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Abstract

We find normal forms for ansl3-valued zero curvature representation.

1 Introduction

Zero curvature representations (ZCR) rank among the most important attributes
of integrable partial differential equations [6]. A ZCR is usually treated as a spe-
cial case of the Wahlquist–Estabrook prolongation structure [8], but the famous
Wahlquist–Estabrook procedure is not sufficient for obtaining a complete classifi-
cation of integrable systems. The main obstacle consists inthe presence of a large
group of gauge transformations. Thus we are naturally led tothe problem of intro-
duction of normal forms of ZCR’s such that every orbit of the gauge action contains
at least one normal form.

In nineties, independently M. Marvan [2] and S. Yu. Sakovich[5] introduced a
characteristic element of a ZCR, which is a matrix that transforms by conjugation
during gauge transformations of the ZCR. It follows that onecan reduce the gauge
freedom by putting the characteristic element in the Jordannormal form. There is
a remaining gauge freedom, which can be used for further reduction of one of the
matrices constituting the ZCR. This is rather similar to classification of pairs of
matrices under simultaneous conjugation, developed by Belitskĭı [1].

In case of the Lie algebrasl2 a solution of the problem can be found in [3]. This
made possible the subsequent complete classification of second-order evolution
equations possessing ansl2-valued ZCR [4].

In this work we try to obtain such a classification in case ofsl3. The number
of possible normal forms is much higher than in case ofsl2. As examples, we
consider the Tzitzéica equation [7], whose ZCR is known since 1910, Sawada-
Kotera equation and the Kupershmidt equation.
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2 Preliminaries

Let us consider a system of nonlinear differential equations

F l(t, x, uk, . . . , uk
I , . . .) = 0, (1)

in two independent variablest andx, a finite number of dependent variablesuk and
their derivativesuk

I , whereI denotes a finite symmetric multiindex overt andx.
Let J∞ be an infinite-dimensional jet space such thatt, x, uk, uk

I are local jet
coordinates onJ∞. We have two distinguished vector fields onJ∞

Dt =
∂

∂t
+

∑

k,I

uk
It

∂

∂uk
I

, Dx =
∂

∂x
+

∑

k,I

uk
Ix

∂

∂uk
I

,

which are calledtotal derivatives.Let g be a matrix Lie algebra. By ag-valued
zero curvature representation(ZCR) for (1) we mean twog-valued functionsA,B
which satisfy

DtA − DxB + [A,B] = 0

as a consequence of (1). LetG be the connected and simply connected matrix Lie
group associated withg. Then for everyG-valued functionW we define thegauge
transformationof ZCR (A,B) by the formulas

AW := DxW · W−1 + W · A · W−1,

BW := DtW · W−1 + W · B · W−1.

As is well known,(AW , BW ) is a ZCR too, and we say that it isgauge equivalent
to (A,B).

We define a new differential operator̂DDI :

D̂DxM = DxM − [A,M ], D̂D tM = DtM − [B,M ]

andD̂DI = Di1 · · ·Diκ whereI = (i1 · · · iκ) as usual. Acharacteristic elementR
is ag-valued function defined in [2]. The following assertion holds:

Proposition 2.1 ([2])
1) Gauge equivalent ZCR’s have conjugate characteristic elements.
2) The characteristic elementR satisfies

∑

k,I

(−1)|I|D̂DI

(
∂F l

∂uk
I

Rl

)
= 0.
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If a ZCR (A,B) is gauge equivalent to another ZCR with coefficients in a
proper subalgebra ofg, then we say that ZCR isreducible.Otherwise it is said to
be irreducible.A ZCR gauge equivalent to zero is calledtrivial. A very important
case is a ZCR with coefficients in a non-solvable Lie algebra.The simplest case
of a non-solvable Lie algebra is the algebrasl2. In [3] the following proposition is
obtained:

Proposition 2.2 Let (A,B) be an irreduciblesl2-valued ZCR, letR 6= 0 be its
characteristic element. Then we have one of the two following normal forms forR
andA :
– Nilpotent case

R =

(
0 0

1 0

)
, A =

(
0 a2

a3 0

)
.

– Diagonal case

R =

(
r 0

0 −r

)
, A =

(
a1 1

a3 −a1

)
.

