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DISTRIBUTIONAL CHAOS AND SPECTRAL
DECOMPOSITION OF DYNAMICAL SYSTEMS

ON THE CIRCLE

MICHAL MÁLEK

Abstract. Schweizer and Smı́tal [Tran. Amer. Math. Soc. 344 (1994),
737–754] introduced the notion of distributional chaos for continuous
maps of the interval. In this paper we show that for the continuous
mappings of the circle the results are very similar, up to natural mod-
ifications. Thus any such mapping has a finite spectrum, which is gen-
erated by the map restricted to a finite collection of basic sets, and any
scrambled set in the sense of Li and Yorke has a decomposition into three
subsets (on the interval into two subsets) such that the distribution func-
tion generated on any such subset is lower bounded by a distribution
function from the spectrum. While the results are similar, the original
argument is not applicable directly and needs essential modifications.
Thus, e.g., we had first to develop the theory of basic sets on the circle.

1. Introduction and Main results

Let (X, �) be a compact metric space. For f in the space C(X, X) of
continuous mappings from X into itself, x, y ∈ X, real t, and any positive
integer n define

ξ(x, y, t, n) =
n−1∑

i=0

χ[0,t)(δxy(i)) = #{i; 0 ≤ i < n and δxy(i) < t},(1)

F ∗
xy(t) = lim sup

n→∞

1
n

ξ(x, y, t, n),(2)

and

Fxy(t) = lim inf
n→∞

1
n

ξ(x, y, t, n),(3)

where δxy(i) = �(f i(x), f i(y)), and χA is the characteristic function of the
set A.
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Clearly both F ∗
xy, Fxy are nondecreasing functions such that F ∗

xy(t) =
Fxy(t) = 0 for t < 0, and F ∗

xy(t) = Fxy(t) = 1 for t > diamX. We iden-
tify any two nondecreasing functions that coincide everywhere except at a
countable set, and adopt the convention to chose functions F ∗

xy, Fxy as left-
continuous. Functions F ∗

xy, Fxy are called the upper and lower distribution
function of x and y, respectively. A function f exhibits distributional chaos
if there are points x, y ∈ S such that F ∗

xy(t) = 1 for all t > 0 and there is a
point s ∈ (0, 1) such that F ∗

xy(s) > Fxy(s).
It is well known that in the case X = I = [0, 1] distributional chaos

is equivalent to positive topological entropy (h(f) > 0). For details see
[ScSm] or [ScSkSm]. Note that this relation does not hold in general; e.g. a
counterexample in the case X = I2 can be found in [Ba]. For X = S = R/Z

(the circle) distributional chaos apears if and only if h(f) > 0, or equivalently
if f has a basic set. See [M1].

The main aim of this paper is to extend results concerning the spectral
decomposition of a dynamical system on the interval, as given in [ScSm], to
the case X = S. To do this we need to understand properties of basic sets
since only these sets (both on the interval and on the circle) support distri-
butional chaos. A basic set is a maximal infinite ω-limit set which contains
a periodic point. This definition fits both the interval and circle. Recall that
a basic set has decompositions into finite number of periodic portions which
form a single orbit. The supremum of numbers of such portions is finite; if
it is one the basic set is indecomposable. A solenoid is a (maximal) infinite
ω-limit set which has decompositions of arbirarily high order; thus a solenoid
cannot contain a periodic point. Properties of basic sets on the interval are
well-known due to Sharkovsky [S] and Blokh [Bl], for example. The case
X = S cannot be deduced simply from the previous one. It is considered in
[M2]. We summarize the main results in the next Theorem 2.1.

We use the following terminology. For f ∈ C(S, S), let ωf (x) denote the
ω-limit set of x. Points x, y ∈ S are synchronous if the sets ωf (x) and ωf (y)
are contained in the same maximal ω-limit set ω and if, for any periodic
interval J such that its orbit OrbJ contains ω, there is a j ≥ 0 such that
f j(x), f j(y) ∈ J . The spectrum Σ(f) of f is the set of minimal elements of the
set D(f) = {Fxy; x and y are synchonous}. And the weak spectrum Σw(f)
of f is the set of minimal elements of the set Dw = {Fxy; lim infi→∞ δxy(i) =
0}. We will see that, for a continuous map f of the circle, both the spectrum
and the week spectrum are nonempty and finite (similarly as on the interval).
A scrambled set (in the sense of Li and Yorke) is any set S ⊂ S such that,
for any distinct points x and y in S,

lim inf
i→∞

δxy(i) = 0, lim sup
i→∞

δxy(i) > 0.

