
Preprint Series in Mathematical Analysis
Preprint MA 47/2004, Mathematical Institute
Silesian University in Opava, Czech Republic
December 2004, pp. 8

OMEGA LIMIT SETS AND DISTRIBUTIONAL CHAOS ON
GRAPHS

ROMAN HRIC AND MICHAL MÁLEK

Abstract. We prove the following results for general continuous maps on
graphs. We give a full topological characterization of ω-limit sets. We show
that basic sets have similar properties as in the case of the compact inter-
val. Finally, we prove that the presence of distributional chaos, the existence
of basic sets, and positive topological entropy (among other properties) are
mutually equivalent.

Omega limit sets give fundamental information about asymptotic behavior of
a dynamical system. One of the basic tasks is to provide a topological character-
ization of them. The task is more complicated than it could be thought and the
first full characterization in the simplest onedimensional case — the compact inter-
val — was given only in the end of 1980’s in [ABCP]. A slightly stronger version
was proved in a completely different and simpler way in [BS]. This was extended
to the circle maps in [P]. One of the main aims of this paper is to give a full
characterization of ω-limit sets on graphs. This is done in Section 1.

The notion of distributional chaos was introduced in [ScS]. In this paper it is
shown that the presence of distributional chaos is equivalent to the existence of
basic sets and positive topological entropy in the case of continuous interval maps.
Natural question arises on what spaces these equivalences hold. The positive answer
in the circle case was given in [M1]. Equivalence of positive sequence entropy and
the presence of distributional chaos for a subclass of tree maps was proved in [C] and
[CH]. This is not anymore true in higher dimension as was shown for skew-product
maps of the square [Ba].

In this paper we show that the presence of distributional chaos, the existence of
basic sets, and positive topological entropy are mutually equivalent in the case of
general continuous graph maps.

The interest in studying graph maps is, besides their own attractivity, due to
the fact that for maps on manifolds with an invariant foliation of codimension one,
the corresponding quotient map turns out to be defined in general on a graph.
Furthermore, the dynamics of pseudo-Anosov homeomorphisms on a surface can
be essentially reduced to the analysis of some special graph maps (see eg. [FM]).
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Finally, a graph map sometimes imitates the behavior of a flow in a neighbourhood
of a hyperbolic attractor (see eg. [W]).

Let (X, f) be a dynamical system given by a compact topological space and a
continuous map f : X → X (we also write f ∈ C(X)). For x ∈ X we define its
orbit, Orbf (x), to be the set {fn(x) | n ≥ 0} (analogously we define the orbit of
a set) and its ω-limit set, ωf (x), as the set of all limit points of Orbf (x). It is
well known that each ω-limit set is non-empty, compact and strongly invariant (ie.
f(S) = S).

An arc is any space which is homeomorphic to the closed interval [0, 1]. A graph
is a nonempty compact connected metric space which can be written as a union
of finitely many arcs any two of which can intersect only in their endpoints (ie. it
is a one-dimensional compact connected polyhedron). A subgraph is a subset of a
graph which is itself a graph (note that this is more general than a subgraph in the
common combinatorial sense). Let G be a graph and f ∈ C(G) then by a periodic
subgraph (of f) we mean a subgraph H ⊆ G such that there is an n ≥ 1 for which
H, f(H), . . . , fn−1(H) are pairwise disjoint and fn(H) = H ; in this case we also
speak about a periodic orbit of subgraphs.

1. Topological characterization of ω-limit sets

The ideas in this section are inspired by those in [BS]. In the following theorem
we give a full topological characterization of ω-limit sets of continuous maps on
graphs.

Theorem 1. Let G be a graph, f ∈ C(G), and ω an ω-limit set of f . Then ω is
(i) a finite set (in fact, a periodic orbit), or
(ii) an infinite compact nowhere dense set, or
(iii) a finite union of connected subgraphs (which forms a periodic orbit).

Conversely, whenever ω ⊆ G is of one of the above forms then there is a map
f ∈ C(G) such that ω is an ω-limit set of f .

