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TWO KINDS OF CHAOS AND RELATIONS

BETWEEN THEM

Marek Lampart ∗

Abstract

In this paper we consider relations between chaos in the sense of Li and
Yorke, and ω-chaos. The main aim is to show how important is the size
of scrambled sets in definitions of chaos. We provide an example of an ω-
chaotic map on a compact metric space which is chaotic in the sense of Li
and Yorke, but any scrambled set contains only two points. Chaos in the
sense of Li and Yorke cannot be excluded: We show that any continuous
map of a compact metric space which is ω-chaotic, must be chaotic in the
sense of Li and Yorke. Since it is known that, for continuous maps of the
interval, Li and Yorke chaos does not imply ω-chaos, Li and Yorke chaos
on compact metric spaces appears to be weaker. We also consider, among
others, the relations of the two notions of chaos on countably infinite
compact spaces.

The paper will be presented at the conference SVOČ 2002. The au-
thor’s recent work “Scrambled sets for transitive maps”, which was pre-
sented at SVOČ 2001, and which will appear in Real Analysis Exchange,
also involves ω-chaos, but the results neither are related to, nor are used
in the present paper.
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1 Introduction

In this paper we study two different (but similar) definitions of chaos and rela-
tions between them.

Chaos in the sense of Li and Yorke, briefly LYC, was introduced in 1975 by
T. Y. Li and J. A. Yorke [10]: A continuous map f : I → I, where I is the unit
interval, is LYC if there is an uncountable set S ⊂ I such that trajectories of
any two distinct points x, y in S are proximal and not asymptotic, i.e.,

lim inf
n→∞ d(fn(x), fn(y)) = 0 and lim sup

n→∞
d(fn(x), fn(y)) > 0.

∗The research was supported, in part, by the grant 201/01/P134 from the Grant Agency
of Czech Republic, and the MSM: J10/98:192400002 from the Czech Ministry of Education.
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The original definition contains an another condition which later appeared
to be superfluous [10]. The condition on S in this definition (i.e., for continuous
maps of the interval, but not in a general compact metric space) is equivalent
to the condition that S contains two points [7], or that S is a perfect set (i.e.,
nonempty, compact and without isolated points) [12].

The second type of chaos is an ω-chaos, briefly ωC, introduced in 1993 by S.
Li [9]: A continuous map f : I → I is ωC if there is an uncountable set S such
that, for any distinct x and y in S,

ωf (x)\ωf (y) is uncountable, ωf (x) ∩ ωf (y) �= ∅, and ωf (x) \ Per(f) �= ∅.
If f : I → I is continuous, then ωC is equivalent to PTE (positive topological
entropy) [9], and by [12] PTE implies LYC but not conversely. Moreover, f is
ωC if and only if it has an ω-scrambled set containing two points [9], and this
is if and only if it has a perfect ω-scrambled set [13]. However, in the general
case, when X is a compact metric space, the size of S is essential.

By a compactum we mean an infinite compact metric space X (countable
or uncountable), with a metric d, and all maps considered in this paper are
continuous. The space of all continuous maps of X is denoted by C(X, X). The
set of ω-limit points of x ∈ X under f ∈ C(X, X) is denoted by ωf (x). The set
of strictly increasing sequences of positive integers is denoted by A.

Definition 1 Let f ∈ C(X, X), and let S ⊂ X contain at least two points. We
say that f is chaotic in the sense of Li and Yorke (briefly, f is LYC), and that
if S is a scrambled set for f if, for any distinct x, y ∈ S,

(1) lim supn→∞ d(fn(x), fn(y)) > 0,
(2) lim infn→∞ d(fn(x), fn(y)) = 0.

Stronger notions of Li and Yorke chaos are these with infinite, or with an un-
countable scrambled set. To distinguish between these three types of chaos we
use notation LY2C, or LY∞C, or LYuC, respectively. Also we say that f is
completely LYC if S = X.

Now we introduce several modifications of the notion of ω-chaos.

Definition 2 Let f ∈ C(X, X), and let S ⊂ X contain at least two points. We
say that f is ωu-chaotic (briefly, f is ωuC), and S is an ωu-scrambled set for f
if, for any distinct x, y ∈ S,

(1) ωf (x)\ωf (y) is uncountable,
(2) ωf (x) ∩ ωf (y) is nonempty,
(3) ωf (x) is not contained in the set of periodic points.