Other notions are explained in the text, or can be found in standard refer-
ences like, e.g., [Bl]. To summarize the main results, we first describe the



DISTRIBUTIONAL CHAOS AND SPECTRAL DECOMPOSITION 3

dynamics on a single basic set (Theorem A) and then the general case (The-
orem B). Recall that part (A) of Theorem B was already proved in [M1].

Theorem A. Let f ∈ C(S, S)and let ω̃ be its basic set. Then there are a
nondecreasing function F : R → [0, 1], a nonempty perfect set P ⊂ ω̃, and a
positive ε with the following properties:

(i) F (ε) = 0 and Σ(f |ω̃) = {F};
(ii) F = Fxy < F ∗

xy = χ(0,∞) for any x 	= y in P ;
(iii) if S is a scrambled set for f such that ωf (x) ⊂ ω̃ for any x ∈ S then

there are sets S0, S1, S2, (S0 	= ∅), such that S = S0 ∪ S1 ∪ S2 and
Fxy ≥ F whenever x, y ∈ Sk.

Theorem B. Let f ∈ C(S, S).
(A) If the topological entropy of f is zero, then Σ(f) = Σw(f) = {χ(0,∞)}.
(B) If the topological entropy of f is positive, then:

(B1) Both the spectrum Σ(f) and the weak spectrum Σw(f) are finite
and nonempty. Specifically Σ(f) = {F1, . . . , Fm} for some m ≥
1, and Σ\Σw(f) = {Fm+1, . . . , Fn} where n ≥ m. Furthermore,
for each i there is an εi > 0 such that Fi(εi) = 0.

For any positive integer k ≤ n, let πk be the system of sets P such
that #P ≥ 2 and for any distinct u, v in P , Fk = Fuv < F ∗

uv =
χ(0,∞).

(B2) If k ≤ m, then πk contains a nonempty perfect set Pk.
(B3) If, on the other hand, m < k ≤ n then πk is nonempty and any

P in πk contains two or three points.
(B4) If S is a scrambled set for f (or more generally if, for any u, v

in S, lim infi→∞ δuv(i) = 0), then there are integers i, j, k ≤ m
and a decomposition S = Si ∪ Sj ∪ Sk such that Fuv ≥ Fl if
u, v ∈ Sl, for l ∈ {i, j, k}.

2. Properties of basic sets

The following Theorem summarizes the properties of basic sets for conti-
nous maps of the circle which have been proved in [M2]. It is easy to see (cf.
also [M2]) that, similarly as for mappings in C(I, I), any indecomposable ba-
sic set ω̃ ⊂ S is contained in a minimal compact invariant interval, possibly
equal to S; we call this interval the envelope of ω̃ and denote it by Env(ω̃). If
ω̃ is not indecomposable then it has a maximal decomposition ω̃1 ∪ · · · ∪ ω̃k,
k > 1, into periodic portions that form a single orbit of period k. Thus, ev-
ery ω̃i is an indecomposable basic set for fk, and has the envelope Env(ω̃i)
with respect to fk. In this case we define Env(ω̃) = Env(ω̃1)∪· · ·∪Env(ω̃k).
Clearly, Env(ω̃) consits of k periodic intervals forming a single orbit.

Theorem 2.1. Let f ∈ C(S, S) , x ∈ S and let ω̃ be a basic set.
(i) ω̃ is perfect;
(ii) if ωf (x) ⊂ ω̃, then {y ∈ ω̃; ωf (y) = ωf (x)} is dense in ω̃;
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(iii) if J is an interval such that J ∩ ω̃ is infinite then ω̃ ∩ J contains a
periodic point;

(iv) the system of basic sets of f is countable;
(v) if ω̃1 	= ω̃2 are indecomposable basic sets and U = Env(ω̃1), V =

Env(ω̃2), then U ∩ V = ∅, or U and V have at most two points in
common, or U ⊂ int(V ), or V ⊂ int(U); in particular, U 	= V ;

(vi) if ω̃ is indecomposable then, for every compact interval K contained
in the interior of Env(ω̃), and every compact interval J such that
J ∩ ω̃ is infinite, there is a k ∈ N such that fk(J) ⊃ K.

Definition 2.2. Let f ∈ C(S, S), and let ω̃ be a basic set. Then f |ω̃ is
strongly transitive in Env(ω̃), in the following sense. For every compact in-
terval K contained in the interior of Env(ω̃) and every compact interval J
such that J ∩ ω̃ is infinite, there is a k ∈ N such that fk(J) ⊃ K. This
follows by induction from Theorem 2.1 (vi).