Proof. Let ω = ωf (x) be an ω-limit set of f . It is straightforward to see that if ω
is finite then it is a periodic orbit (cf. also [BC]). So, suppose that ω is infinite
and it is dense in an open subset of G. Then it contains an arc. Take S to be a
connected component of ω containing an arc. It is easy to see that fn(S) is not a
singleton for any n ≥ 0 otherwise ω would reduce to a periodic orbit. From this
and from the fact that there is the smallest m ≥ 1 such that fm(x) ∈ S follows
that Orbf (S) is an orbit of a subgraph with at most m − 1 components. The fact
that ω = Orbf (S) follows from Orbf (x) ⊆ Orbf (S). Periodicity of S is obvious.

Now, conversely, let ω ⊆ G be of one of the forms (i), (ii) or (iii). Case (i) is
trivial — we can extend continuously any map defined on a closed subset to the
whole graph (see [BHS]).

Case (ii). This is a consequence of Lemmas 1 and 2 below.
Case (iii). We are going to define f first as a transitive map on ω. Then the

proof will be finished by taking a continuous extension of this to the whole G. Let
ω = ω1 ∪ · · · ∪ ωk is the decomposition of ω to its connected components. Any
of these subgraphs can be written as a union of finitely many arcs with pairwise
disjoint interiors ωi = A1

i ∪ · · · ∪ Ani

i . We define f to satisfy f(ωi) = ωi+1 (mod k),
in fact such that the image of any arc Aj

i will be the whole component ωi+1 (mod k).
It is easy to see that this can be done “piecewise linearly”. Then the image of
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any subarc of ω will be always an entire component of ω after finitely many steps.
Clearly f is transitive on ω. �
Definition 1. Let E be an infinite compact, totally disconnected metric space,
P = {p1, . . . , pk} a set of its limit points, and f : E → E a continuous map such
that the following two properties are satisfied

(i) there is a system {En
i | n ∈ N, i = 1, . . . , k} of nonempty, compact, pairwise

disjoint subsets of E such that E \ ⋃
i,n En

i = P and limn→∞ En
i = pi (in

the sense that diam(En
i ∪ {pi}) → 0);

(ii) the set P forms a periodic orbit of f (f(pi) = pi+1 (mod k)) and f(En
i ) =

En
i+1 for i = 1, . . . , k − 1, f(En

k ) = En−1
1 and f(E0

k) = p1.
Then we say that E is finitely forward homoclinic with respect to f .

Lemma 1. Let E ⊆ G be a nowhere dense closed set, f : E → E be continuous
with E finitely forward homoclinic with respect to f. Then there is a continuous
extension F : G → G of f such that E = ωF (x) for some x ∈ G.

Proof. We construct F as the limit of a uniformly convergent series of maps. First,
fix a system {An | n ∈ N} of open arcs such that diamAn → 0 and any open
set intersecting E contains some An. Let F0 be any continuous extension of f to
G (it always exists, see [BHS]) and put B0 = ∅ and define the rest of the series
inductively. Let Fn and Bn be defined then choose Bn+1, a compact subarc of
G \ (E ∪ B0 ∪ · · · ∪ Bn). In order to define Fn+1 we change Fn on Bn+1 in such a
way that the resulting map is continuous, Fn+1(Bn+1) contains a neighborhood of
Fn(An ∩E) = fn(An ∩E) and its diameter is less than 2 diam fn(An ∩E). Clearly,
{Fn | n ∈ N} is uniformly convergent and we denote its limit by F . Notice, that
F has the following property important for our purposes: for any u ∈ E and any
neighborhood U of u, F (U) is a neighborhood of F (u) = f(u).

Using this property we can show another one: for any u, v ∈ E, any neighborhood
U of u and any ε > 0 there is a closed set K ⊆ U and n ∈ N such that Fn(K) is
a neighborhood of v and F i(K) ⊆ B(E, ε) for i = 0, 1, . . . , n. To see this, realize
that there are l and m such that F l(u) = f l(u) = pm. Take a closed neighborhood
L ⊆ U of u such that diamF i(L) < ε for i = 0, 1, . . . , l. We know that F l(L) is
a neighborhood of pm hence it contains sets Em

j for arbitrarily large j so there is
a point w ∈ F l(L) ∩ E such that F p(w) = fp(w) = v for some p (since v belongs
either to P or to some Es

r). Now choose a closed neighborhood M ⊆ F l(L) of w
with diam F i(M) < ε for i = 0, 1, . . . , p and put K = F−l(M) ∩ L.

