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Abstract
We find normal forms for arls-valued zero curvature representation.

1 Introduction

Zero curvature representations (ZCR) rank among the magsbrilant attributes
of integrable partial differential equations [6]. A ZCR isually treated as a spe-
cial case of the Wahlquist—Estabrook prolongation stmac{8], but the famous
Wahlquist—Estabrook procedure is not sufficient for obtajra complete classifi-
cation of integrable systems. The main obstacle consigteipresence of a large
group of gauge transformations. Thus we are naturally ledegroblem of intro-
duction of normal forms of ZCR'’s such that every orbit of tleige action contains
at least one normal form.

In nineties, independently M. Marvan [2] and S. Yu. SakoyEhntroduced a
characteristic element of a ZCR, which is a matrix that t@mss by conjugation
during gauge transformations of the ZCR. It follows that oae reduce the gauge
freedom by putting the characteristic element in the Jordamal form. There is
a remaining gauge freedom, which can be used for furtherctenfuof one of the
matrices constituting the ZCR. This is rather similar tossléication of pairs of
matrices under simultaneous conjugation, developed biygsR&[[1].

In case of the Lie algebrds a solution of the problem can be found in [3]. This
made possible the subsequent complete classification ohdearder evolution
equations possessing ah-valued ZCR [4].

In this work we try to obtain such a classification in caselgf The number
of possible normal forms is much higher than in caseslgf As examples, we
consider the Tzitzéica equation [7], whose ZCR is knowrtesih910, Sawada-
Kotera equation and the Kupershmidt equation.



2 Preliminaries
Let us consider a system of nonlinear differential equation
Fl(t,z,uf ... uk, ) =0, @

in two independent variablesandz, a finite number of dependent variabtésand
their derivatives.%, wherel denotes a finite symmetric multiindex oveandz.

Let J°° be an infinite-dimensional jet space such that, uk, u’; are local jet
coordinates o/*°. We have two distinguished vector fields @¢f

g O 0 g O
Dt—at"i'zultau];v Dm_@x—l_kz’;ulmaul}”
which are calledotal derivatives.Let g be a matrix Lie algebra. By a-valued
Zero curvature representatiq@CR) for (1) we mean twg-valued functions4, B
which satisfy

DiA—D,B+[A,B] =0

as a consequence of (1). L@&tbe the connected and simply connected matrix Lie
group associated witl. Then for everyG-valued functionV we define theyauge
transformationof ZCR (A, B) by the formulas

AW o=DwW-wWlew.A W,

BV =DwW -wl4+w.B - WL

As is well known,(A", B is a ZCR too, and we say that itgauge equivalent
to (A, B). R
We define a new differential operatdr;:

D,M = D, M — [A, M], DM = D;M — [B, M|

andD; = D;, --- D;,_ wherel = (i, - --i,) as usual. Acharacteristic elemenk
is ag-valued function defined in [2]. The following assertion ¢l

Proposition 2.1 ([2])
1) Gauge equivalent ZCR’s have conjugate characterisgémennts.
2) The characteristic elememit satisfies

~ [OF!
~HID <—R) =0.
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kI



If a ZCR (A, B) is gauge equivalent to another ZCR with coefficients in a
proper subalgebra af, then we say that ZCR i®ducible.Otherwise it is said to
beirreducible. A ZCR gauge equivalent to zero is callgtvial. A very important
case is a ZCR with coefficients in a non-solvable Lie algelbte simplest case
of a non-solvable Lie algebra is the algebta In [3] the following proposition is
obtained:

Proposition 2.2 Let (A, B) be an irreduciblesls-valued ZCR, letR # 0 be its
characteristic element. Then we have one of the two follgwirmal forms forR

and A :
(00 (0 a
R=(i o) 4=(u 0)

— Nilpotent case
0 —r as —aq

3 Normal forms

— Diagonal case

In this section we define the normal formgf/alued ZCR and explain the method
to find them. The main idea is taken from the first part of prajos2.1. Gauge
equivalent ZCR’s have conjugate characteristic elemémesefore we can restrict
ourselves to the characteristic elements in the Jordanaidamm. Since the gauge
transformation is a group action, it is possible to consilderstabilizer group of the
characteristic element, which is a proper subgrougrofhe stabilizer is usually
rather small (see Table 1), therefore we can compute itsraoti the matrix4 and
find the corresponding normal forms rather easily. We aimnalirig the minimal
set of normal forms. In the case of the diagonal charadeiémentR we can
achieve substantial reduction by taking into account peations of the Jordan
blocks.