In particular, f is ωu
2 -chaotic, or ωu

∞-chaotic, or ωu
u-chaotic (briefly, ωu

2 C, or
ωu
∞C, or ωu

uC, respectively), if there is an ωu-scrambled set containing two, or
infinitely many, or uncountable many points, respectively).
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The next definition modifies the notion of ω-chaos for countable compact
spaces.

Definition 3 Let f ∈ C(X, X), and let and S ⊂ X contain at least two points.
We say that f is ω∞-chaotic (briefly, f is ω∞C), and that S is an ω∞ -scrambled
set for f if, for any distinct x, y ∈ S,

(1) ωf (x)\ωf (y) is infinite,
(2) ωf (x) ∩ ωf (y) is nonempty,
(3) ωf (x) is not contained in the set of periodic points.

In particular, the map f is ω∞
2 -chaotic, or ω∞

∞-chaotic (briefly, ω∞
2 C, or ω∞

∞C,
respectively), if f has an ω∞-scrambled set possessing two, or infinitely many
points, respectively.

Remark 1 It is obvious, that LYuC ⇒ LY∞C ⇒ LY2C; the converse implica-
tions are true for continuous maps on the interval [12] but, on general compact
metric spaces they are no more valid [5], [4]. Also ωu

uC ⇒ ωu
∞C ⇒ ωu

2 C ⇒ ω∞
2 C

and ω∞
∞C ⇒ ω∞

2 C, and again it is possible to show that the converse implica-
tions are not true in the general case. Moreover, by [12] there is a LYuC map
of the interval with zero topological entropy. This map has a unique infinite
ω-limit set and consequently, by [9], it cannot be ω∞

2 C. Thus, in the general
case, no form of Li and Yorke chaos implies the weakest form of ω-chaos.

Thus it remains to answer the question: which forms of ω-chaos imply Li
and Yorke chaos? In the present paper we show that any form of ωC implies
LY2C, cf. the next Theorem 1. But the implied LYC may be very small. In
fact, we show that ωC map on a compact metric space may have only two-point
LYC scrambled sets – cf. Theorem 5. On the other hand, we show that even
completely LYC homeomorhisms may not be ωC (Theorems 2 and 4; compare
with Theorem 3).

Theorem 1 Let X be a compact metric space, and f a continuous map of X
which is ω∞

2 C. Then f is LY2C. In general, any point in an ω∞-scrambled set
of f forms a LYC pair with a suitable point in X.

Proof. Let u, v be points in X forming an ωC scrambled set for f . By a results
of Auslander [1] and Ellis [3], in a dynamical system on a compact metric space
any point is proximal to a uniformly recurrent point in its orbit closure. Let
x be such a uniformly recurrent point proximal to u. Then x belongs to a
minimal set M = ωf (x) ⊂ ωf (u). But M must be a proper subset of ωf (u).
For if M = ωf (u) then ωf (u) ∩ ωf (v) �= ∅ and ωf (v) \ ωf (u) �= ∅ would imply
ωf (u) ⊂ ωf (v) and consequently, ωf (u) \ ωf (v) = ∅ – a contradiction. Thus u
and x are proximal points, which cannot be asymptotic since ωf (x) �= ωf (u).
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2 Examples on countably infinite spaces

For a set A ⊂ X, and for any nonnegative integer n, define the n-th derivative
An of A by A0 = A, and An+1 is the set of cluster points of An. Denote
X0 = X \ X1, and Xj = Xj \ Xj+1 for each j = 1, 2, . . ..

Proposition 1 ([5], Proposition 2.2.) Let f be a completely LYC homeomor-
phism of a compactum X. Then, f has a unique fixed point.

Remark 2 In [5] there is given a construction of a countably infinite compactum
X ′ and completely LY∞C homeomorphism ϕ on X ′, with fixed point p.

The set X ′ is contained in the plane R
2, X ′ =

⋃∞
j=0 Xj ∪ {p}, and ωf (x) =

X(j+1), for each j = 0, 1, 2, . . . and each x ∈ Xj (cf. [5], Theorem 3.1). Note
that p ∈ ωf (x) and the compactum X ′ can be taken with arbitrarily small
diameter.