3 Normal forms

In this section we define the normal form ofg-valued ZCR and explain the method
to find them. The main idea is taken from the first part of proposition 2.1. Gauge
equivalent ZCR’s have conjugate characteristic elements,therefore we can restrict
ourselves to the characteristic elements in the Jordan normal form. Since the gauge
transformation is a group action, it is possible to considerthe stabilizer group of the
characteristic element, which is a proper subgroup ofG. The stabilizer is usually
rather small (see Table 1), therefore we can compute its action on the matrixA and
find the corresponding normal forms rather easily. We aim at finding the minimal
set of normal forms. In the case of the diagonal characteristic elementR we can
achieve substantial reduction by taking into account permutations of the Jordan
blocks.

In this work we distinguish betweennormal formsandseminormal forms. We
say, that we have the normal form if we have just finite number of possibilities of
a choice of the corresponding gauge matrix (see section 5). If our choice of the
corresponding gauge matrix depend on at least one arbitraryfunction, we say, that
we have the seminormal form. In this case we may use the residual gauge freedom
to transform the matrixB.

The following table lists all possible Jordan formsJi of sl3-matrices and the
corresponding stabilizersWi, wherewj denote arbitrary complex numbers such
that all algebraic operations make sense.J2 and J4 are degenerate cases ofJ1
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andJ3, respectively, when the two eigenvalues coincide and the dimension of the
stabilizer raises from two to four. CasesJ2 andJ4 are treated at the end of this
work.

J1 =




λ1 0 0

0 λ2 0

0 0 −λ1 − λ2



; λ1 6= λ2, W1 =




w1 0 0

0 w2 0

0 0 w1w
−1

2



,

J2 =




λ 0 0

0 λ 0

0 0 −2λ



; λ 6= 0, W2 =




w11 w12 0

w21 w22 0

0 0 Z−1



,

J3 =




λ 0 0

1 λ 0

0 0 −2λ



; λ 6= 0, W3 =




w1 0 0

w2 w1 0

0 0 w−2

1



,

J4 =




0 0 0

1 0 0

0 0 0



, W4 =




w1 0 0

w2 w1 w3

w4 0 w−2

1



,

J5 =




0 0 0

1 0 0

0 1 0



, W5 =




1 0 0

w2 1 0

w3 w2 1



,

where Z = w11w22 − w12w21.

Table 1: Jordan forms and the corresponding stabilizers

4 Subalgebras of algebra sl3

For further reference, we list here several subalgebras ofsl3. Two subalgebrasa, b
are said to be conjugate, if there existS ∈ SL3 such thata = SbS−1. Note that
for constant matricesS ∈ SL3 conjugation and gauge equivalence coincide. One
obvious automorphismus ofsl3 is alsoA 7−→ −A>, which we calltransposition.
We introduce six permutation matrices
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P0 =




1 0 0

0 1 0

0 0 1



, P1 =




1 0 0

0 0 1

0 1 0



,

P2 =




0 1 0

0 0 1

1 0 0



, P3 =




0 1 0

1 0 0

0 0 1



,

P4 =




0 0 1

1 0 0

0 1 0



, P5 =




0 0 1

0 1 0

1 0 0



.

The following four types of subalgebras appear in this work:

Type 1. Six 6-dimensional subalgebras consisting of traceless matricesA of
either the form:

A =




. . .

. . .

0 0 .



,




. . .

0 . .

0 . .



,




. 0 0

. . .

. . .



,




. . 0

. . 0

. . .



,




. 0 .

. . .

. 0 .



,




. . .

0 . 0

. . .



.

This six subalgebras are mutually isomorphic via transposition or conjugation.

Type 2.Two subalgebras consisting of traceless matricesA of either the form:

A =




. . 0

. . 0

0 0 .



,




. 0 0

0 . .

0 . .



.

This two subalgebras are isomorphic to the algebragl2.

Type 3.Two subalgebras consisting of all lower(upper)-triangular 3×3 traceless
matricesA and four subalgebras mutually isomorphic via conjugation of either the
form:

A =




. 0 0

. . 0

. . .



,




. 0 0

. . .

. 0 .



,




. 0 .

. . .

0 0 .



,




. . 0

0 . 0

. . .



,




. . .

0 . 0

0 . .



,




. . .

0 . .

0 0 .



.

