Preprint Series in Mathematical Analysis

Preprint MA 34/2002, Mathematical Institute Silesian University in Opava, Czech Republic June 2002, pp. 4

ON A PROBLEM CONCERNING ω -LIMIT SETS OF TRIANGULAR MAPS IN I^3

PETRA ŠINDELÁŘOVÁ

ABSTRACT. We show that there is a continuous triangular map $I^3 \to I^3$ with $\omega(F) = \{0\} \times I^2 = \omega_F(x, y, z)$ for any $(x, y, z) \in I^3$ such that $x \neq 0$. This map is of the form F(x, y, z) = (f(x), g(x, y), h(x, z)), where the maps g(x, .) and h(x, .) are non-decreasing. This solves a problem by F. Balibrea, L. Reich, and J. Smítal.

1. Main result

In the sequel, I = [0,1] is the unit compact interval and I^n the *n*-dimensional cube. For a compact metric space X, C(X,X) is the set of continuous maps of X into itself. For $\varphi \in C(I,I)$, let φ^n denote the *n*-th iterate of φ . The set of accumulation points of the sequence $\{\varphi^n(x)\}_{n=0}^{\infty}$ is the ω -limit set of x with respect to φ , and is denoted by $\omega_{\varphi}(x)$. By $\omega(\varphi)$ we denote the set of ω -limit points.

A map $F \in C(I^3, I^3)$ such that F(x, y, z) = (f(x), g(x, y), h(x, y, z)) is a triangular map, f is the base of F, and the set $I_x := \{x\} \times I^2$ is the layer over x.

Theorem. There is a triangular map $F \in C(I^3, I^3)$ with $\omega(F) = \{0\} \times I^2 = \omega_F(x, y, z)$, for any $(x, y, z) \in I^3$ such that $x \neq 0$. This map has a special form $F(x, y, z) = (f(x), g_x(y), h_x(z))$.

Remark. The above theorem is true in more general settings: For any positive integer *n* there is a triangular map $F \in C(I^{n+1}, I^{n+1})$ of the form $F(x, x_1, \ldots, x_n) = (f(x), g_1(x, x_1), g_2(x, x_1, x_2), \ldots, g_n(x, x_1, x_n))$, which has as an ω -limit set the *n*-dimensional cube $\{0\} \times I^n$. The proof is similar and we omit it.

Date: June 5, 2002.

²⁰⁰⁰ Mathematics Subject Classification. Primary 37B99, 37E99.

Key words and phrases. Triangular map, ω -limit set.

This research was supported, in part, by the contracts 201/00/0859 from the Grant Agency of Czech Republic, and CEZ:J10/98:192400002 from the Czech Ministry of Education. Support of these institutions is gratefully acknowledged.

PETRA ŠINDELÁŘOVÁ

2. Proof of Theorem

For the base of F take $f(x) = \lambda x$, where $\lambda \in (0, 1)$ is fixed. Let $g_0 = h_0$ be the identity. Let $\{m_k\}_{k=0}^{\infty}$ be an increasing sequence with $m_0 = 0$ and such that $m_{k+1} - m_k \ge k+2$, for any k. For each $k \ge 0$ let φ_k be a nondecreasing continuous map of I such that

$$||\varphi_k^{j+1} - \varphi_k^j|| \le \frac{1}{k+1}, \ m_k \le j < m_{k+1}$$
(1)

and, for any $y \in I$,

$$\varphi_k(y) \le y$$
 and $\varphi_k^{m_{k+1}-m_k-1}(y) = \{0\}$, if k is odd, (2)

and

$$\varphi_k(y) \ge y$$
 and $\varphi_k^{m_{k+1}-m_k-1}(y) = \{1\}$, if k is even. (3)

Let

$$g_x(y) = \varphi_k(y) \quad \text{if} \quad x \in [\lambda^{m_{k+1}-1}, \lambda^{m_k}] \text{ and } y \in I,$$
(4)

and for $x \in [\lambda^{m_{k+1}}, \lambda^{m_{k+1}-1}]$ let g_x be the convex combination of the maps $g_{\lambda^{m_{k+1}}}$ and $g_{\lambda^{m_{k+1}-1}}$, i.e.,

$$g_x = tg_{\lambda^{m_{k+1}}} + (1-t)g_{\lambda^{m_{k+1}-1}} \text{ if } x = t\lambda^{m_{k+1}} + (1-t)\lambda^{m_{k+1}-1}.$$
 (5)

Denote by G(x, y) the two-dimensional triangular map $(f(x), g_x(y))$. Then $\omega_G((x, y)) = \{0\} \times I$ whenever x > 0. This follows since, by the contractivity of f, the set of ω -limit points of G is contained in $\{0\} \times I$ and since, by (1) - (5), the second coordinates of the trajectory of any point (x, y) with x > 0 form a dense subset of I. The above example is a modification of an example from [2].