We finish this section by couple of lemmas which are necessary in the
remainder of this paper.

Lemma 2.3.(Cf. Theorem 3.4 in [M2].) Let f ∈ C(S, S) and u, v ∈ S. Let
{Ui}∞i=0, {Vi}∞i=0, U , and V be compact intervals, possibly degenerate, with
limi→∞ Ui = U and limi→∞ Vi = V . Let, for any i and j, there exist positive
integers u(i, j) and v(i, j) such that fu(i,j)(Ui) ⊃ Vj and fv(i,j)(Vi) ⊃ Uj.
Then there are u ∈ U and v ∈ V such that {u, v} ⊂ ωf (y), for some y ∈ S.

Lemma 2.4. Let ω̃ be an indecomposable basic set for f ∈ C(S, S) and
let U = Env(ω̃). Let {Jn}n∈K , Jn ⊂ U , be an enumeration of intervals
complementary to ω̃. Then, for any n ∈ K, either f(Jn) is a singleton or
there is a k ∈ K such that f(Jn) ⊂ Jk.
Proof. It is very similar to the proof of Lemma 3.5 in [M2] and we omit it.

Proof of the main result in [ScSm] is based on the following result stated by
Sharkovsky [S] in 1966. If ω̃ is a basic set for a map f ∈ C(I, I), and ωf (x) ⊂
ω̃ for some x ∈ S, then there is a k > 0 with fk(x) ∈ ω̃. Unfortunately, this
result is wrong. To see this let f ∈ C(I, I) be transitive on [0, 1/2], with
f [0, 1/2] = [0, 1/2], f(1/2) = 1/2, and let f(x) = x/2 + 1/4 for x ∈ [1/2, 1].
Then ω̃ = [0, 1/2] is a unique basic set for f , ωf (1) = {1/2} ⊂ ω̃ but
fk(1) /∈ ω̃ for all k > 0. However, we can replace the wrong result by its
modification which works also in the case X = I.

Lemma 2.5. Let ω̃ be a basic set for f ∈ C(S, S), and let ωf (x) ⊂ ω̃. Then
there is a y ∈ ω̃ such that limi→∞ δxy(i) = 0 and hence, ωf (x) = ωf (y).
Proof. Let fn(x) /∈ ω̃ for all n. We may assume that ωf (x) is infinite since
otherwise it is a cycle, and that ω̃ is nowhere dense since otherwise ω̃ consists
of a finite number of compact intervals. In both cases the result would follow
immediatelly.
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Since ωf (x) is infinite fn(x) is in an interval B ⊂ Env(ω̃) complementary
to ω̃, for some n ≥ 0; we may assume x ∈ B. By Lemma 2.4 the closure B
of B is wandering or periodic. In the first case limi→∞ diam (f i(B)) = 0 and
as y we take an endpoint of B. If B is periodic then ωf (z) would be finite.

Lemma 2.6. Let f ∈ C(S, S) and let {ωi}∞i=1 be a sequence of distinct
minimal (i.e., indecomposable) periodic portions of basic sets of f . If the
periods of ωi are bounded then limi→∞ diamωi = 0.
Proof. Let m be a common multiple of the periods of all ωi and Ki =
Env(ωi). Assume that the lemma is not true. Replacing f by fm we can
assume that m = 1 and that, for any i, diamKi > ε, where ε is positive.
By (v) of Theorem 2.1 it suffices to consider the case when K1, K2, . . . is a
monotone sequence. We may assume that it is a decreasing sequence, since
in the other case the argument is similar.

Choose δ > 0 such that diam f(A) < ε for any set A with diamA < δ.
Again by (v) of Theorem 2.1 assume that Ki = [ai, bi] 	= S and 0 /∈ Ki,
for every i. Then ai < ai+1 and bi+1 < bi. Let ω0 = [a1, a2] ∩ ω1 and
ω1 = [b2, b1] ∩ ω1. Since ω1 = ω0 ∪ ω1 is indecomposable, one of the sets,
[a1, a2], [b1, b2] say [a1, a2] is mapped by f over [a2, b2]. Thus |a2 − a1| > δ
and diamK2 < diamK1−δ. By induction we get diamKi+1 < diamK1−iδ,
for any i, which is impossible.

3. Distributional chaos on basic sets

The next three lemmas are slight modifications of results proved in [ScSm]
for the interval mappings. For the reader’s convenience we insert the argu-
ments which are very simple, and are almost the same as in the original
paper.