We finally show that E is an ω-limit set of F . Using the last property of F
we can define inductively a nested sequence of compact sets {Ki | i ∈ N} and
an increasing sequence of nonnegative integers {ni | i ∈ N} such that for each i
we have Fni(Ki) ⊆ Ai, and F j(Ki) ⊆ B(E, 1/i) for j = ni, . . . , ni+1. We claim
that E is the ω-limit set of any x ∈ ⋂

n∈N
Ki �= ∅. Since {F j(x) | j ∈ N} visits

each of the arcs {An | n ∈ N} and thus each open set intersecting E, we have
ωF (x) ⊇ E. The opposite inclusion we get from the fact that F j(x) ∈ B(E, 1/i)
for j = ni, ni+1, . . . . �
Lemma 2. Any compact, totally disconnected metric space E is finitely forward
homoclinic with respect to some continuous map.

Proof. Let us begin with the uncountable case. Let x ∈ E be a condensation point
of E (ie. any neighborhood of x contains uncountably many points) then we can



4 ROMAN HRIC AND MICHAL MÁLEK

decompose E\{x} to countably many uncountable pairwise disjoint clopen sets En,
n ∈ N such that limn→∞ En = x. Each of these sets contains a Cantor set (which
is its retract) thus there is a continuous map from En+1 onto En for n = 0, 1, . . . .
We finish the construction of our map by mapping the set E0 as well as the point
x to x. Continuity of the map can be seen easily.

For the rest of the proof we suppose E being countable. First, define a transfinite
sequence {E(α) | α < Ω} putting E(0) = E, E(α+1) to be the set of limit points of
E(α), and E(α) =

⋂
β<α E(β) if α is a limit ordinal. Then there is the unique ordi-

nal τ = τ(E) < Ω such that E(τ) is nonempty and finite. Let E(τ) = {x1, . . . , xk}.
Choose a clopen cover {U0

1 , . . . , U0
k} of the space E by pairwise disjoint sets such

that U0
i is a neighborhood of xi, i = 1, . . . , k. Clearly τ(U0

i ) = τ . There is a clopen
neighborhood U1

k ⊂ U0
k of xk such that E0

k := U0
k \ U1

k �= ∅. Obviously τ(E0
k) < τ

since it does not contain any xi. Thus there is a clopen neighborhood U1
k−1 ⊂ U0

k−1

of xk−1 such that for E0
k−1 := U1

k−1 \ U0
k−1 we have τ(E0

k−1) ≥ τ(E0
k). We can

also easily fulfil the cardinality of (E0
k−1)τ(E0

k−1)
to be at least the same as the

cardinality of (E0
k)τ(E0

k). In this way we construct clopen sets E0
k, E0

k−1, . . . , E
0
1 .

Now, using the same argument, we can choose a clopen set E1
k satisfying τ(E1

k) ≥
τ(E0

1 ) and following in this direction we finally construct a sequence of clopen sets

E0
k, . . . , E0

1 , E1
k, . . . , E1

1 , E2
k, . . . , E2

1 , . . .

such that τ(En
i ) is nondecreasing and (En

i )τ(En
i ) is nondecreasing in cardinality.

Moreover, we can choose these sets to satisfy limn→∞ En
i = xi for i = 1, . . . , k. For

any n there always exists a continuous map from En
i onto En

i+1 (i = 1, . . . , k−1) and
from En+1

k onto En
1 (cf. [BS, Lemma 6]). These maps define the unique continuous

map f on E being its restrictions. The space E has the property H (with respect
to f) by the construction. �

2. Properties of basic sets

Let ω be an infinite ω-limit set. Put

Pω =
⋂
U

OrbU,

where U is taken over all open connected subgraphs intersecting ω. If Pω is a
nowhere dense set then ω is a solenoid. If Pω consists of finite number of connected
components and ω contains a periodic point then ω is a basic set. If Pω consists of
finite number of connected components and ω contains no periodic points then we
call ω a singular set. It is easy to see that other cases for infinite ω-limit sets are
not possible. We say that f has a horseshoe if there are disjoint subgraphs U V
such that f(U) ∩ f(V ) ⊃ U ∪ V .

Lemma 3. Let ω̃ be a basic set for f ∈ C(G). Every open subgraph U with U∩ω̃ �= ∅
contains a periodic point.