Type 4.The abelian subalgebra consisting of all diagonal3× 3 traceless matri-
ces.
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5 Case J1

In this section we solve the classification problem in case ofthe characteristic ele-
mentR whose Jordan normal form is diagonal (caseJ1). The diagonal Jordan nor-
mal form is unique up to the order of the elements on the diagonal, i.e., up to conju-
gation with respect to one of the permutation matrixP0, . . . , P5. Given a matrixA,
the corresponding gauge equivalent matrices will beAi = DxPi.P

−1

i +PiAP−1

i =
PiAP−1

i , i = 0, 1, . . . , 5, namely

A0 =




a11 a12 a13

a21 a22 a23

a31 a32 a33



, A1 =




a11 a13 a12

a31 a33 a32

a21 a23 a22



,

A2 =




a22 a23 a21

a32 a33 a31

a12 a13 a11



, A3 =




a22 a21 a23

a12 a11 a13

a32 a31 a33



,

A4 =




a33 a31 a32

a13 a11 a12

a23 a21 a22



, A5 =




a33 a32 a31

a23 a22 a21

a13 a12 a11



.

Remark 5.1 Note thatAi is gauge equivalent toA for everyi = 0, 1, . . . , 5.

The following algorithm assigns a normal form to the matrixA. The input is
the matrixA. Dots denote arbitrary elements.

Case 1. If there existsi = 0, 1, . . . , 5 such thata21 6= 0 and a32 6= 0 in
A = Ai, then thenormal formis

N1

1 =




. . .

1 . .

. 1 .



.

The gauge matrix which sendsA to N1
1 is

W 1

1 =





a
1/3

32
a

2/3

21
0 0

0 a
1/3

32
a
−1/3

21
0

0 0 a
2/3

32
a
−1/3

21



.

One easily sees that the matrixW 1
1 is unique up to the choice of cubic roots, hence

N1
1 is thenormal form(see section 3).

Case 2. Otherwise, if there existsi = 0, 1, . . . , 5 such thata21 6= 0, a32 = 0
anda31 6= 0 in A = Ai, then we may assume thata23 = 0 as well. Indeed, if
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a23 6= 0 in A, thena32 anda21 are nonzero inAj = P1AP−1

1
and we would have

the first case. The normal form is

N2

1 =




. . .

1 . 0

1 0 .



,

the corresponding gauge matrix being

W 2

1 =





a
1/3

31
a

1/3

21
0 0

0 a
1/3

31
a
−2/3

21
0

0 0 a
1/3

21
a
−2/3

31



.

Case 3.Otherwise, if there existsi = 0, 1, . . . , 5 such thata21 6= 0, a32 = 0,
a31 = 0 anda23 6= 0 in A = Ai, then we may assume thata13 = 0. Indeed, when
a13 6= 0 in A, thena21 6= 0 in Aj = P4AP−1

4
and nonzeroa21 in A imply nonzero

a32 in Aj , and we would have the first case again. The normal form is

N3

1 =




. . 0

1 . 1

0 0 .



,

the corresponding gauge matrix being

W 3

1 =





a
2/3

21
a
−1/3

23
0 0

0 a
−1/3

23
a
−1/3

21
0

0 0 a
2/3

23
a
−1/3

21



.

The matrixN3
1 belongs to the subalgebra of Type 1.

Case 4.Otherwise, if there existsi = 0, 1, . . . , 5 such thata21 6= 0, a32 = 0,
a31 = 0 anda23 = 0 in A = Ai, then we obtain aseminormal form

N4

1 =




. . 0

1 . 0

0 0 .



.

Indeed, using the same argument as in the Case 3 we may assume thata13 = 0, the
corresponding gauge matrix being, for example,

W 4

1 =




a21 0 0

0 1 0

0 0 a−1

21



.
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However, the most general gauge matrix is



a21 0 0

0 w2 0

0 0 a−1

21





and depends on the choice of one arbitrary functionw2. If we setw2 = 1, then
we obtainW 4

1 . HenceN4
1 is the seminormal form. The matrixN4

1 belongs to the
subalgebra of Type 2.

Case 5. If a21 = 0 for all Ai, then all the off-diagonal elements must be zero,
therefore the seminormal form is

A = N5

1 =




. 0 0

0 . 0

0 0 .



.

The matrixN5
1 belongs to the subalgebra of Type 4.

As a matter of fact, we have proved:

Theorem 5.2 In a ZCR such that its characteristic element has the diagonal Jor-
dan normal formJ1 the matrixA has one of the above normal formsN1

1 , N2
1 , N3

1 ,
or seminormal formsN4

1 , N5
1 . If A does not belong to a proper subalgebra ofsl3,

thenA has one of the above normal formsN1
1 , N2

1 .