Lemma 3.1. Let f ∈ C(S, S). Then for any t, λ in (0, 1) there is an integer
n(t, λ) with the following property: If A is a periodic set of period m ≥
n(t, λ), and convex hulls of sets fs(A) for s < m, are nonoverlapping, then
for any u, v in A, Fuv(t) > λ.
Proof. Fix t and λ. Let n(t, λ) be such that (n(t, λ) − 1/t)/n(t, λ) > λ.
Since there are at most 1/t distinct sets fs(A) with diam fs(A) ≥ t we have
Fuv(t) ≥ 1/m · #{s < m; diam fs(A) < t} ≥ (m − 1/t)/m > λ

Lemma 3.2. Let f ∈ C(S, S) and both F ∗
xy and Fxy be continuous at t ∈

(0, 1). Then, for any ε > 0, there are arbitrarily large positive integers k, q,
and δ > 0 such that

1
k
ξ(u, v, k, t) < Fxy(t) + ε

and
1
q
ξ(u, v, q, t) > F ∗

xy(t) − ε
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whenever �(u, x) < δ and �(v, y) < δ.
Proof. Choose ε1 > 0 such that Fxy(t + 2ε1) < Fxy(t) + ε/2 and F ∗

xy(t −
2ε1) > F ∗

xy(t) − ε/2. Then choose k ∈ N such that 1/k · ξ(x, y, k, t + 2ε1) <
Fxy(t+2ε1)+ε/2. The first equality follows from the fact that ξ(u, v, k, t) ≤
ξ(x, y, k, t + 2ε1) whenever δ > 0 is sufficiently small. The argument for the
second inequality is similar.

Lemma 3.3. Let f ∈ C(S, S), let ω̃1, ω̃2 be basic sets, and let U and V be
the minimal compact periodic intervals with Orb(U) ⊃ ω̃1 and Orb(V ) ⊃ ω̃2.
Then, for any u ∈ U ∩ ω̃1 and v ∈ V ∩ ω̃2, there are u∗ ∈ int(U) ∩ ω̃1 and
v∗ ∈ int(V ) ∩ ω̃2 such that Fuv = Fu∗v∗.
Proof. First we show that Fuv = Fu(0)v(0) where u(0) ∈ ω̃1 ∩ U and v(0) ∈
ω̃2 ∩ V are suitable nonperiodic points. To do this take u(0) = u if u is
not periodic; otherwise by (ii) of Theorem 2.1 there is a nonperiodic point
u(0) in U ∩ ω̃1 such that ωf (u) = ωf (u(0)), and one can easily verify that
u(0) can even be chosen such that lim infi→∞ δu(0)u(i) = 0. Then clearly
Fuv = Fu(0)v. The point v(0) is defined similarly.

Now let m > 0 be a common multiple of the periods of U and V . Since
fm(U ∩ ω̃1) = U ∩ ω̃1, there is a sequence {u(i)}∞i=0 of points in U ∩ ω̃1 such
that fm(u(i+1)) = u(i) for any i > 0. Choose {v(i)}∞i=0 in V ∩ ω̃2 similarly.
Now the point u(i), v(i) are not periodic, hence for some j, u(j) ∈ int(U)∩ω̃1

and v(j) ∈ int(V ) ∩ ω̃2. Take u∗ = u(j) and v∗ = v(j).

4. Spectral decomposition

Also the results in this section are modifications of these found in [ScSm].
Before stating the first one recall Definition 2.2 for the notion of strong
transitivity.

Lemma 4.1. Let ω̃1, ω̃2 be basic sets for f ∈ C(S, S). Assume that there are
periodic intervals U, V and countable set Q ⊂ S

2 of pairs (u, v) such that

f |ω̃1 is strongly transitive in int(U) and f |ω̃2 in int(V )(1)

and furthermore, that

u ∈ ω̃1 ∩ int(U) and v ∈ ω̃2 ∩ int(V ) if (u, v) ∈ Q.(2)

Then there are points x ∈ ω̃1 ∩ U and y ∈ ω̃1 ∩ V such that, for any t > 0,

Fxy(t) ≤ inf{Fuv(t); (u, v) ∈ Q}(3)

and

F ∗
xy(t) ≥ sup{F ∗

uv(t); (u, v) ∈ Q}.(4)

Proof. Let T be a countable set, dense in [0, 1], and such that, for any
(u, v) ∈ Q and any t ∈ T , both Fuv and F ∗

uv are countinuous at t. Let {tj}∞j=1

and {u(j), v(j)}∞j=1 be sequences of points from T and Q, respectively, such
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that for any t ∈ T and any (u, v) ∈ Q, t = tj , u = u(j) and v = v(j) for
infinitely many j.