In this work we distinguish betweamormal formsandseminormal formsWe
say, that we have the normal form if we have just finite numibgrossibilities of
a choice of the corresponding gauge matrix (see sectiorf Burichoice of the
corresponding gauge matrix depend on at least one arbftragfion, we say, that
we have the seminormal form. In this case we may use the @siduge freedom
to transform the matrix3.

The following table lists all possible Jordan formisof si3-matrices and the
corresponding stabilizerd’;, wherew; denote arbitrary complex numbers such
that all algebraic operations make sende.and .J, are degenerate cases .Hf
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and Js, respectively, when the two eigenvalues coincide and thedsion of the
stabilizer raises from two to four. Casds and.J, are treated at the end of this

work.

Ji =

Jo =

J3 =

Jy =

Js =

where

OHOOHOOHVOOVOOE/

0 0
)\2 0 X
0 —A1— X
0 O
A0 |3 A#£0,
0 —2\
0 O
A0 |5 Ao,
0 —2\
0 0
0 0],
0 0
0 0
0 0],
1 0

)\1 7& )‘27

Z = wi1w — Wi2wW21.

w21

0 0
w2 0 s
0 wiwy
w12 0
wye 0 |,
o z!
0 0
w1 0 ) y
0 wa
0 0
wi  ws ) )
0 wl_2
0 0
1 0],
w9 1

Table 1: Jordan forms and the corresponding stabilizers

4 Subalgebras of algebra si;

For further reference, we list here several subalgebrasg;oTwo subalgebras, b
are said to be conjugate, if there existc SL3 such thats = SbS~'. Note that
for constant matrice§ € SL3 conjugation and gauge equivalence coincide. One
obvious automorphismus 6fs is alsoA — — AT, which we calltransposition
We introduce six permutation matrices



P =

Py = , Ps=

SO R Ok, O O o O =
_ O OO O = O = O
O O R O = O = OO
I
|
_ O OO0 = OO O =
O R OO O == OO
O O = = O O O = O

The following four types of subalgebras appear in this work:

Type 1. Six 6-dimensional subalgebras consisting of tracelessiceatA of
either the form:

Lo .00 .. 0 .0 . e
A=1. . .o . . 1,1. . . LLI. .ol 1. . . [.[]o .0
0 0 . 0o . . Lo .o .0
This six subalgebras are mutually isomorphic via trangj@esor conjugation.

Type 2.Two subalgebras consisting of traceless matri¢ed either the form:

A=1|. . ol,]o0
00 ./ \o

This two subalgebras are isomorphic to the algetbsa

Type 3.Two subalgebras consisting of all lower(upper)-triangata3 traceless
matricesA and four subalgebras mutually isomorphic via conjugatibeither the
form:

.0 0\ /. 00\ /. O .\ /. . 0\ (. . . .
A=1. . O, |- - -, |- - -|[,]0 . O},]0 . O},|O

Type 4.The abelian subalgebra consisting of all diagahal3 traceless matri-
ces.



5 C&SEJl

In this section we solve the classification problem in casgh®fcharacteristic ele-
mentR whose Jordan normal form is diagonal (cdsg The diagonal Jordan nor-
mal form is unigue up to the order of the elements on the dialgae., up to conju-
gation with respect to one of the permutation maffix. . ., Ps. Given a matrixA,
the corresponding gauge equivalent matrices willbe= D, P,. P, '+ P,AP ! =
P,AP ' i=0,1,...,5 namely

ai; a2 a13 ail aiz a2
Ag= a2 a2 axs|, Ar=|a3z azz a3 |,
asz;p asz asg a21 a3 a2
azy a3 as ag a1 a3
Ay = |az a3z a3 |, Az= a2 a1 a3,
a2 aiz an az2 asr asg
azz asy as azz asz as
Ay=|a13 a1 aip|, As=|a ax a
azz a1 a2 a3 aiz ai

Remark 5.1 Note that4; is gauge equivalent td for every: = 0,1,...,5.

The following algorithm assigns a normal form to the matdixThe input is
the matrixA. Dots denote arbitrary elements.

