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A FIRST COURSE IN COMPLEX DYNAMICAL SYSTEMS

PETRA ŠINDELÁŘOVÁ

Abstract. The topic of this paper is to give some introductory lectures
to complex dynamical systems. It was presented at the 6th Czech-Slovak
Workshop on Discrete Dynamical Systems organized by the Mathemat-
ical Institute of Silesian University at Opava, 9-16 June 2002, Praded,
Czech Republic. A more systematic exposition can be found in the sur-
vey articles [Dou], [Bl], and [EL]; and books [Bea], [CG], [Mc1] or Mil-
nor’s lecture notes [Mil].

1. Introduction and History

Between the founders of the field of complex dynamics are:

Ernst Schröder 1841–1902
Hermann A. Schwarz 1843–1921
Henri Poincaré 1854–1912
Gabriel Kœnigs 1858–1931
Léopold Leau 1868–1940 (?)
Lucjan E. Böttcher 1872–?
Samuel Lattès 1873–1918
Constantin Carathéodory 1873–1950
Paul Montel 1876–1975
Pierre Fatou 1878–1929
Paul Koebe 1882–1945
Arnaud Denjoy 1884–1974
Gaston Julia 1893–1978
Carl L. Siegel 1896–1981
Hubert Cremer 1897–1983
Herbert Grötzsch 1902–1993
Charles Morrey 1907–1984
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Lars Ahlfors 1907–1996
Lipman Bers 1914–1993

The local study of iterated holomorphic mappings in a neighborhood of
a fixed point, was quite well developed in the late 19th century. However,
except for one very simple case studied by Schröder in 1871 and Cayley in
1879 (Newton’s method for f(z) = z2 + 1), nothing was known about the
global behavior of iterated holomorphic maps until 1906, when Pierre Fatou
described the following starting example. For the map z 7→ z2/(z2 + 2),
he showed that almost every orbit under iteration converges to zero (even
though there is a Cantor set of exceptional points for which the orbit remains
bounded away from zero). This aroused great interest. The subject was
taken up in depth by Fatou and also Gaston Julia and others. The most
fundamental contributions were those of Fatou himself. However, Julia was
a determined competitor and tended to get more credit because of his status
as a wondered war hero. (In 1918 Julia was awarded the “Grand Prix des
Sciences Mathématiques” by the Paris Academy of Sciences for his work.)

Complex dynamics flourished in the 20’s under mathematicians such as
Fatou and Julia. This field then slept until the late seventies. Then, mainly
due to the computer graphics of Mandelbrot and the work of many present
day workers in the field, attention was once again turned to the rich dynam-
ical behavior of elementary maps of complex plane. Let me mention a few
of them:

John W. Milnor (1931)
I. Noel Baker (1932)
Adrien Douady (1935)
Denis P. Sullivan (1941)
Michael R. Herman (1942)
John H. Hubbard (1945)
William P. Thurston (1946)
Mary Rees (1953)
Jean-Christophe Yoccoz (1955)
Curtis T. McMullen (1958)
Mikhail Y. Lyubich (1959)
Mitsuhiro Shishikura (1960)

2. The Julia and Fatou sets

A complex analytic map always decomposes the plane into two disjoint
subsets, the stable set called the Fatou set, on which the dynamics are rel-
atively tame, and the Julia set, on which the map is chaotic. To simplify,
we will concentrate mainly on rational or polynomial maps of the complex
plane. Rational maps on the Riemann sphere are complex analytic, form a
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finite-dimensional manifold, and some of the conjectures once proposed for
smooth dynamical systems and now known to be false seem to hold in the
class of rational maps.

Definition 2.1. A rational map f : Ĉ → Ĉ is a holomorphic dynamical
system on the Riemann sphere Ĉ = C∪{∞}. Any such map can be written

as a quotient f(z) = P (z)
Q(z) of two relatively prime polynomials P and Q. The

degree of f can be defined topologically or algebraically; it is the number
of preimages of a typical point z, as well as the maximum of degrees of P
and Q.