Example 5.3 The Tzitzéica equation [7]:

utx = eu − e−2u.

The corresponding ZCR, which depends on a parameterm 6= 0, is

A =




−ux 0 m

m ux 0

0 m 0



, B =





0
e−2u

m
0

0 0
eu

m
eu

m
0 0




.

The matrixA belongs to Case 1 with the normal formN1
1 . Namely, the normal

forms of the characteristic elementR and the matrixA are

R =




−1 0 0

0 1 0

0 0 0



, A =




−ux 0 m3

1 ux 0

0 1 0



.
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6 Case J3

In this section we solve the classification problem for characteristic element in
the formJ3 with the corresponding stabilizerW3 (see Table 1). We first find all
relevant normal forms and then we select a minimal set of normal forms which can
occur in orbits of the gauge action.

As a result we obtain the following algorithm which assigns anormal form to
the generalsl3 matrix

A =




a11 a12 a13

a21 a22 a23

a31 a32 −a11 − a22



.

Case 1. If a13 6= 0, then the normal form is

N1

3 =




. . 1

. . 0

. . .



,

the corresponding gauge matrix being

W 1

3 =





a
−1/3

13
0 0

− a23

a
4/3

13

a
−1/3

13
0

0 0 a
2/3

13




.

Case 2.Otherwise, ifa13 = 0, a32 6= 0, then the normal form is

N2

3 =




. . 0

. . .

0 1 .



,

the corresponding gauge matrix being

W 2

3 =





a
1/3

32
0 0

a31

a
2/3

32

a
1/3

32
0

0 0 a
−2/3

32




.

Case 3. If a13 = 0, a32 = 0, a23 6= 0, a12 6= 0, then the normal form is

N3

3 =




0 . 0

. . 1

. 0 .



,
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the corresponding gauge matrix being

W 3

3 =





a
−1/3

23
0 0

−Dxa23 + 3a23a11

3a12a
4/3

23

a
−1/3

23
0

0 0 a
2/3

23




.

Case 4. If a13 = 0, a32 = 0, a23 6= 0, a12 = 0, then the seminormal form is

N4

3 =




. 0 0

. . 1

. 0 .



,

the corresponding gauge matrix being

W 4

3 =





a
−1/3

23
0 0

0 a
−1/3

23
0

0 0 a
2/3

23



.

The matrixN4
3 belongs to the subalgebra of Type 3. Indeed, applying the permuta-

tion matrixP1 to matrixN4
3 by conjugation we obtain a lower triangular matrix.

Case 5. If a13 = 0, a32 = 0, a23 = 0, a31 6= 0, a12 6= 0, then the normal form
is

N5

3 =




0 . 0

. . 0

1 0 .



,

the corresponding gauge matrix being

W 5

3 =





a
1/3

31
0 0

Dxa31 + 3a31a11

3a12a
2/3

31

a
1/3

31
0

0 0 a
−2/3

31




.

The matrixN5
3 belongs to the subalgebra of Type 1.

Case 6. If a13 = 0, a32 = 0, a23 = 0, a31 6= 0, a12 = 0, then the seminormal
form is

N6

3 =




. 0 0

. . 0

1 0 .



,
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the corresponding gauge matrix being

W 6

3 =





a
1/3

31
0 0

0 a
1/3

31
0

0 0 a
−2/3

31



.

The matrixN6
3 belongs to the subalgebra of Type 3.

Case 7. Otherwise, ifa13 = 0, a32 = 0, a23 = 0, a31 = 0, a12 6= 0, then the
seminormal form is

N7

3 =




0 . 0

. . 0

0 0 .



,

the corresponding gauge matrix being

W 7

3 =





1 0 0
a11

a12

1 0

0 0 1



.

Obviously,N7
3 belongs to the subalgebra of Type 2.

Case 8. Otherwise, ifa13 = 0, a32 = 0, a23 = 0, a31 = 0, a12 = 0, then the
seminormal form is

N8

3 =




. 0 0

. . 0

0 0 .



.

Matrices of this form constitute a 3-dimensional solvable subalgebra ofsl3.
Whence we have proved the next theorem:

Theorem 6.1 In a ZCR such that its characteristic element has the Jordan normal
form in the formJ3 the matrixA has one of the above normal formsN1

3 , N2
3 , N3

3 , N5
3

or seminormal formsN4
3 , N6

3 , N7
3 , N8

3 . If A does not belong to a proper subalgebra
of sl3, thenA has one of the above normal formsN1

3 , N2
3 , N3

3 .