Proof. By Theorem 2(b) in [B2] f has the specification property on ω̃. Particularly
this means that arbitrary large part of every trajectory from ω̃ can be approximated
by a periodic orbit with sufficiently large period. �

Lemma 4. Let ω̃ be a basic set for f ∈ C(G), periodic points are dense in ω̃.
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Proof. If ω̃ is a union of periodic subgraphs then Lemma 3 gives the result. If ω̃ is a
nowhere dense set then by Theorem 2 in [B1] there is a subgraph H ⊂ G containing
ω̃ such that if {Ji}∞i=1 is an enumeration of graphs contiguous to ω̃ in H then n ∈ N

f(Jn) ⊂ Jk for some k ∈ N. This shows that any Jn is either periodic or wandering
set. Using this and Lemma 3 we finish the proof. �

Lemma 5. Let ω̃ be a basic set for f ∈ C(G) such that Pω is connected, let U be a
connected subgraph such that U ⊂ intPω̃ and J be an open connected subgraph with
J ∩ ω̃ �= ∅. Then there is an n ∈ N such that U ⊂ fn(J).

Proof. By Lemma 4 there are periodic points p, q ∈ J from the same edge and such
that for the closed arc [p, q] ⊂ J connecting p and q holds [p, q]∩ ω̃ is infinite. (This
is possible since ω̃ is perfect cf. (i) of Theorem 2.) Let k be the common multiple of
periods of p and q and take H =

⋃∞
i=1 f ik([p, q]). Now, H is an invariant connected

subgraph and such that Pω̃ ⊂ H this implies that fn([p, q]) ⊃ U , for all sufficiently
large n. �

The above situation we describe saying that f is strongly transitive on Pω̃. We
summarize some known as well as knew results in the next

Theorem 2. Let ω̃ be a basic set for f ∈ C(G). Then
(i) ω̃ is perfect;
(ii) system of all basic sets is countable;
(iii) periodic points are dense in ω̃;
(iv) if Pω is connected then f is strongly transitive on Pω̃;
(v) fn has a horseshoe, for some n ∈ N.

Proof. Statements (i) and (ii) are proved in [B1]. Statement (iii) follows from
Lemma 4. Statement (iv) follows from Lemma 5. Statement (v) follows from
(iv). �

3. Distributional chaos

Let f be a continuous self map of a graph G. For any two point x, y ∈ G any
positive integer n and any real t define

ξ(x, y, n, t) =
n∑

i=0

χ[0,t)(δxy(i)) = #{i | 0 ≤ i < n and δxy(i) < t},

where δxy(i) = 	(f i(x), f i(y)). Now define the upper distributional and lower distri-
butional functions of points x and y by formulas

F xy(t) = lim sup
n→∞

1
n

ξ(x, y, n, t)

Fxy(t) = lim inf
n→∞

1
n

ξ(x, y, n, t)

respectively. We say that f is distributionally chaotic if there are two different points
x and y from G such that F xy(t) = 1 for all t > 0 and there is a point s > 0 of
continuity of F xy and Fxy such that F xy(s) > Fxy(s).

Lemma 6. If f ∈ C(G) has a horseshoe then it is distributionally chaotic.
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Proof. If f has a horseshoe then there is a set M ⊂ G such that f |M is semicon-
jugated to the full shift σ on the space {0, 1}N. But σ is distributionally chaotic.
To see this, define a sequence {pi | n ∈ N} of nonnegative integers as follows, put
p1 = 1 and pn = n

∑n−1
i=1 pi for n > 1. Consider a sequence of blocks Ai of zeros

and ones as follows. For every n ∈ N put A2n = 0p2n and A2n+1 = 1p2n+1 , where
0k means block of length k containing only symbol 0 analogously for 1k. Take
u, v ∈ {0, 1}N such that u = 000 . . . and v = A1A2A3 . . . . Now for every t > 0 we
have

1
p2k+1

ξ(u, v, p2k+1, t) ≥ 1
pn

(pn − pn−1) =
n − 1

n2pn−1

(
n2pn−1

n − 1
− pn−1

)
= 1 − n − 1

n2
.

This shows Fuv(t) = 1 for every t > 0. Similarly for every t < 1 we have
1

p2k
ξ(u, v, p2k, t) ≤ 1

p2k
pn−1 =

n − 1
n2pn−1

pn−1 =
n − 1
n2

.