The fundamental problem in the dynamics of rational maps is to under-
stand the behavior of hight iterates f n(z) = f ◦ fn−1.

Definition 2.2. The familly {Fn} of complex analytic functions defined on
an open set U is a normal family if every infinite sequence of maps from
{Fn} has a subsequence which converges uniformly on compact subsets of
U , or converges uniformly to ∞ on U .

Theorem 2.3. Montel. For any complex manifold the set of all holomor-
phic maps into Ĉ \ {0, 1,∞} is a normal family.

Example 2.4.

F (z) = az, |a| < 1 Fn(z) = F n(z)

{Fn} forms a normal family of functions on any domain in C since Fn con-
verges to the constant function 0 on compact subsets.

Example 2.5.

F (z) = az, |a| > 1

The same family is normal on any domain which does not include 0, but
fails to be normal if the domain includes 0. Indeed, in any neighborhood of
0, there is a point z such that |F n(z)| is arbitrary large for some n. Any
such neighborhood U satisfies

⋃
∞

n=1 F
n(U) = C.

Definition 2.6. Let f : Ĉ ← Ĉ be a rational map of degree > 1. The
multiplier of a point z of period p is the derivative (f p)′(z) of the first
return map. We say z is

– repelling if |(f p)′(z)| > 1,
– indifferent if |(f p)′(z)| = 1,
– attracting if |(f p)′(z)| < 1, and
– superattracting if |(f p)′(z)| = 0.

An indifferent point is parabolic if (f p)′(z) is a root of unity (the multiplier
at z is equal to 1).

Definition 2.7. The Fatou set Ω(f) ⊂ Ĉ is the largest open set such that
the iterates {fn|Ω : n ≥ 1} form a normal family. The Julia set J(f) is the
complement of the Fatou set.

The Julia and Fatou sets are each totally invariant under f (i.e. f−1(J(f)) =

J(f) and f−1(Ω(f)) = Ω(f)); so the partition Ĉ = J(f)tΩ(f) is preserved
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by the dynamics. This definition has been standard since the time of Fatou
and Julia.

Thus, by its very definition, the Julia set J is a closed subset of Ĉ , while
the Fatou set Ĉ \ J is the complementary open set.

The above examples show that the Julia set of F (z) = az (+ b) are quite
simple.

Theorem 2.8. The Julia set is equal to the closure of the set of repelling
periodic points. It is also characterized as the minimal closed subset of the
Riemann sphere satisfying |J | > 2 and f−1(J) = J .

Theorem 2.9. Classification of Fatou components. Every component
U of the Fatou set is preperiodic (f i(U) = f j(U) for some i > j > 0).
The number of periodic components is finite. A periodic component U with
fp(U) = U is exactly one of the following types:

1. An attracting basin: there is an attracting periodic point w ∈ U and
fnp(z)→ w for all z ∈ U as n→∞.

2. A parabolic basin: there is a parabolic periodic point w ∈ ∂U and
fnp(z)→ w for all z ∈ U .

3. A Siegel disk: the component U is a disk on which f p acts by an
irrational rotation z 7→ e2πiαz, α 6∈ Q.

4. A Herman ring: the component U is an annulus and again f p acts
as an irrational rotation.

Proposition 2.10. Let p be a polynomial of degree ≥ 2. Then

(i) J(p) = J(pn) 6= ∅;
(ii) J(p) is a perfect set;

(iii) for some z0 ∈ J(p), J(p) =
⋃∞

k=0 p
−k(z0);

(vi) p is chaotic in the sense of Devaney on J(p).

The fact (iii) yields a good algorithm for plotting Julia sets graphically.
One simply finds a repelling fixed point for p and computes its preimages.

Corollary 2.11. J(p) has empty interior.

This is the only result for polynomials not true for rational maps.