Next, using induction, we define positive integers

k(1) < q(1) < k(2) < q(2) < · · · < k(i) < q(i) < . . .

and decreasing sequences {Ui}∞i=1 and {Vi}∞i=1 of compact intervals with

lim
i→∞

diam (Ui) = lim
i→∞

diam (Vi) = 0,

and such that for any u ∈ Un and v ∈ Vn and any j ≤ n,
1

k(j)
ξ(u, v, k(j), tj) ≤ Fu(j)v(j)(tj) +

1
j

(5)

and
1

q(j)
ξ(u, v, q(j), tj) ≥ F ∗

u(j)v(j)(tj) −
1
j
.(6)

To do this, we take U1 = U , V1 = V , k(1) = 1, q(1) = 2, and assume that Un,
Vn, k(n) and q(n) have been defined such that f j(Un)∩ ω1 and f j(Vn)∩ ω2

are infinite whenever j is sufficiently large. Since U and V are periodic,
by (1) and (2) there is some s > q(n) such that u(n + 1) ∈ fs(Un) and
v(n+1) ∈ fs(Vn). Let a ∈ Un and b ∈ Vn be such that fs(a) = u(n+1) and
fs(b) = v(n + 1). Then clearly Fab = Fu(n+1)v(n+1) and F ∗

ab = F ∗
u(n+1)v(n+1).

Now the existence of Un+1 ⊂ Un, Vn+1 ⊂ Vn, k(n + 1) and q(n + 1) follows
easily by Lemma 3.2. (We take as Un+1 and Vn+1 compact neighborhoods
of a and b, respectively, with diam (Un) > 2diam (Un+1) and diam (Vn) >
2diam (Vn+1). By (i) of Theorem 2.1, a, b, Un+1 and Vn+1 can be chosen
such that both fs(Un+1) ∩ ω̃1 and fs(Vn+1) ∩ ω̃2 are infinte.)

Take x′ ∈
⋂∞

i=1 Uj and y′ ∈
⋂∞

i=1 Vj . For any t ∈ T and any (u, v) ∈ Q,
take j such that t = tj , u = u(j) and v = v(j). Since x′ ∈ Uj and y′ ∈ Vj

(5) applies with u = x′ and v = y′. Since j can be arbitrarily large we have
Fx′y′(t) ≤ Fuv(t). This implies (3) for x = x′, y = y′, any t ∈ T , and since T
is dense in [0, 1], also for any t. The argument for (4) is similar.

Finally, let w ∈ ω̃1 ∩ U be such that ωf (w) = ω̃1 (see (ii) of Theo-
rem 2.1) and let {Wi}∞i=1 be a decreasing sequence of compact neighbor-
hoods of w with limi→∞ Wi = w. Since f |ω̃1 is strongly transitive we can
apply Lemma 2.3 and obtain ωf (x′) ⊂ ω̃1. Similary we get ωf (y′) ⊂ ω̃2. Now
by Lemma 2.5 we get x ∈ ω̃1 and y ∈ ω̃2 such that limi→∞ δx′x(i) = 0 and
limi→∞ δy′y(i) = 0 which implies (3) and (4).

Lemma 4.2.(Cf. Lemma 5.4 in [ScSm].) Let {Ni}∞i=0 be decomposition of
the set N of positive integers into infinite sets. Then there is an uncountable
Borel set B ⊂ {0, 1}N such that, for any distinct α = {α(i)}∞i=0 and β =
{β(i)}∞i=0 in B and any n,

{j ∈ Nn;α(j) 	= β(j)} is infinite.(7)
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Lemma 4.3. Let f ∈ C(S, S), and let ω̃ = ωf (z) be a basic set. Let U be
a minimal compact periodic interval with Orb(U) ⊃ ω̃, and let x0, x1 be in
U ∩ ω̃. Then there is nonempty perfect set P ⊂ ω̃ such that, for any distinct
u, v ∈ P ,

Fuv ≤ Fx0x1 and F ∗
uv ≥ F ∗

x0x1
.(8)

Proof. It is similar to that one for Lemma 5.5 in [ScSm]. We use from
Lemma 4.1, and methods of symbolic dynamics. Let T be a countable subset
of S, dense in S and such that both Fx0x1 and F ∗

x0x1
are continuous at each

t ∈ T , and let {tj}∞j=1 be a sequence of points from T that contains every t

from T infinitely many times. Let Xn = {0, 1}n, for n = 1, 2, . . . , and define
a system of compact intervals {Iα; α ∈ Xj}∞j=1 and positive integers

k(1) < q(1) < k(2) < q(2) < · · · < k(j) < q(j) < . . .