Now we have to extend G to a three-dimensional triangular map F. The map h_x will be defined similarly as g_x , but with the sequence $\{m_k\}$ replaced by a subsequence $\{n_k\}$, and $\{\varphi_k\}$ replaced by a sequence $\{\psi_k\}$ satisfying conditions similar to (4) and (5), but with (1) – (3) replaced by the next three ones. For any k and any s with $n_k \leq m_s < n_{k+1}$,

$$||\psi_k^j - \psi_k^i|| \le \frac{1}{k+1}$$
 if $m_s \le i \le j < m_{s+1}$ (6)

and, for any $y \in I$,

$$\psi_k(y) \le y \text{ and } \psi_k^{n_{k+1}-n_k-1}(y) = \{0\}, \text{ if } k \text{ is odd},$$
 (7)

and

$$\psi_k(y) \ge y \text{ and } \psi_k^{n_{k+1}-n_k-1}(y) = \{1\}, \text{ if } k \text{ is even.}$$
(8)

Conditions (1) – (3) and (6) – (8) are consistent if the sequence $\{n_k\}$ increases faster than $\{m_k\}$ such that, for any k,

$$m_{k+1} - m_k \ge k+2,\tag{9}$$

and

$$#\{s; \ n_k \le m_s < n_{k+1}\} \ge k+1.$$
(10)

These two conditions can be satisfied if

$$n_{k+1} - n_k \ge (k+1)(k+2),\tag{11}$$

or, in particular, if $n_0 = m_0 = 0$ and $n_k = (k+3)!$ for k > 0. Then it is possible to choose the numbers m_k satisfying (9) such that $\#\{s; n_k \le m_s < n_{k+1}\} = k+1$, or equivalently, $n_k = m_{k(k+1)/2}$. Thus, we may assume

$$n_0 = m_0 = 0$$
, and $n_k = m_{k(k+1)/2} = (k+3)!$ for $k > 0$. (12)

Now we have to specify φ_k and ψ_k . First, for any nonnegative integer k, define auxillary maps ν_k , μ_k by $\mu_k(y) = y + \frac{1}{k}$ if $y \leq 1 - \frac{1}{k}$, and $\mu_k(y) = 1$ otherwise. Similarly, $\nu_k(y) = y - \frac{1}{k}$ for $y \geq \frac{1}{k}$, and $\nu_k(y) = 0$ otherwise. Obviously,

$$\mu_k^k(I) = \{1\}, \text{ and } \nu_k^k(I) = \{0\}.$$
(13)

Now we can let

 $\varphi_k = \mu_{m_{k+1}-m_k-1}$, if k is even,

$$\varphi_k = \nu_{m_{k+1}-m_k-1}$$
, if k is odd.

Similarly, for s and k such that $n_k \leq m_s < n_{k+1}$ let

$$\psi_s = \mu_{(m_{s+1}-m_s-1)(k+1)}, \text{ if } s \text{ is even},$$

$$\psi_s = \mu_{(m_{s+1}-m_s-1)(k+1)}$$
, if s is odd.

This choice satisfies the conditions (1) - (3) and (6) - (8). Indeed, (1) and (4) follow by the definition of φ_k and ψ_k , the remaining conditions by (12).

To prove that $\omega(F) = \{0\} \times I^2 = \omega_F(x, y, z)$ whenever $x \neq 0$, it suffices to show the following. For any integers p, q, r such that 0 < p, q < r and for any $\alpha = (x, y, z) \in I^3$ with $x \neq 0$,

$$F^{l}(\alpha) \in I \times \left[\frac{p}{r}, \frac{p+1}{r}\right] \times \left[\frac{q}{r}, \frac{q+1}{r}\right] = K, \text{ for some } l.$$
 (14)

To do this note that if k is an integer such that, for some j > 0, $f^j(x) = \lambda^j x \in (\lambda^{n_k+1}, \lambda^{n_k}]$ then

$$\lambda^{j+n_{k+1}-n_k} x \in (\lambda^{n_{k+1}+1}, \lambda^{n_{k+1}}]$$
(15)

and, by (2), (3), (7), and (8),

$$F^{j+n_{k+1}-n_k}(\alpha) = (\lambda^{j+n_{k+1}-n_k}x, 0, 0) \text{ if } k, t(k) \text{ are odd}, \qquad (16)$$

where t(k) stands for $\frac{1}{2}(k+1)(k+2) - 1$, cf. (12). Thus, (16) is satisfied if k is a multiple of 4.

Now the argument follows from the following two easily observable facts:

PETRA ŠINDELÁŘOVÁ

(i) Any point $\alpha = (x, 0, 0)$, where $x \in (\lambda^{n_k+1}, \lambda^{n_k}]$ and $k+1 \ge 2r$ satisfies (14). Indeed, since $\frac{1}{k+1} \le \frac{1}{2r}$, by (6) – (8) there is an s such that $n_k \le m_s < n_{k+1}$, and

$$F^{m_s-n_k}(\alpha) \in (\lambda^{m_s+1}, \lambda^{m_s}] \times \{0, 1\} \times \left[\frac{q}{r}, \frac{q+\frac{1}{2}}{r}\right].$$

By (1) – (3) there is an $l \in [m_s, m_{s+1} - 1]$ such that $\varphi_s^{l-m_s}(0) \in [p/r, (p+1)/r]$. By (4) and (5), l satisfies (13).

(ii) By (15) and (16), any point $\alpha = (x, y, z), x \neq 0$ can be mapped by an iterate of F to a point satisfying (i).

References

- [1] F. Balibrea, L. Reich, J. Smítal. Iteration theory: Dynamical systems and functional equations, *Int. J. Bifur. Chaos*, **13** (2003), to appear.
- S. F. Kolyada. On dynamics of triangular maps of the square. *Ergod. Th. & Dynam.* Sys. 12 (1992), 749–768. MR 93m:58036

E-mail address: Petra.Sindelarova@math.slu.cz

Current address: Mathematical Institute, Silesian University in Opava, 746 01 Opava, Czech Republic