Example 2.12. Let Q2(z) = z2 − 2 and Q0(z) = z2. Then J(Q2) is
the closed interval [−2, 2] and J(Q0) is the unit circle. Such smooth Ju-
lia sets are rather exceptional. More complicated Julia sets can be found at
http://abel.math. harvard.edu/˜ctm/gallery/ or http://aleph0.clarku.edu/
˜djoyce/julia/julia.html

Definition 2.13. The postcritical set P (f) is the closure of the strict for-
ward orbits of the critical points C(f):

P (f) =
⋃

C∈C(f),n>0

fn(c)

Note that f(P ) ⊂ P and P (fn) = P (f). The postcritical set is also the
smallest closed set containing the critical values of f n for every n > 0.
A rational map is critically finite if P (f) is a finite set.
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Theorem 2.14. The postcritical set P (f) contains attracting cycles of f ,
the indifferent cycles which lie in the Julia set, and the boundary of every
Siegel disk and Herman ring.

Theorem 2.15. Characterization of hyperbolicity. Let f be a rational
map of degree > 1. Then the following conditions are equivalent:

1. The postcritical set P (f) is disjoint from the Julia set J(f).
2. There are no critical point or parabolic cycles in J(f).
3. Every critical point of f tends to an attracting cycle under forward

iteration.
4. There is a smooth conformal metric p defined on a neighborhood of

the Julia set such that ‖f ′(z)‖p > C > 1 for all z ∈ J(f).

Definition 2.16. The map f is hyperbolic if any of the equivalent conditions
above is satisfied. A hyperbolic rational map is also sometimes said to be
expanding, or to satisfy Smale’s Axiom A.

Lemma 2.17. Every attracting periodic orbit is contained in the Fatou set.
Every parabolic periodic point belongs to the Julia set.

Theorem 2.18. Transitivity Theorem. Let z be an arbitrary point of
the Julia set J(f) ∈ Ĉ and let N be an arbitrary neighborhood of z. Then
the union U of the forward images fn(N) contains the entire Julia set, and

contains all but at most two points of Ĉ \ U .

Corollary 2.19. If the Julia set contains an interior point, then it must be
equal to the entire Riemann sphere.

Corollary 2.20. If A ⊂ Ĉ is the basin of attraction for some attracting
periodic orbit, then the topological boundary ∂A = A \ A is equal to the

entire Julia set. Every connected component of the Fatou set Ĉ \ J either
coincides with some connected component of this basin A or else is disjoint
from A.

Corollary 2.21. For any rational map of degree ≥ 2 the Julia set is either
connected or has uncountably many connected components.

3. Local fixed point theory

In this lecture we will study the dynamics of a holomorphic map in some
small neighborhood of a fixed point. This local theory is a fundamental tool
in understanding more global dynamics. It has been studied for well over a
hundred years by mathematicians such as Schröder, Kœnigs, Leau, Böttcher,
Fatou, Siegel, Voronin, Cherry, Herman, Yoccoz and Perez-Marco. In most
cases it is now well understood, but a few cases still present extremely dif-
ficult problems.

We start by expressing our map in terms of a local uniformizing parameter
z, which can be chosen so that the fixed point corresponds to z = 0.

We can then describe the map by a power series of the form f(z) =
λz+a2z

2 +a3z
3 + · · · , which converges for |z| sufficiently small. Recall that

the initial coefficient λ = f ′(0) is called the multiplier of the fixed point.



6 PETRA ŠINDELÁŘOVÁ

3.1. Attracting points.

Definition 3.1. A fixed point p of a map f is topologically attracting if
it has a neighborhood U so that the successive iterates f n are all defined
throughout U , and so that the sequence {f n|U} converges uniformly to the
constant map U → P .

Lemma 3.2. Topological characterization of attracting points. A
fixed point for a holomorphic map is topologically attracting if and only if
its multiplier satisfies |λ| < 1.

In either case we will show that f can be reduced to a simple normal
form by a suitable change of coordinates. We assume that the origin is not
a critical point.