Case 1. If there existsi = 0,1,...,5 such thatay; # 0 andass # 0 in
A = A;, then thenormal formis

Ni=]1 .
1
The gauge matrix which sendsto N} is
aééga%g 0 0
0 0 a§é3a2_11/3

One easily sees that the matFix! is unique up to the choice of cubic roots, hence
N is thenormal form(see section 3).

Case 2. Otherwise, if there exists= 0, 1,...,5 such thatuy; # 0, azo = 0
andas; # 0in A = A;, then we may assume thats = 0 as well. Indeed, if



azs # 01in A, thenas, anday; are nonzero i; = PlAPf1 and we would have
the first case. The normal form is

the corresponding gauge matrix being

aé{gaé{g 0 0
S O
0 0 a%{gaglz/g

Case 3.Otherwise, if there exists= 0,1, ...,5 such thatus; # 0, azs = 0,
az1 = 0andaqg # 0in A = A;, then we may assume that; = 0. Indeed, when
aiz #0in A, thenag; #0in A; = P4AP4_1 and nonzeraw; in A imply nonzero
azz in A;, and we would have the first case again. The normal form is

0
Ni=1|1 . 1],
00
the corresponding gauge matrix being
ag{ga;;/g 0 0
wi=| 0 a0
0 0 ey

The matrix N3 belongs to the subalgebra of Type 1.
Case 4. Otherwise, if there exists= 0,1, ...,5 such thatus; # 0, azs = 0,
a31 = 0 andass = 0in A = A;, then we obtain aeminormal form

. .0
Ni=1[1 . 0
0 0
Indeed, using the same argument as in the Case 3 we may assatmg = 0, the
corresponding gauge matrix being, for example,

asl 0 0
wi=10 1 o0
0 0 ay



However, the most general gauge matrix is

as 0 0

0 w9 0

0 0 ay
and depends on the choice of one arbitrary functign If we setw, = 1, then
we obtainWit. HenceNy is the seminormal form. The matriX; belongs to the
subalgebra of Type 2.

Case 5.1f a9y = 0 for all A;, then all the off-diagonal elements must be zero,
therefore the seminormal form is

.00
A=Ny =10 . 0
0 0

The matrix N7 belongs to the subalgebra of Type 4.
As a matter of fact, we have proved:

Theorem 5.2 In a ZCR such that its characteristic element has the diaydoa
dan normal formJ; the matrixA has one of the above normal formg, N2, N3,
or seminormal formsVi', N?. If A does not belong to a proper subalgebraséf,
then A has one of the above normal formg, N?.

Example 5.3 The Tzitzéica equation [7]:
Uty = € — e,

The corresponding ZCR, which depends on a parametgr0, is

0 0
—u, 0 m m.
A=| m w 0|, B=|0o o <
0 m 0 u m
S )

m

The matrix A belongs to Case 1 with the normal forivi'. Namely, the normal
forms of the characteristic elemeRtand the matrix4 are

-10 0 —uy 0 m?
R=|0 1 0], A= 1 wu, O
0 0 0 0 1 0



6 Case.J;

In this section we solve the classification problem for cbidstic element in
the form J; with the corresponding stabilizé#’; (see Table 1). We first find all
relevant normal forms and then we select a minimal set of abfonms which can
occur in orbits of the gauge action.

As a result we obtain the following algorithm which assignsoamal form to
the generakls matrix

ai;p a2 ai13
A= az1 a2 a23

aszy agzz —a11 — azz

Case 1.If a3 # 0, then the normal form is

o1
Ni=1|. . 0],
the corresponding gauge matrix being
ag’ 00
a23 —-1/3
Wi=|"a3 a13/ 0
a3
0 0 a2

Case 2.0Otherwise, ifa;3 = 0, ags # 0, then the normal form is

0
Ni=|. . ,
0 1
the corresponding gauge matrix being
a0 0
asi 1/3
Wi=| 2/3 a0
a33
0 0 azl?
Case 3.If a13 = 0,a32 = 0, a3 # 0, a12 # 0, then the normal form is
0 . 0
N3 = 1,



the corresponding gauge matrix being

~1/3

Q93 0 0
—Dgass + 3asai; —1/3
Wg’ = . 73 a23/ 0
3a12a23
0 0 a2l

Case 4.If a;3 = 0,a32 = 0, as3 # 0,a12 = 0, then the seminormal form is

0 0
Ny = .1,
0
the corresponding gauge matrix being
ayz’® 00
Wi=| 0o az” o
0 0 a2

The matrix V4§ belongs to the subalgebra of Type 3. Indeed, applying theyiar
tion matrix P, to matrix N3 by conjugation we obtain a lower triangular matrix.
Case 5.If a1z = 0, aszs = 0, ag3 = 0, asy 7& 0, a9 7& 0, then the normal form
is
0 . 0

10

the corresponding gauge matrix being

1/3
asl 0 0
Dy azi + 3azia11 173
W) = z 573 ag{ 0
3a12a31
—2/3
0 0 ag!