Theorem 2 There is a countable compactum X and completely LYC homeo-
morphism f : X → X such that f is not ω∞

2 C.

Proof. Put X = X ′, and f = ϕ (see Remark 2). From the form of ωf (x),
x ∈ X, it is easy to see that, for each x, y ∈ X, ωf (x) ⊂ ωf (y) or ωf (y) ⊂ ωf (x).
So, the map f cannot be ω∞

2 C.

Proposition 2 ([5], Proposition 2.5.) Let f be a completely LYC homeomor-
phism of a compactum X. Then for each x �= y ∈ X, there is {ni} ∈ A such
that fni(x) → p and fni(y) → p where p is the unique fixed point of f (cf.
Proposition 1).

Theorem 3 There is a countable compactum X and a completely LYC homeo-
morphism ϕ : X → X such that ϕ is ω∞

∞C.

Proof. First, define a sequence of isosceles triangles Yi. Let us denote the
triangle Yi by AiBiCi in the clockwise sense and in a such a way that Ci is the
apex between the two sides of the same length.

Let the length of the side CiAi is 1/(2i) and the angle AiCiBi is π/(22i+1) for
each i = 0, 1, 2, . . .. Now, let us “glue” these triangles in such a way, that they
have common apex Ci, i = 0, 1, 2, . . ., and angle between CiBi and Ci+1Ai+1 is
π/(22(i+1)), i = 0, 1, 2, . . ..

Finally, plug diminished copy Xi of X ′ into each Yi, i = 0, 1, 2, . . ., in such
a way that each apex Ci is the fixed point p for the completely LY∞C home-
omorphism fi : Xi → Xi (it is possible by Remark 2). Then X =

⋃∞
i=0 Xi

with Euclid metric is countable compactum and a map f : X → X defined by
f |Xi = fi, i = 0, 1, 2, . . . is completely LYC homeomorphism (with fixed point
p).
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Realy, for each x ∈ Xi and y ∈ Xj , where i �= j, x �= p �= y, we have
lim supn→∞ d(fn(x), fn(p)) > 0 and lim supn→∞ d(fn(y), fn(p)) > 0 so, by tri-
angular inequality, we obtain lim supn→∞ d(fn(x), fn(y)) > 0. By Proposition
2, lim infn→∞ d(fn(x), fn(y)) = 0.

Let S =
⋃∞

i=0{xi}, where xi is an arbitrary point from Xi \ {p}. Then S is
countably infinite, ωf (yi)\ωf (yj) is countably infinite and ωf (yi)∩ωf (yj) = {p}
for each xi �= xj (see Remark 2). Finally, for each x ∈ S, ωf (x) is not contained
in the set of periodic points of f (note that it is singleton {p}), and hence the
map f is ω∞

∞C.

3 Examples on uncountable spaces

By a Cantor set we mean a compactum which is homeomorphic to the Cantor
middle third set. Let C be a Cantor set. Collapsing {p} × C in X ′ × C we get
a compactum (with induced Euclid metric) denoted by X ′C.

Theorem 4 There is a perfect compact set X ⊂ R
3 possessing a completely

LYC homeomorphism ϕ : X → X, such that ϕ is not ωu
2 C.

Proof. We can imagine the space X ′C as a union of slices Si with one common
point p. (So each Si is countably infinite compactum, and X ′C is perfect since
each point of X ′C is accumulation one.) There are fi : Si → Si with the fixed
point p. Define F : X ′C → X ′C by F |Si = fi, for each i. It is easy to see, that
F is a homeomorphism with the fixed point p.

It is clear that lim infn→∞ d(Fn(x), Fn(y)) = 0 for each x �= y ∈ XC (by
Proposition 2). Since, for any i �= j and any neighborhood U of p, the distance
between Si \U and Sj \U is positive, lim supn→∞ d(Fn(x), Fn(y)) > 0 for each
x �= y ∈ X ′C. Consequently, the map F is completely LYC.

On the other hand, the map F is not ωu
2 C, since, for each x ∈ S, ωF (x) is

countable.