Theorem 3.3. Kœnigs linearization. If the multiplier λ satisfies |λ| 6=
0, 1, then there exists a local holomorphic change of coordinate w = φ(z),
with φ(0) = 0, so that φ◦f ◦φ−1 is the linear map w 7→ λw for all w in some
neighborhood of the origin. Furthermore, φ is unique up to multiplication by
a non-zero constant.

In other words, the following diagram commutes:

U f(U)

C C

f

φ φ
λ·

where φ is univalent (conformal, one-to-one) on the neighborhood U of zero.
The usefulness of the functional equation

φ ◦ f ◦ φ−1(w) = λu

had been pointed out some years earlier by E. Schröder. However, Schröder
had been able to find solutions in very special cases.

Suppose that f : S → S is a holomorphic map of Riemann surfaces with
an attracting fixed point p̂ = f(p̂) of multiplier λ 6= 0. Recall that the
total basin of attraction A = A(p̂) ⊂ S consists of all P ∈ S for which
limn→∞ fn(p) exists and is p̂. The immediate basin A0 is the connected
component of the Fatou set S \ J which contains p̂.

Now let us specialize to the case of the Riemann sphere. Suppose that
f : Ĉ → Ĉ is rational degree ≥ 2. Let ẑ ∈ Ĉ be an attracting (not su-

perattracting) fixed point with basin of attraction A ⊂ Ĉ. In some small
neighborhood Dξ of 0 ∈ C, note that the map φ : A→ C has a well defined
holomorphic inverse ψξ : Dξ → A0 with ψξ(0) = ẑ.

Lemma 3.4. Finding a critical point. The local inverse ψξ : Dξ → A0

extends, by analytic continuation, to some maximal open disk Dr about the
origin in C. This yields a uniquely defined holomorphic map ψ : Dr → A0

with ψ(0) = ẑ and φ(ψ(w)) = w. Furthermore, ψ extends homeomorphically
over the boundary circle ∂Dr, and the image ψ(∂Dr) ⊂ A0 neccessarilly
contains a critical point of f .



A FIRST COURSE IN COMPLEX DYNAMICAL SYSTEMS 7

If we denote by U the image ϕ(∂Dr) ⊂ A0, the previous lemma gives
a commutative diagram of conformal isomorphisms. Note that the closure
U ⊂ Ĉ.

U f(U)

Dr λDr

f

λ·
ψφ φψ

The following fundamental result is due to Fatou and Julia.

Theorem 3.5. Finding periodic attractors. If f is a rational map of de-
gree ≥ 2, then the immediate basin of every attracting periodic orbit contains
at least one critical point. Hence the number of attracting periodic orbits is
finite, less than or equal to the number of critical points.

Note that this theorem gives a constructive algorithm for locating the
attracting periodic points, if they exist, for any non-linear rational map.
Starting at each one of the critical points, simply iterate the map many
times and then test for (approximate) periodicity. (Of course if the period
is very large, then this becomes impractical. As an example, it is easy to
check that the quadratic map f(z) = z2 − 1.5 has no attracting orbits of
reasonable period. However, we know no way of deciding whether it has an
attracting orbit of some very high period.)

Theorem 3.6. Topology of A0. Let A0 be the immediate basin of attract-
ing fixed point. Then Ĉ \ A0 is either connected or has uncountable many
connected components.

3.2. Repelling points.

Definition 3.7. A fixed point p̂ = f(p̂) of a continuous map will be called
topologically repelling if there is a neighborhood U of p̂ such that for every
p 6= p̂ in U there exists some n ≥ 1 such that the n-th forward image f n(p)
lies outside of U . In other words, the only infinite orbit which is completely
contained in U must be the orbit of the fixed point itself. Such U is called
a forward isolating neighborhood of p̂.

Lemma 3.8. Characterization of topologically repelling points. A
fixed point of a holomorphic map is topologically repelling if and only if its
multiplier satisfies |λ| > 1.

Lemmas 3.2 and 3.8 work only over the complex numbers. Over the real
numbers, examples such as f(x) = x±x3 show that a fixed point with mul-
tiplier λ = 1 may perfectly well be topologically attracting or topologically
repelling.