7 Case J5

In this section we solve the classification problem for characteristic element in the
form J5 (see Table 1). Similarly as in the previous case, we first find all relevant
normal forms an then we select a minimal set of them. The matrix A is considered
in the same form as in the case ofJ3. As a result we obtain the following:
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Case 1. If a13 6= 0, then the normal form is

N1

5 =




0 0 .

. . .

. . .



,

the corresponding gauge matrix being

W 1

5 =





1 0 0
a12

a13

1 0

a11

a13

a12

a13

1





Case 2.Otherwise, ifa13 = 0, a12 6= 0, then normal form is

N2

5 =




0 . 0

. . .

. 0 .



,

the corresponding gauge matrix being

W 2

5 =





1 0 0
a11

a12

1 0

w3

a11

a12

1




,

wherew3 = (a11Dxa12−a12Dxa11+a23a
2
11−a32a

2
12−2a22a12a11−a12a

2
11)/a

3
12.

Case 3. If a13 = 0, a12 = 0, a23 6= 0, then normal form is

N3

5 =




. 0 0

0 . .

. . 0



,

the corresponding gauge matrix being

W 3

5 =





1 0 0
a22 + a11

a23

1 0

w3

a22 + a11

a23

1




,

wherew3 = (a23Dxa22 − a11Dxa23 − a22Dxa23 + a23Dxa11 + 2a22a23a11 +
a2

23a21 + 2a23a
2
11)/a

3
23. The matrixN3

5 belongs to the subalgebra of Type 1.
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Case 4.Otherwise, ifa13 = 0, a12 = 0, a23 = 0, then the seminormal form is

N4

5 =




. 0 0

. . 0

. . .



.

Matrices of this form fall to the subalgebra of Type 3.
Again we have, in fact, proved the next theorem:

Theorem 7.1 In a ZCR such that its characteristic element has the Jordan normal
form J5 the matrixA has one of the above normal formsN1

5
, N2

5
, N3

5
or seminor-

mal formN4
5 . If A does not belong to a proper subalgebra ofsl3, then it has one

of the above normal formsN1
5 , N2

5 .

Example 7.2 The Kupershmidt equation:

ut = uxxxxx + 10uuxxx + 25uxuxx + 20u2ux

The corresponding ZCR, which depends on a parameterm 6= 0, is

A =




0 1 0

−u 0 1

m −u 0



,

the matrixB is very large, hence omitted. The matrixA belongs to Case 2 with the
normal formN2

5 , namely,

A =




0 1 0

−2u 0 1

ux + m 0 0



.

8 Case J2

The following two casesJ2 andJ4 of characteristic elements are singular and the
number of parameters increase in the corresponding stabilizer subgroups from two
to four (see Table 1). We begin with the classification problem for characteristic
element in the formJ2.

Let K = a13Dxa23 − a23Dxa13 + a11a13a23 − a21a
2
13 + a12a

2
23 − a22a13a23,

L = a32Dxa31 − a31Dxa32 + a11a32a31 + a21a
2
32 − a12a

2
31 − a22a32a31, and

R = a13a31 + a23a32.

13



Case 1. If K 6= 0, then the normal form is

N1

2 =




0 1 0

. . 1

. . .



.

The corresponding gauge matrixW 1
2

is found to be

w11 = − a23

K2/3
, w12 =

a13

K2/3
,

w21 =
2

3
a23K

−1DxK − Dxa23 − a11a23 + a13a21

K2/3
,

w22 =
− 2

3
a13K

−1DxK + Dxa13 − a12a23 + a22a13

K2/3
.

Case 2. If K = 0, L 6= 0, R 6= 0, then the normal form is

N2

2 =




. 0 0

1 . .

0 1 .



,

the corresponding gauge matrix being

W 2

2 =





L2/3a23

R
−L2/3a13

R
0

a31

L1/3

a32

L1/3
0

0 0 L−1/3




.

Indeed, applyingW 2
2 to generalsl3 matrixA (see section 6) we obtain

AW 2

2 =





.
KL

R2
0

1 . .

0 1 .



,

and we see that forK = 0 we haveAW 2

2 = N2
2 .

The normal formN2
2 falls to the subalgebra of Type 1.