To conclude this section we provide an example of a map which is not LY2C
but has a two point ωu-scrambled set. The construction is based on symbolic
dynamics. The standard notions and basic known results can be found, e.g., in
[6].

Let Σ2 denote the set of sequences x = x1x2x3 . . . where xn = 0 or 1 for each
n, equipped with the metric of pointwise convergence. Thus, for y = y1y2y3 . . .,
put ρ(x, y) = 1/k if x �= y, and k = min{n = 1, 2, . . . : xn �= yn}, and let
ρ(x, y) = 0 for x = y. Then Σ2 is a compactum and the “shift” σ : Σ2 → Σ2

defined by σ(x1x2x3 . . .) = x2x3 . . . is continuous.
Recall that a subset M of X is minimal for a map f , if it is closed, invariant

and no proper subset of M has the same property (or equivalently, M is minimal
for a map f , if and only if ωf (x) = M , for each x ∈ M). A sequence x =
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x1x2x3 . . . ∈ Σ2 is called uniformly recurrent if for each block x1x2 . . . xl there
is k, such that for each i at least one of the sequences σi(x), σi+1(x) . . . σi+k(x)
starts with the block x1x2 . . . xl.

For the construction of our example we use the following special uniformly
recurrent sequences which, among others, have all blocks periodic.

Denote by N0 the set of nonnegative integers, i.e., N0 = N ∪ {0}. Let N =
{Nn = 2n−1(1+2N0), n = 1, 2, . . .}. It is easy to verify that N is a decomposition
of N. Define a map Φ : Σ2 → Σ2 so that, for x = x1x2x3 . . . ∈ Σ2, Φ(x) = x̃ =
x̃1x̃2x̃3 . . ., where x̃k = xs if k ∈ Ns, i.e. Φ(x) = x1x2x1x3x1x2x1x4x1x2x1 . . ..
Then Φ(x) is not only uniformly recurrent but the blocks in Φ(x) are even
periodic. This follows from the next lemma whose proof is obvious.

Lemma 1 Let B = x̃ix̃i+1 . . . x̃j be a block of Φ(x), and let n be the maximal
positive integer such that i ≤ 2n ≤ j. Then the block B is periodic in the
sequence Φ(x), with period 2n+1.

Let {ri}∞i=1 ∈ Σ2 be a sequence containing infinitely many zeros and infinitely
many ones. Put a = 11r3r4 . . ., b = 011r4r5 . . . and c = 00r3r4 . . .. Thus,
keeping our notation, we have Φ(a) = ã = ã1ã2ã3 . . ., and similarly with Φ(b) =
b̃ and Φ(c) = c̃. The sets ωσ(ã) = A, ωσ(b̃) = B and ωσ(c̃) = C are minimal
and uncountable, since the sequences ã, b̃ and c̃ are uniformly recurent but not
periodic.

For x = x1x2x3 . . . and y = y1y2y3 . . . in Σ2, put

x � y = x1 . . . xm1y1 . . . yn1x1 . . . xm2y1 . . . yn2x1 . . . xm3y1 . . . yn3 . . . ,

where {mi}∞i=1, {ni}∞i=1 are given sequences in N; we will specify them later.
Finally, let α = ã � b̃, β = c̃ � ã, and let X = Orb(α) ∪ Orb(β).

Lemma 2 Let limk→∞ mk = limk→∞ nk = ∞. Then
(i) Orb(α) = Orb(α) ∪ ωσ(α).
(ii) Orb(ã) ∪ Orb(b̃) ⊂ ωσ(α) = Orb(ã) ∪ Orb(b̃) ∪ Ca ∪ Cb where Ca is a

subset of the set Orb−1(ã) of all σ-preimages of ã in Σ2, and similarly for Cb.
Consequently, both Ca and Cb are countable.

(iii) Similar formulas are valid with α replaced by β, b by c, and b̃ by c̃.

Proof. (i) This equality is true, since ωσ(α) is the set of accumulation points
of Orb(α).

(ii) Obviously, ã, b̃ belong to ωσ(α), and ωσ(α) is closed and invariant. There-
fore, it contains Orb(ã) and Orb(b̃). This proves the first inclusion.

