation are the components of this structure in the
standard coordinates in space R3. We denote this structure by Ω. Thus,

Ω : P3(R3) → R4 .

This structure has infinite type.
Let Ω(∞) be the infinite prolongation of the structure Ω and let B =

π∞,3( (Ω(∞))−1(0) ). Then it can be proved that B is a finite type G-structure
such that r(B) = 1. Its structure function c is equal to zero. It can be
proved that equation (6.1) can be reduced to the form y′′′ = 0 by a contact
transformation iff the structure function c(1) of its first prolongation B(1) is
equal to zero (see [6]).

7. Exercises

(1) Prove theorem 8.3
(2) Prove that the type of geometric structure (finite or infinite) is well

defined.
(3) Prove that geometric structure on R2 generated by coefficients of

an equation

y′′ = u0(x, y) + u1(x, y)y′ + u2(x, y)(y′)2 + u3(x, y)(y′)3

is a finite type structure.
(4) ∗ Prove that geometric structure on R3 generated by coefficients of

an arbitrary equation of the form

y′′′ = u0(x, y, y′) + u1(x, y, y′)y′′ + u2(x, y, y′)(y′′)2 + u3(x, y, y′)(y′′)3

is an infinite type structure.
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