The Kœnigs linearization Theorem 3.3, in the repelling case, helps us to
uderstand why the Julia set is so often a comlicated “fractal” set.

Corollary 3.9. Suppose that the rational function f has a repelling periodic
point ẑ for which the multiplier λ is not a real number. Then J(f) cannot

be a smooth manifold, unless it is all of Ĉ.
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Corollary 3.10. Global extension of φ−1. If p̂ is a repelling fixed point
for the holomorphic map f : S → S, then there is a holomorphic map
ψ : C→ S with ψ(0) = p̂, so that the diagram

S S

C C

f

ψ ψ
λ·

is commutative and so that ψ maps a neighborhood of zero biholomorphically
onto a neighborhood of p̂. Here ψ is unique except that it may be replaced by
w 7→ ψ(cw) for any constant c 6= 0.

3.3. Superattracting case. f(z) = anz
n + an+1z

n+1 + · · · , n ≥ 2, an 6= 0

Theorem 3.11. Böttcher. There exists a local holomorphic change of co-
ordinate w = φ(z) with φ(0) = 0, which conjugates f to the n-th power map
w 7→ wn throughout some neighborhood of zero. Furthermore, φ is unique up
to multiplication by a constant.

Thus, near any critical fixed point, f is conjugate to a map of the form
φ ◦ f ◦ φ−1 : w 7→ wn, with n ≥ 2. This theorem is often applied in the case
of a fixed point at infinity. For example, any polynomial of degree n ≥ 2 has
a superattracting point at infinity.

Corollary 3.12. Extension of |φ|. If f : S → S has a superattracting fixed
point p̂ with basin A, then the function p 7→ |φ(p)| of Theorem 3.11 extends
uniquely to a continuous map |φ| : A → [0, 1), which satisfies the identity
|φ(f(p))| = |φ(p)|n.

Theorem 3.13. Critical points in the basin. Let f : Ĉ→ Ĉ be a ratio-
nal function with superattracting fixed point p̂ and let A0 be the immediate
attracting basin of p̂. Then there are two possibilities:

1. The Böttcher map extends to a conformal isomorphism from A0 onto
the open unit disk D, which necessarily conjugates f |A0

to the n-th
power map w 7→ wn on D. In this case f evidently has no critical
points other than p̂ in A0.

2. Otherwise, there exists a maximal number 0 < r < 1 such that the
local inverse ψξ : Dξ → A0 extends to a conformal isomorphism ψ
from the open disk Dr of radius r onto an open subset U = ψ(Dr) ⊂
A0. In this case, the closure Ū is a compact subset of A0 and the
boundary ∂U ⊂ A0 contains at least one critical point of f .

4. Open problems and Renormalization

4.1. Hyperbolic rational maps. We first state one of the central problems
in the field.

Conjecture. HD. Hyperbolic maps are open and dense among all rational
maps.
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It is easy to see that hyperbolicity is an open condition, but the density
of hyperbolic dynamics has so far eluded proof.

Definition 4.1. A pair of rational maps f and g are topologically conjugate
if there is a homeomorphism φ : Ĉ → Ĉ such that φfφ−1 = g. A rational
map f is structurally stable if f is topologically conjugate to all g in a
neighborhood of f .

The following close relative of Conjecture HD is true. For details see
[MSS], [McS].

Theorem 4.2. Mañé, Sad, Sullivan. The set of structurally stable ratio-
nal maps is open and dense.

Given the density of structural stability, to settle HD it suffices to prove
that a structurally stable rational map is a hyperbolic.

4.2. Quadratic polynomials fc(z) = z2 + c, c ∈ C.

Conjecture. HD 2. Hyperbolic maps are dense among quadratic polyno-
mials.

Note that fc has only one critical point z = 0. Consequently,

Theorem 4.3. The map fc(z) = z2 + c is hyperbolic if and only if fn
c (0)→

∞ or fc has an attracting periodic cycle in the finite plane C.