To prove the second one, let u ∈ ωσ(α). There is a sequence {pk} ∈ A such
that σpk(α) → u. Consider the four possible cases:

1. Infinitely many terms in the sequence σpk(α) begin with a block of ã of the
same length λ ≥ 0, followed by a block b̃1b̃2 . . . , b̃nl

of b̃. Since liml→∞ nl = ∞,
u = ã1 . . . ãj b̃, where j > i. Thus, u ∈ Orb−1(b̃).
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2. Similarly, if infinitely many terms in the sequence σpk(α) begin with
a block of b̃ of the same length, followed by a block ã1ã2 . . . , ãml

of ã, u ∈
Orb−1(ã).

3. If infinitely many terms in the sequence σpk(α) begin with a block of ã
whose length is unbounded as k tends to infinity then u ∈ Orb(ã).

4. If infinitely many terms in the sequence σpk(α) begin with a block of b̃

whose length is unbounded as k tends to infinity then u ∈ Orb(b̃).

Lemma 3 Let limk→∞ mk = limk→∞ nk = ∞. Then σ restricted to X is ωu
2 C.

Proof. We show that {α, β} is an ωu-scrambled set. By Lemma 2, ωσ(α) \
ωσ(β) ⊃ ωσ(b̃) is uncountable, ωσ(β) ∩ ωσ(α) ⊃ ωσ(ã) �= ∅, and since ωσ(ã) is
infinite and minimal, it contains no periodic point.

Lemma 4 Let u, v be distinct points in {ã, b̃, c̃}. Then ρ(σi(u), σj(v)) ≥ 1/8,
for any i, j ∈ N0.

Proof. The result follows from the following observation (cf. definition of the
sequences ã, b̃, c̃). Any block of ã of length 8 contains at least 6 ones, hence at
most two zeros. Similarly, any block of c̃ of length 8 contains at most two ones,
and the number of ones in any block of b̃ of length 8 is between 3 and 4.

For simplicity put Px = Orb(x̃) ∪ Orb−1(x̃), for x ∈ Σ2.

Lemma 5 The sets Pa, Pb, Pc are distal (and hence, disjoint). Thus, for u and
v belonging to distinct sets Pa, Pb, Pc, lim infk→∞ ρ(σk(u), σk(v)) > 0.

Proof. Apply Lemma 4.

Our next aim is to show that σ is LYC on Px for no x ∈ Σ2. For simplicity, we
will consider only sequences x which contain infinitely many zeros and infinitely
many ones. In this case, it is possible to reconstruct the original sequence x
from ỹ = σk(x̃) without knowing k. In fact, majority of the digits in ỹ must
be equal to x1: either the digits on odd places in ỹ are the same and equal to
x1, or the digits on the even places in ỹ are equal to x1. Next, having fixed x1

among the digits x̃j , we remove from ỹ the digits corresponding x1 (i.e., either
all digits on the odd places, or all digits on the even places), and proceed by
induction.

However, in a similar way we can reconstruct the first n digits in x from
any block of a sequence in ωσ(x̃), with a sufficient length δn. Indeed, let d =
d1d2d3 . . . ∈ ωσ(x̃). Then for any m = 1, 2, . . . there is {nk} ∈ A such that
d1d2 . . . dm = x̃nk+1x̃nk+2 . . . x̃nk+m, for any k. Let r = min{i : xi �= x1}. Then
it suffice to take m = 2r to see, which members of d1d2 . . . dm are equal to x1.
(Thus, in our case, δ1 = 2r.) Define a map µ : ωσ(x̃) → Σ2 such that, for
d = d1d2d3 . . . ∈ ωσ(x̃), µ(d) = s = s1s2s3 . . ., where sn is given inductively in
the following way:
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Stage 1: Let

s1 =
{

0, if x1 = d1 = d3 = d5 . . . ,
1, if x1 = d2 = d4 = d6 . . .

Let d1 = d1
1d

1
2d

1
3 . . . be a subsequence of d obtained by removing d1, d3, d5 . . .

from d if s1 = 0, and by removing d2, d4, d6 . . . otherwise.
Stage n: Sequence dn−1 = {dn−1

i } is available from stage n-1. Let

sn =
{

0, if xn = dn−1
1 = dn−1

3 = dn−1
5 . . . ,

1, if xn = dn−1
2 = dn−1

4 = dn−1
6 . . . ,

and let dn be obtained from dn−1 by removing the odd or even members, if
sn = 0 or sn = 1, respectively. Obviously, we have the following.