This gives Fuv(t) = 0 for every t < 1. �

Lemma 7. Let f ∈ C(G). If ωf (u) and ωf (v) are solenoids then Fuv = Fuv or
Fuv(t) �= 1 for some t > 0.

Proof. By Theorem 1 in [B1] either ωf (u) and ωf (v) are disjoint or both are con-
tained in the same solenoid. If ωf(u) ∩ ωf(v) = ∅ then lim infi→∞ δuv(i) = d > 0
and consequently Fuv(t) �= 1 for t < d. So suppose that ωf (u), ωf (v) ⊂ ω, where ω
is a solenoid. Consider two cases. Case 1. If there is a periodic sequence J1, . . . , Jn

of disjoint connected closed subgraphs covering ω and there is an i ∈ N such that
f i(u) ∈ Jk �= Jl 
 f i(v) then again lim infi→∞ δuv(i) = d > 0 and consequently
Fuv(t) �= 1 for t < d. Case 2. Let for every periodic sequence J1, . . . , Jn of disjoint
connected closed subgraphs covering ω and all sufficiently large i ∈ N both f i(u)
and f i(v) belongs to the same Jk(i). Since there are no more than D/t sets from
{Ji} with diam > t (where D is the length of G) ξ(u, v, n, t) = #{i | 0 ≤ i <
n and δuv(i) < t} ≥ n − D/t. From fact that solenoid has periodic covering with
arbitrary large period we get Fuv(t) = Fuv(t) = limn→∞ 1/n · ξ(u, v, n, t) = 1 for
all t > 0. �

Lemma 8. Let f ∈ C(G). If f has no basic set then f is not distributionally
chaotic.

Proof. Take x, y ∈ G two different points. Let ωf (x) and ωf(y) be their ω-limit
sets. If these sets are of different kind (possible periodic orbit, singular set or
solenoid) then lim infi→∞ δxy(i) = d > 0 and consequently F xy(t) �= 1 for t < d.
Similar result we get when both ωf (x) and ωf (y) are different singular sets (whose
distance must be positive). If ωf (x) = ωf (y) is a singular set then by [B1] f |ωf (x)

is conjugated to an irrational rotation. If both ωf (x) and ωf (y) are periodic obits
then we conclude that either Fxy = F xy (if ωf (x) = ωf(y) and points x and y are
“synchronous”) or F xy(t) �= 0 for some t > 0 elsewhere. In remaining case when
both ωf (x) and ωf (y) are solenoids, apply Lemma 7. �

Lemma 9. Let f be a continuous selfmap of a compact metric space X. If fk is
distributionally chaotic for some k then f is distributionally chaotic.

Lemma was proved in [M2] in the circle case but the proof equally works for any
compact metric space. For completeness we include the proof.
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Proof. Let Guv, Guv be the lower and upper distribution functions for fk respec-
tively. Then Guv(t) < 1 implies Fuv(t) < 1, where Fuv is lower distributional
function for f . Let Fuv be the upper distributional function for f . Since f is
continuous, for any ε > 0 there is a δ > 0 such that 	(u, v) < δ implies δuv(i) < ε,
for i = 0, 1, . . . , n − 1. Consequently, Guv(δ) = 1 implies Fuv(ε) = 1. �

The reverse implication (which is not needed here) also holds in the case of
continuous graph maps. To see this, from the fact that f is distributionally chaotic
we get by Theorem 3 that fn has a horseshoe for some n. Then also fnk has a
horseshoe and again by Theorem 3 we get that fnk is distributionally chaotic as
well. Now just use Lemma 9 again.

Theorem 3. Let f ∈ C(G), then the following conditions are equivalent
(i) h(f) > 0;
(ii) fn has a horseshoe, for some n ∈ N;
(iii) f has a basic set;
(iv) f is distributionally chaotic.

Proof. Equivalence of (i) and (ii) is proved in [LM]. Theorem 2(iv) yields that (iii)
implies (ii). By Lemma 8, (iv) implies (iii). To prove the implication from (ii) to
(iv), combine Lemmas 6 and 9. �
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Opava, Czech Republic

E-mail address: Michal.Malek@math.slu.cz