Case 3. If K = 0, L 6= 0, R = 0, then the normal form is

N3

2 =




0 . 0

1 . 0

0 1 .



,
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the corresponding gauge matrixW 3
2 is found to be

w11 =
L2/3 + a31w12

a32

,

w12 =
− 2

3
a32L

−1DxL + Dxa32 − a12a31 + a11a32

L1/3
,

w21 =
a31

L1/3
, w22 =

a32

L1/3
.

Note thata32 in the denominator ofw11 cancels out after evaluatingDxL in w12.
E.g., fora32 = 0 we obtain

w11 =
1

3

3a3

31a12a22 + a2

31a12Dxa31 + 2a3

31Dxa12

(a2

31a12)
4/3

,

while a31a12 6= 0 is just a consequence ofL 6= 0. Indeed, applyingW 3
2 to general

sl3 matrixA we obtain

AW 3

2 =




0 . K + RC

1 . R

0 1 .



,

for appropriateC and we see that forK = 0, R = 0 we haveAW 3

2 = N3
2 .

The normal formN3
2 falls to the subalgebra of Type 1.

Case 4. If K = 0, L = 0, R 6= 0, then the seminormal form is

N4

2 =




. 0 0

0 . .

0 1 .



,

the corresponding gauge matrix being

W 4

2 =





a23 −a13 0
a31√

R

a32√
R

0

0 0
1√
R




.

Indeed, applyingW 4
2 to generalsl3 matrixA we obtain

AW 4

2 =





. − K

R1/2
0

L

R3/2
. .

0 1 .




,
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and we see that forK = 0, L = 0 we haveAW 4

2 = N4
2 .

The seminormal formN4
2

falls to the subalgebra of Type 2.

ForK = 0, L = 0, R = 0 we have three subcases:
Case 5a.If a13 6= 0 or a23 6= 0, then the seminormal form is

N5a
2 =




. 0 0

. . .

. 0 .



,

the corresponding gauge matrix being

W 5a
2 =





a23 −a13 0

w21 w22 0

0 0
1

w21a13 + w22a23





for arbitrary nonzero parametersw21 andw22. Indeed, applyingW 5a
2 to generalsl3

matrixA we obtain

AW 5a

2 =





.
K

w21a13 + w22a23

0

. . .

.
R

(w21a13 + w22a23)
2

.




,

and we see that forK = 0, R = 0 we haveAW 5a

2 = N5a
2

. Note, that in this case
L = K(a32/a13)

2 or L = K(a31/a23)
2.

The seminormal formN5a
2 falls to the subalgebra of Type 3.

Case 5b.If a31 6= 0 or a32 6= 0, then the seminormal form is

N5b
2 =




. . .

0 . 0

0 . .



,

the corresponding gauge matrix being

W 5b
2 =





w11 w12 0

a31 a32 0

0 0
1

w11a32 − w12a31




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for arbitrary nonzero parametersw11 andw12. Indeed, applyingW 5b
2 to generalsl3

matrixA we obtain

AW 5b

2 =





. . .
L

w11a32 − w12a31

. R(w11a32 − w12a31)

0 . .



,

and we see that forL = 0, R = 0 we haveAW 5b

2 = N5b
2 . Note, that in this case

K = L(a23/a31)
2 or K = L(a13/a32)

2.
The seminormal formN5b

2 falls to the subalgebra of Type 3.

Case 5c.If a13 = 0, a23 = 0, a31 = 0, a32 = 0, then the seminormal form is

N5c
2 =




. . 0

. . 0

0 0 .



,

the corresponding gauge matrix being just the unit matrix. The seminormal form
N5c

2 falls to the subalgebra of Type 2.
Again we have, in fact, proved the next theorem:

Theorem 8.1 In a ZCR such that its characteristic element has the diagonal Jor-
dan normal formJ2 the matrixA has one of the above normal formsN1

2 , N2
2 , N3

2

or seminormal formsN4
2
, N5a

2
, N5b

2
, N5c

2
. If A does not belong to a proper subal-

gebra ofsl3, thenA has the above normal formN1
2 .

9 Case J4

In this section we solve the classification problem for characteristic element in the
form J4 (see Table 1).

Let M = a12Dxa13 −a13Dxa12 −2a12a13a22 +a23a
2
12 −a32a

2
13 −a11a12a13

andN = a12Dxa32 − a32Dxa12 + 2a11a12a32 − a31a
2
12 + a13a

2
32 + a12a22a32.