This theorem motivates the following definition:

Definition 4.4. The Mandelbrot set M ⊂ C is the set of c such that f n
c (0)

stays bounded as n→∞.

The Mandelbrot set M ⊂ C is compact, connected and full (i.e., C \M is
also connected). The interior of M consists of countably many components.

Conjecture. HD 2’. If c lies in the interior of the Mandelbrot set, then
fc(z) has an attracting cycle.

Conjecture. MLC. The Mandelbrot set is locally connected.

Known is:

HD 2⇐⇒ HD 2’

MLC =⇒ HD 2 (Douady–Hubbard)

4.3. Renormalization. We next present some breakthroughs in the direc-
tion of the conjectures above. For this, we will need the notion of renormal-
ization.

The local behavior of a rational map can sometimes be given by a linear
model (e.g., near an attracting or a repelling fixed point p with f ′(p) = λ,
one can choose a complex coordinate z so that the dynamics take the form
f : z 7→ λz; see the previous section).

Renormalization looks for a local model of the dynamics which is a poly-
nomial of degree > 1.
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Definition 4.5. Let f(z) = z2 + c with c in the Mandelbrot set. An iterate
fn is renormalizable if there exist disks U and V containing the origin, with
Ū a compact subset of V such that

(a) fn : U → V is a proper map of degree 2, and
(b) fnk(0) ∈ U for all k > 0.

This means that although fn is a polynomial of degree 2n, it behaves like a
polynomial of degree two on a suitable neighborhood of the critical point z =
0. The restriction fn : U → V is called a quadratic-like map. A fundamental
theorem of Douady and Hubbard asserts that any quadratic-like map is
topologically conjugate to a quadratic polynomial g(z) = z2 + c′; condition
(b) implies c’ lies in the Mandelbrot set and, with a suitable normalization,
is unique [DH].

A quadratic polynomial f is infinitely renormalizable if f n is renormaliz-
able for infinitely many n > 1.

Example 4.6. Feigenbaum polynomial f(z) = z2− 1,401155 . . . A suitable
restriction of f 2 is a quadratic-like map topologically conjugate to f . Thus,
f2n is renormalizable for every n ≥ 1. Its attractor Ac is a Cantor set.

Theorem 4.7. Yoccoz. If c belongs to the Mandelbrot set, then either
fc(z) = z2 + c is infinitely renormalizable or J(fc) admits no invariant line
field and M locally connected at c.

Definition 4.8. A line field on a subset E of a Riemann surface X is the
choice of a real line through the origin in the tangent space TξX at each
point of E. A line field is invariant if f−1(E) = E and if f ′ transforms the
line at z to the line f(z) (for a polynomial f).

Conjecture. NILF2. A quadratic polynomial admits no invariant line field
on its Julia set.

We know:

HD 2⇐⇒ NILF 2

Sketch of the proof of Yoccoz theorem: The main case of the proof arises
when all periodic cycles of fc are repelling, let us assume this. The first step
is to try to show that the Julia set J(fc) is locally connected. To this end,
Yoccoz construct a sequence {Pd} of successively finer tilings of neighbor-
hoods of J(fc) called Puzzle pieces of level d (connected neighborhoods of
points in the Julia set). The pieces at level d + 1 are defined inductively
as the components of the preimages of the pieces {Pd} at level d. The new
pieces fit neatly inside those already defined. The image of a puzzle piece
under fc is again a puzzle piece. See e.g. [Hub].

To conclude, we mention two results in complex dynamics which are con-
nected to the present discussion.

Lyubich proved the local connectivity of the Mandelbrot set at a large
class of infinitely renormalizable points [Lyu]. Thus it seems that Conjecture
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MLC itself is not far out of reach. It will complete the topological picture of
the space of complex quadratic polynomials.

Shishikura solved that the boundary of the Mandelbrot set ∂M has Haus-
dorff dimension two [Shi].
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