The matrix N3 belongs to the subalgebra of Type 1.
Case 6.1f a;3 = 0,a32 = 0,a93 = 0,a31 # 0,a12 = 0, then the seminormal

form is
00

10



the corresponding gauge matrix being

1/3

asy 0 0
wWe=10 ay® 0
0 0 a;?

The matrix N$ belongs to the subalgebra of Type 3.
Case 7. Otherwise, ifa;3 = 0,a3s = 0,a93 = 0,a31 = 0,a12 75 0, then the

seminormal form is
0 . 0

Ni=1|. . o],
0 0
the corresponding gauge matrix being

1 00
T_ |4 g
| ar

0 01

Obviously, N7 belongs to the subalgebra of Type 2.
Case 8. Otherwise, ifa13 = 0,a32 = 0,a93 = 0,a31 = 0,a12 = 0, then the

seminormal form is
00

N§=1. .0
0 0
Matrices of this form constitute a 3-dimensional solvahlbadgebra okls.
Whence we have proved the next theorem:

Theorem 6.1 In a ZCR such that its characteristic element has the Jordamal
form in the formJ; the matrixA has one of the above normal forivg, N3, N3, N3
or seminormal formsvy, NS, N, N8. If A does not belong to a proper subalgebra
of sl3, then A has one of the above normal formg, N2, N3.

7 CaseJ;

In this section we solve the classification problem for cbemastic element in the
form J; (see Table 1). Similarly as in the previous case, we first flhcekevant
normal forms an then we select a minimal set of them. The rdtis considered
in the same form as in the case.Bf As a result we obtain the following:

11



Case 1.If a13 # 0, then the normal form is

the corresponding gauge matrix being

1 0 0
a12
N R
W5 = a3
ai;p a2
T2y
aiz a3

Case 2.0therwise, ifa;3 = 0, a2 # 0, then normal form is

0 . 0
NE=1|. . .|,

the corresponding gauge matrix being

1 0 O
ail
— 1 0
VVE)2 = | a2 5
ail
w3 — 1
ai2

2 2 2
Where’wg = (allealg—alngan —|—a23a11 —a32a12—2a22a12a11 —algan)/a:{’Q.
Case 3.If a;3 = 0,a12 = 0, asg # 0, then normal form is

.00
NE=10 . .|,
0
the corresponding gauge matrix being
1 0 0
a2 + ai
_— 1 0
WE? = a9s 5
az2 + an
w3 — 1
a3

wherews = (ag3Dyae — a11Dgza3 — a2 Dyags + azzDyarr + 2aza23a11 +
a33a21 + 2ag3a?,)/a3s. The matrix V3 belongs to the subalgebra of Type 1.

12



Case 4.0therwise, ifa;3 = 0, a12 = 0, as3 = 0, then the seminormal form is

0 0

Matrices of this form fall to the subalgebra of Type 3.
Again we have, in fact, proved the next theorem:

Theorem 7.1 In a ZCR such that its characteristic element has the Jordamal
form J; the matrixA has one of the above normal formg , N2, N3 or seminor-
mal form N2. If A does not belong to a proper subalgebraséf, then it has one
of the above normal form&’}, N2.

Example 7.2 The Kupershmidt equation:
Ut = Uggrrr + 10UULe + 20Uz U + 20u2u$

The corresponding ZCR, which depends on a parametgr0, is

0 1 0
A=|-u 0 1],
m —u 0

the matrixB is very large, hence omitted. The matrbxbelongs to Case 2 with the
normal formN2, namely,

8 Case.J;

The following two caseg andJ, of characteristic elements are singular and the
number of parameters increase in the corresponding gbdlubgroups from two
to four (see Table 1). We begin with the classification probfer characteristic
element in the fornys.