such that, for every α = α(1)α(2) . . . α(n) and β = β(1)β(2) . . . β(n) in Xn,
the following is true

f j(Iα) ∩ ω̃ is infinite if j > k(n + 1);(9)
if α 	= β then Iα ∩ Iβ = ∅;(10)

if γ is in Xk for some k then Iαγ ⊂ Iα ⊂ int(U);(11)

for any u ∈ Iα and v ∈ Iβ, and any j ≤ n,
1

k(j)
ξ(u, v, k(j), tj) ≤ Fxα(j)xβ(j)

(tj) +
1
j

(12)

and
1

q(j)
ξ(u, v, q(j), tj) ≥ F ∗

xαj xβj
(tj) −

1
j
.(13)

To do this, let I0 and I1 be disjoint compact subintervals of int(U), such that
both I0∩ ω̃ and I1∩ ω̃ are infinite. Put k(1) = 1 and q(1) = 2 and assume by
induction that {Iα; α ∈ Xn}, k(n) and q(n) have been defined. Assume that
f j(Iα)∩ ω̃ is infinite whenever j > r and α ∈ Xn. Let m be the period of U .
By Lemma 3.3 we may assume that x0, x1 ∈ int(U) and since f |ω̃ is strongly
transitive in int(U) ((vi) of Theorem 2.1), there is an s > max{r, q(n)} such
that x0, x1 ∈ int(fmj(Iα)) whenever α ∈ Xn and j ≥ s Since ω̃ is perfect
((i) of Theorem 2.1), it is easy to see that, for i = 0, 1 and any α ∈ Xn,
there is a point a(α, i) ∈ int(Iα) such that fms(a(α, i)) = xi and such that
for any neighborhood V of a(α, i), fms(V ) ∩ ω̃ is infinite.

Applying Lemma 3.2 we can find q(n + 1) > k(n + 1) > ms and pairwise
disjoint compact neighborhoods Iβ of the points a(α, i) for all β ∈ Xn+1,
where β = αi (we use αi for concatenation of α and i) such that (9)–(13)
are satisfied when n is replaced by n + 1.

Let A =
⋂∞

n=1

⋃
{Iα; α ∈ Xn}. Define a map, code: A → X, by code(x) =

α(1)α(2) . . . α(n) . . . if x ∈ Iα(1)α(2)...α(n), for any n. Clearly code is a con-
tinuous map of A onto X. Moreover, code is constant on each connected
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component J(α) =
⋂∞

n=1 Iα(1)α(2)...α(n) of A; we have code(x) = α for any
x ∈ J(α). Thus if A∗ ⊂ A is a set that contains just one point from any
connected component of A, then A∗ is a Borel set and code is a continuous
one-to-one map from A∗ onto X. For t ∈ T , let Nt = {i ∈ N; ti = t}. Ap-
ply Lemma 4.2 to the decomposition {Nt}t∈T of N; let B be corresponding
set. Then code−1(B) ∩ A∗ is an uncountable Borel set, hence it contains a
nonempty perfect subset Q (cf. e.g., [K]).

Let u, v ∈ Q, u 	= v, let code(u) = {α(i)}∞i=1 and let code(v) = {β(i)}∞i=1.
By Lemma 4.2 there is an arbitrarily large j such that α(j) 	= β(j) and
t = tj . Hence (12) gives Fuv(t) ≤ Fx0x1(t), and since t is arbitrary in T , Fuv ≤
Fx0x1 . The argument for the second inequality in (8) is similar. Similarly,
as at the end of proof of Lemma 4.1, we see that ωf (u) ⊂ ω̃ for any u ∈
Q. By Lemma 2.5 there are u∗, v∗ ∈ ω̃ such that limi→∞ δuu∗(i) = 0 and
limi→∞ δvv∗(i) = 0. Clearly equation (8) remains valid also for u∗ and v∗

instead of u and v. Since code(u∗) = {α∗(i)}∞i=1 and code(v∗) = {β∗(i)}∞i=1
differ at infinitely many places Q and consequently, ω̃ contains a nonempty
perfect set with the requred properties.

Lemma 4.4. Let f ∈ C(S, S) and let {ωi}∞i=1 be the minimal periodic por-
tions of basic sets of f . For any i, j, set Gij = inf{Fuv; u ∈ ωi, v ∈ ωj}.
Then

(i) Each Gij is zero on an interval [0, ε(i, j)], where ε(i, j) is a positive
number.