Lemma 6 Let x be a sequence in Σ2 having infinitely many zeros and infinitely
many ones. Then the map µ is a bijection from ωσ(x̃) to Σ2.

Lemma 7 Let x be a sequence in Σ2 having infinitely many zeros and infinitely
many ones. Then, for any distinct d, h in Px, lim infn→∞ ρ(σn(d), σn(h)) > 0.

Proof. Since any point in Px is eventually in ωσ(x̃) we may assume with-
out loss of generality that d, h ∈ ωσ(x̃). By Lemma 6, µ is bijective, hence
µ(d) �= µ(h). Then, for some m ∈ N, the sequences µ(d), µ(h) differ the mth
coordinate, µ(d)m �= µ(h)m. But then lim infn→∞ ρ(σn(d), σn(h)) ≥ 1/2m (cf.
the construction of µ).

Now we can return to our special sequences α and β.

Lemma 8 Assume that limk→∞ mk = limk→∞ nk = ∞. Then neither σ|Orb(α)
nor σ|Orb(β) is LY2C. Thus, lim infn→∞ ρ(σn(α), σn+k(α)) > 0 whenever k ∈
N, and similarly with β.

Proof. Let us suppose that lim infn→∞ ρ(σn(α), σn+k(α)) = 0. Then there is
{ni}∞i=1 ∈ A such that limn→∞ ρ(σni(α), σni+k(α)) = 0. Then σni(α) → d and
σni+k(α) → d so σk(d) = d and d ∈ X is a periodic point. But σ restricted to
X has no periodic point (cf. Lemma 2) – a contradiction.

Lemma 9 Assume that limi→∞ mi = limi→∞ ni = ∞. Then σ restricted to
Orb(α) ∪ Orb(β) is not LY2C.

Proof. Because of the symmetry it suffices to show that, for any k ∈ N0,
lim infn→∞ ρ(σn+k(α), σn(β)) > 0. Assume, contrary to what we wish to show,
that this is not true. Then, by Lemma 4, in both sequences σk(α), β, there must
be arbitrarily large a-blocks at the same positions. However, if k = 0, then any a-
blocks in α and β are at complementary positions (cf. the definition of α and β).
If k is positive, then the blocks are shifted, and there is some overlapping of the
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a-blocks. But since limi→∞ mi = limi→∞ ni = ∞, the parts of a-blocks in σk(α),
β, respectively, that are overlapping, are small – their length is k. Consequently,
by Lemma 4, we get lim infn→∞ ρ(σn+k(α), σn(β)) ≥ 1/(8 + k) > 0.

Now we are able to prove our main result.

Theorem 5 There is a compactum X ⊂ Σ2 such that σ(X) ⊂ X, σ has no
periodic points in X, σ restricted to X is ωu

2 C and any LY-scrambled set has
only two points.

Proof. Let limi→∞ mi = limi→∞ ni = ∞, and let X = Orb(α) ∪ Orb(β). By
Lemma 3, σ is ωu

2 C on X. On the other hand, by Lemma 2,

X ⊂ Orb(α) ∪ Orb(β) ∪ Pa ∪ Pb ∪ Pc.

The fact that σ on X has no LY-scrambled set now follows by Lemmas 5, 7 –
9.

Concluding remarks. (i) R. Pikula [11] recently proved, that there is an ωC
map f of a compact metric space with the property that any LY-scrambled
set has not more than 8 points. He considers uncountable ωu-scrambled sets.
Our Theorem 5 gives a stronger result. On the other hand, our ωu-scrambled
set has only two points. However, the above approach is applicable so that
one can obtain a continuous map f on a compactum which is ωu

∞C, but not
LY-scrambled set has three points. The construction is rather complicated.

(ii) The systems obtained in Theorems 2 - 5 can be inserted to the real line
so that there is a continuous map f of the unit interval I which has as factors
the systems from Theorems 2 – 5.
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