Case 1. If a12 6= 0,M 6= 0, then the normal form is

N1

4 =




0 . 0

. . 1

. 0 .



.
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The corresponding gauge matrixW 1
4 is obtained in the following way:

w1 =
a

2/3

12
3
√

M
, w2 =

Dxw1 + a11w1

a12

,

w3 =
w1a13

a12

, w4 = − a32

w2

1a12

.

Case 2. If a12 6= 0,M = 0, N 6= 0, then the normal form is

N2

4 =




0 . 0

. . 0

1 0 .



.

The corresponding gauge matrixW 2
4 is obtained in the following way:

w1 = −
3
√

N

a
2/3

12

, w2 =
Dxw1 + a11w1

a12

,

w3 =
w1a13

a12

, w4 = − a32

w2

1a12

.

The normal formN2
4 falls to the subalgebra of Type 1.

Case 3. If a12 6= 0,M = 0, N = 0, then the seminormal form is

N3

4 =




0 . 0

. . 0

0 0 .



,

the corresponding gauge matrix being

W 3

4 =





1 0 0
a11

a12

1
a13

a12

−a32

a12

0 1




.

The seminormal formN3
4 falls to th subalgebra of Type 2.

Case 4. If a12 = 0, a13 6= 0, a32 6= 0, then the normal form is

N4

4 =




0 0 1

. 0 0

. . 0



.
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The corresponding gauge matrixW 4
4 is obtained in the following way:

w1 =
1

a
1/3

13

, w3 =
Dxa13 − 3a13a22

3a32a
4/3

13

, w4 = −Dxa13 − 3a11a13

3a
4/3

13

,

w2 = −w3Dxa13

3a2

13

− Dxw3 − a32a
1/3

13
w2

3 − a11w3 − 2a22w3 + a23a
−1/3

13

a13

.

Case 5. If a12 = 0, a13 = 0, a32 6= 0, then the seminormal form is

N5

4 =




. 0 0

. . .

0 1 0



,

the corresponding gauge matrix being

W 5

4 =





a
1/3

32
0 0

a31

a
2/3

32

a
1/3

32
−2Dxa32 + 3a32a11 + 3a32a22

3a
5/3

32

0 0 a
−2/3

32




.

The seminormal formN5
4 falls to the subalgebra of Type 1.

Case 6. If a12 = 0, a13 6= 0, a32 = 0, then the seminormal form is

N6

4 =




0 0 1

. . 0

. 0 .



,

the corresponding gauge matrix being

W 6

4 =





a
−1/3

13
0 0

− a23

a
4/3

13

a
−1/3

13
0

−Dxa13 + 3a13a11

3a
4/3

13

0 a
2/3

13




.

The seminormal formN6
4 falls to the subalgebra of Type 1.

Case 7. If a12 = 0, a13 = 0, a32 = 0, a23 6= 0, then the seminormal form is

N7

4 =




. 0 0

0 . .

. 0 .



,
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the corresponding gauge matrix being

W 7

4 =





1 0 0

0 1 0
a21

a23

0 1



.

The seminormal formN7
4 falls to the subalgebra of Type 3. Indeed, applying the

permutation matrixP1 to N7
4 by conjugation we obtain a lower triangular matrix.

Case 8. If a12 = 0, a13 = 0, a32 = 0, a23 = 0, then the seminormal form is

N8

4 =




. 0 0

. . 0

. 0 .



.

The seminormal formN8
4

falls to the subalgebra of Type 3.
Again we have, in fact, proved the next theorem:

Theorem 9.1 In a ZCR such that its characteristic element has the Jordan normal
form J4 the matrixA has one of the above normal formsN1

4 , N2
4 , N4

4 or seminor-
mal formsN3

4 , N5
4 , . . . , N8

4 . If A does not belong to a proper subalgebra ofsl3,
thenA has one of the normal formsN1

4 , N4
4 .

Example 9.2 Sawada-Kotera equation:

ut = uxxxxx + 5uuxxx + 5uxuxx + 5u2ux

The corresponding ZCR, which depends on a parameterm 6= 0, is

A =




0 −1 0

u 0 −m

1 0 0



,

the matrixB is very large. The matrixA belongs to Case 1 with the normal form
N1

4 , namely,

A =




0 −1 0

u 0 1

−m 0 0



.
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