(ii) The set {Gij ; ωi ∩ωj 	= ∅} has a finite number of minimal elements.
(iii) The set {Gii}∞i=1 has a finite number of minimal elements.

Proof. (i) By (iii) of Theorem 2.1, there are distinct periodic points p in ωi

and q in ωj . Since mins δpq(s) = ε > 0 we have Fpq(t) = 0, and Fpq ≥ Gij

implies Gij(t) = 0 for t ≤ ε. Take ε(i, j) = ε.
(ii) We may assume that ωi 	= ωj , for i 	= j. Denote Ki = Env(ωi), and

ε = ε(1, 1) (from assertion (i)). We say that an ωi is extremal, if diam (ωi) >
ε/2 and if Ki is properly contained in no Kj . Note that there are only finitely
many extremal ωi’s ((v) of Theorem 2.1). Let ω1, . . . , ωn(1) be all extremal
ωi. Note that n(1) ≥ 1 since f has positive topological entropy (cf. [M1]).

Let m > 0 be an integer. We say that an ωi is significant if diam (ωi) > ε/2
and the period of ωi is less than m. By Lemma 2.6 there are only finitely
many significant ωi’s. Without loss of generality we may assume that there
are integers n(3) ≥ n(2) ≥ n(1) > 0 such that the system {ω1, . . . , ωn(2)}
is invariant with respect to f , contains all extremal and all significant, and
the system {ωn(2)+1, . . . , ωn(3)} consists of all ωi such that it has a common
point with some ωj , for j ≤ n(2).

From definitions of significant and extremal ωi it follows that n(2) and
n(3) but not n(1) depend on the parameter m. We show that the minimal
elements of {Gij ; ωi ∩ ωj 	= ∅} are in the set M = {Gij ; i, j ≤ n(3)},
for sufficiently large m. Let i > n(3) and ωi ∩ ωj 	= ∅. Then ωj cannot be
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significant and consequently j > n(2). Take u ∈ ωi and v ∈ ωj and show that
Fuv ≥ G, for some G ∈ M . If diam fs(ωi ∪ωj) ≤ ε for any s then Fuv(t) = 1
for t > ε, and hence Fuv ≥ G11. Assume now that diam fs(ωi ∪ ωj) > ε for
some s. Since the set {ω1, . . . , ωn(2)} is invariant, without loss of generality
we can assume that diam (ωi ∪ ωj) > ε and that

diam fs(ωi ∪ ωj) ≤ diam (ωi ∪ ωj) for any s.(14)

Since one of the sets ωi, ωj , say ωi, has diameter > ε/2, there is an extremal
ωr such that ωi ⊂ int(Kr) (note that ωi cannot be extremal since i > n(1)),
and consequently with ωi ∪ ωj ⊂ int(Kr), since ωi ∩ ωj 	= ∅ (see (v) of
Theorem 2.1). By (i) and (iii) of Theorem 2.1 there are periodic points
a, b ∈ ωr (sufficiently close to end points of Kr) with the following property:
If J is an interval such that

J ∩ ωr is infinite, diamJ > ε, and J ⊂ Kr(15)

then J ⊂ (a, b).
If Ki ∩ωr would be infinite then the minimal compact periodical interval

containing ωi contains Kr and by Lemma 2.3 and (vi) of Theorem 2.1 ωi =
ωr, which is impossible. Similarly Kj ∩ ωr is finite. Take J = Ki ∪ Kj

satisfies (15) and get periodic points a, b such that ωi ∪ ωj ⊂ (a, b). Let t0
be such that diam (ωi ∪ωj) < t0 < diam ({a, b}). Take λr = Fa,b(t0). Clearly
λr < 1. Let ε(r, r) be as in (i). Now we have Grr(t) = 0 for t ≤ ε(r, r),
and by (14), Grr(t) ≤ 1 = Fuv for t > t0. And if ε(r, r) < t0 then by
Lemma 3.1, Grr(t) ≤ Fab(t) ≤ λr < Fuv(t) whenever ε(r, r) < t < t0 and
m ≥ n(ε(r, r), λr). Thus Grr ≤ Fuv if m ≥ n(ε(r, r), λr).

When the parameter m = max{n(ε(r, r), λr); 1 ≤ r ≤ n(1)} it follows
that {Gij ; i, j ≤ n(3)} contains the minimal elements of {Gij ; ωi ∩ωj 	= ∅}.

(iii) It suffices to show that the minimal elements of {Gii}∞i=1 are contained
in {Gij ; i ≤ n(2)}. But it follows from the argument given above.