Let K = ai3Dga93 — azgDyars + a11a13a23 — 21033 + a12a33 — azeai3ass,
L = assDgag1 — az1Dyasy + a11a32a31 + a21a3; — a12a3; — agassasi, and
R = aj3a31 + agzass.

13



Case 1.If K # 0, then the normal form is

010
Ny=1|. . 1

The corresponding gauge matfiX; is found to be

ey — 928 ey — 013
1n1=""573 12 = —573»

K2/3 K2/3

2 1

a3 K DK — Dyags — arnags + a13az;
w21 = K2/3 )
2 1

—5a13K7 " D K + Dyarg — arpags + azais

Wog = .
7273

Case 2.If K =0, L # 0, R # 0, then the normal form is

0 0
Ni=1|1 . .|,
0 1
the corresponding gauge matrix being

L2/3CL23 L2/3CL13

R R
W3 = as ass 0
L1/3 L1/3
0 0 L3

Indeed, applyindgV3 to generakls matrix A (see section 6) we obtain

KL

7 Y

i

AVE =
0 1
and we see that fak = 0 we haved"z = N2.

The normal formV3 falls to the subalgebra of Type 1.

Case 3.If K =0,L # 0, R = 0, then the normal form is

0 . 0
N3 =11 01,
0 1



the corresponding gauge matiii; is found to be

L2/3 + asiwi2

wyp=—">":"
as2
2 -1
—5a3l” Dy L + Dyasz — ar2a31 + ajiase
w12 = L1/3 5
_as31 asz
w1 =

[ S VE R

Note thatas, in the denominator ofv1; cancels out after evaluating,. L in wis.
E.g., forazs = 0 we obtain

3 2 3
l 30,31(1120,22 + aglalngagl + 2a31Dxa12
2 4/3 ’
3 (a31a12)"

w11 =

while azia12 # 0 is just a consequence &f# 0. Indeed, applyingVs to general
sls matrix A we obtain

0 . K+RC
AVE = |1 . R |,
01

for appropriateC’ and we see that fak’ = 0, R = 0 we haved": = N3.
The normal form\3 falls to the subalgebra of Type 1.

Case4.If K =0,L =0, R # 0, then the seminormal form is

00
Ny=1|0o . .|,
0 1
the corresponding gauge matrix being
azs  —aiz 0
4 as1 - 432 0
Wy=|VvR VR X
0 0 —_—
VR
Indeed, applying/VQ4 to generalkis matrix A we obtain
K
_R1/2 0
AV = | L
R3/2 ’
0 1

15



and we see that fak = 0, L = 0 we haved"? = N,
The seminormal forniV. falls to the subalgebra of Type 2.

For K = 0,L = 0, R = 0 we have three subcases:
Case 5a.If a3 # 0 orasg # 0, then the seminormal form is

.00
Nye=1|. . .
0
the corresponding gauge matrix being
ags  —ais 0
W25a _ w21 w22 0

1

wW21a13 + W22aG23

0 0

for arbitrary nonzero parameters, andwss. Indeed, applyingV¢ to generakis
matrix A we obtain

K

W21a13 + W22a23

AW = .
R

(wara13 + w22a23)2

and we see that fok = 0, R = 0 we haveA"2* = N3¢, Note, that in this case
L= K(agg/a13)2 orL = K(a31/023)2.
The seminormal forniV3¢ falls to the subalgebra of Type 3.

Case 5b.If a3y # 0 orazs # 0, then the seminormal form is
Nb=10 . o],
0

the corresponding gauge matrix being

w1l w12 0
Wb — | 31 as2 (1)
0 0

w11a32 — W12a31

16



for arbitrary nonzero parameteis; andw». Indeed, applying?$? to generaklz
matrix A we obtain

W5b L
AW — . R(wyiazp —wizaz) |,
w1032 — W12a3]1

0

and we see that fof = 0, R = 0 we haveA":" = N3®. Note, that in this case
K= L(agg/a31)2 orkK = L(a13/032)2.
The seminormal formiV3? falls to the subalgebra of Type 3.

Case 5c¢.If a13 = 0,a93 = 0,a31 = 0, a3z = 0, then the seminormal form is

.. 0
N¥=1. . 0],
0 0

the corresponding gauge matrix being just the unit matrbe $eminormal form
N3¢ falls to the subalgebra of Type 2.
Again we have, in fact, proved the next theorem:

Theorem 8.1 In a ZCR such that its characteristic element has the diabdoa
dan normal formJ, the matrixA has one of the above normal formg, N3, N3

or seminormal formsVi, N3, N3°, N5¢. If A does not belong to a proper subal-
gebra ofsls, then A has the above normal fornN%.

9 CaseJs

In this section we solve the classification problem for cbigmastic element in the
form J, (see Table 1).
Let M = a12Dya13 — a13Dya12 — 2a12a13a22 + a3a3y — aspals — arjaizars
andN = ajoDyazy — azaDyats + 2a11a12a32 — 31035 + a13a39 + a12a20a32.
Case 1.If a1 # 0, M # 0, then the normal form is

17



The corresponding gauge matiii; is obtained in the following way:

2/3
a / Dywi 4 awy
w1 = 12 Wy =
= = =
vV M ’ ai19 ’
_ wia13 . a3z
w3 = : Wy = — 3 .
ai2 wiai2

Case 2.If a;3 # 0, M = 0, N # 0, then the normal form is

0o . 0

The corresponding gauge matfiX? is obtained in the following way:

3
w v N w D, w1 + apjqwr
1= ~"9/3> 2=
aqy ai2
wi1a13 a32
w3 = s Wy = ——>5 .
a2 wya12

The normal formV# falls to the subalgebra of Type 1.
Case 3.1f a;9 # 0, M = 0, N = 0, then the seminormal form is

the corresponding gauge matrix being

1 0 0
N Tt
Wi=1 an a2
_®2

a2

The seminormal fornV; falls to th subalgebra of Type 2.
Case 4.If a;3 = 0,a13 # 0, azs # 0, then the normal form is
0 01
Nj = 0 0
0

18



The corresponding gauge matfi;} is obtained in the following way:

w 1 w D.ai3 — 3a13a22 w D.ai3 — 3a11a13
1= "1/3° 3= 173 ’ 4= 173 ’
a13 3azzay; 3ayh

1/3. 2 -1
~w3Dya13 Dyws — azpa)3 w3 — anwz — 2aw3 + 230,53
2
3ais ai3

Case 5.1f a;2 = 0,a13 = 0, a3z # 0, then the seminormal form is

w9 =

0 0
Ny =1|. . .|,
010
the corresponding gauge matrix being
a0 0
5 azi 13 2Dgags + 3agzann + 3agzaz:

Wi=1| =23 %2 — 5/3
a3a a3,
0 0 az"?

The seminormal forniVy falls to the subalgebra of Type 1.
Case 6.1f a;2 = 0,a13 # 0, a3z = 0, then the seminormal form is

00 1
Ny=1|. . 0],

the corresponding gauge matrix being

—-1/3
a3 0 0
a23 ool
6 _ EYE) 13
W4 = a13
—Dga13 + 3ai3ai; 2/3
473 0 a3
3a /
13

The seminormal fornVy falls to the subalgebra of Type 1.
Case 7.1f a1 = 0,a13 = 0,a32 = 0, asz # 0, then the seminormal form is

0 0

19



the corresponding gauge matrix being

1 0 0

wi—| o0 10
21
a23

The seminormal formV/ falls to the subalgebra of Type 3. Indeed, applying the
permutation matrix?; to N by conjugation we obtain a lower triangular matrix.
Case 8.1f a1 = 0,a13 = 0, a32 = 0, as3 = 0, then the seminormal form is

0 0

The seminormal forniV§ falls to the subalgebra of Type 3.
Again we have, in fact, proved the next theorem:

Theorem 9.1 In a ZCR such that its characteristic element has the Jordamal
form .J, the matrixA has one of the above normal formg , N2, N or seminor-
mal formsN3, N2, ..., N§. If A does not belong to a proper subalgebrasof,
then A has one of the normal forms}, N¢.

Example 9.2 Sawada-Kotera equation:
Ut = Ugggar + 5uuacacac + 5uacua:a: + 5u2uac

The corresponding ZCR, which depends on a parametgr0, is

0 -1 0
A=|u 0 -—-m|,
1 0 0

the matrixB is very large. The matriX belongs to Case 1 with the normal form
Nj, namely,

0 -1 0
A= U 0 1
-m 0 0
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