5. Proof of the main Theorem

We give the proof of Theorem B. Theorem A is its particular case.

Proof. We follow the idea of the proof of Theorem 2.4 in [ScSm].
(A) This result was already proved in [M1] as Theorem 2.2.
(B) Let {ωi}∞i=1 be system of the minimal periodic portions of all basic

sets. (This system is nonempty since topological entropy is positive [M1]
and countable by (iv) of Theorem 2.1). Denote by ω̃u the maximal ω-limit
set containing ωf (u).

(B1) Let D = {Fuv; u and v are synchronous} and E = {Fuv; u, v ∈
ωi, for some i}. It is easy to see that E ⊂ D. To prove D ⊂ E take Fuv ∈ D.
If ω̃u (= ω̃v) is a solenoid then trajectories of u and v enter into periodical
decomposition of arbitrarily high order and consequently Fuv = χ(0,∞) ∈ E.
For details see [M1]. If ω̃u is a basic set then by Lemma 2.5 there are u∗, v∗ ∈
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ω̃u such that Fuv = Fu∗v∗ . Thus D = E and Lemma 4.4 gives the result on
the spectrum Σ(f).

Now let Dw = {Fuv; u, v satisfy lim infi→∞ δuv(i) = 0} and Ew = {Fuv;
u ∈ ωi, v ∈ ωj and ωi ∩ ωj 	= ∅, for some i and j}. Let Fuv ∈ Dw. Similarly
as before either Fuv = χ(0,∞) or there are are points u∗ ∈ ω̃i, v∗ ∈ ω̃j such
that limi→∞ δu∗u(i) = 0, limi→∞ δv∗v(i) = 0 and this with

lim inf
i→∞

δuv(i) = 0(16)

gives ω̃u ∩ ω̃v 	= ∅. Thus Fu,v = Fu∗v∗ ∈ Ew. Consequently Dw ⊂ Ew.
To prove Ew ⊂ Dw, take Fuv ∈ Ew, u ∈ ω̃i, v ∈ ω̃j , w ∈ ω̃i ∩ ω̃j and

Q = {(u, v), (w, w)}. Now apply Lemma 4.1 to get x, y such that Fxy ≤ Fuv

and F ∗
xy = χ(0,∞). Since lim infi→∞ δxy(i) = 0 we have ωf (x) ∩ ωf (y) 	= ∅.

Thus Fxy ∈ Dw. Since Dw ⊂ Ew and Ew has the lower bounds in Dw,
both Dw and Ew have the same system Σw(f) of minimal elements and
application of Lemma 4.4 on Ew completes the proof.

(B2) For any k ≤ m there are x, y ∈ ωi for some i such that Fxy = Fk

(see proof (B1)). Existence of Pk now follows by Lemma 4.1 with Q =
{(x, y), (x, x)} and Lemmas 3.3 and 4.3.

(B4) Let any u, v ∈ S satisfy (16). If for some u ∈ S ω̃u is solenoid then
similarly as in the proof of (B1) we get Fuv = χ(0,∞) for any u, v ∈ S and
S = S0 ∪ ∅ ∪ ∅ is the corresponding decomposition.

Assume that for every u ∈ S the set ω̃u is a basic set. For every u ∈ S
denote by u∗ ∈ ω̃u a point such that limn→∞ δu∗u(n) = 0 (Lemma 2.5).
Let Ti = {u ∈ S; u∗ ∈ ωi}, Lemma 2.5 shows that S =

⋃∞
i=1 Ti. Sup-

pose that four distinct sets Tj(1), Tj(2), Tj(3) and T(j(4)) are nonempty.
Any two sets ωj(r), ωj(s), 1 ≤ r, s ≤ 3, have a point in common (since
lim infi→∞ δu(r)u(s)(i) = 0, for u(i) ∈ Ti). Now by (v) of Theorem 2.1 two of
sets ωj(1), ωj(2), ωj(3) and ωj(4) must coincide (say ωj(3) and ωj(4)).

By Lemma 4.4, for any 1 ≤ k ≤ 3 and any u, v ∈ Tj(k) there is j ≤ m
such that Fuv ≥ Gj(k)j(k) ≥ Fj . Consequently S = Tj(1) ∪ Tj(2) ∪ Tj(3).

(B3) If j > m and Fuv = Fj for any distinct u, v ∈ S then u∗ and v∗

belong to different Tj(k). Elsewhere Fuv cannot be minimal. This shows that
every Tj(k) contains one point.
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