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Abstract

We find normal forms of irreducible sl,,-valued zero curvature rep-
resentations (ZCR) with the characteristic element possessing a single
Jordan cell.
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1 Introduction

In nineties, Marvan [3] and independently Sakovich [7] introduced charac-
teristic elements of zero-curvature representations [12] of integrable PDE
and gave various applications [1, 2, 5, 8, 9]. The most important property is
that gauge equivalent zero-curvature representations have conjugated cha-
racteristic elements. This opens way to classification of zero curvature rep-
resentations based on the Jordan normal form of the characteristic element.
In the simplest case of sly-valued zero curvature representations Marvan [4]
showed that only two classes exist which do not belong to a solvable subal-
gebra. The case of sl3 exhibits a similar pattern (Sebestyén [11]): for every
sl3-matrix in Jordan normal form there are finitely many normal forms of
zero-curvature representation irreducible to a solvable subalgebra. In this
paper we extend these results to sl,-valued zero curvature representations
with the characteristic element possessing a single Jordan cell.



2 Preliminaries

Let us consider a system of nonlinear differential equations
Fl(t,zuf, . uk, .. ) =0, (1)

in two independent variables ¢t and x, a finite number of dependent variables
uF and their derivatives u’} , where I denotes a finite symmetric multiindex
over t and x. Moreover, we consider an infinite-dimensional jet space J*°
such that ¢, z, u, u’} are local jet coordinates on it. We have two distin-
guished vector fields on J*°: D, and D,, which are usual total derivatives.

Let Dy = D, --- D;,, where D;, denotes Dy or D;. Then ), ; D;Fl =0
represent an equation manifold £ as a submanifold of J*°. 7

Let g be a matrix Lie algebra. A g-valued zero curvature representation
(ZCR) [12] for equations (1) is a pair (A, B) of g-valued functions on J>°,
which satisfy

DiA—D,B+[A,B] =0, (2)

when restricted to &£.
By (2) we mean that there exists g-valued functions K/ on J* such that

DA—D,B+[A, B =Y D/F'- K] (3)
1,1

Let G be the connected and simply connected matrix Lie group associ-
ated with g. Then for every G-valued function W on £ we define the gauge
transformation of ZCR (A, B) by the formulas

AV = DWW -WTlew A WL (4)
BY = DW-wl4w.B-W L (5)

Then (A", B") is a ZCR again, and we say that it is gauge equivalent to
ZCR (A, B). ~
We consider the differential operator D; defined on J*° by

D,M = D,M —[A,M],  D,M = D,M — B, M|,
where M is arbitrary G-matrix, 13] = ﬁil e 132-“ and l/jiL is Z/jx or ﬁt.
Definition 1 ([4],[7]) Let g-matrices K/ satisfy (3). Put

Cr=> (-D)K].
I

Then C, restricted to &, is the characteristic element for ZCR (A, B).



Proposition 1 ([3],[7]) Gauge equivalent ZCR’s have conjugate character-
istic elements.

Definition 2 ([6]) If a ZCR (A, B) is gauge equivalent to another ZCR with
values in a proper subalgebra of g, then we say that the ZCR is reducible.
Otherwise it is said to be drreducible. A ZCR gauge equivalent to zero is
called trivial.

3 Normal forms with respect to gauge equivalence

Consider an sl,-valued ZCR (A, B). Using Definition 1 we compute its
characteristic element C. Without loss of generality we can suppose that C
is in Jordan normal form. If not, then we transform C' by conjugation to its
Jordan normal form J and simultaneously we transform the ZCR (A, B) by
gauge transformation. Following Proposition 1, we consider the stabilizer
group Hj of the Jordan normal form J with respect to conjugation. The
stabilizer H; is a proper subgroup of SL,. We compute its action on the
matrix A and find the corresponding normal forms.

In this work we consider ZCR’s for which the Jordan normal form J of
the corresponding characteristic element C' consists of a single cell. Then J
and an arbitrary matrix W of the corresponding stabilizer subgroup H; are

00 ... 00 1 0 .. 0 0
1 0 ... 00 w1 1 ... 0 0
J=101 ... 0 0 . W= W9 w1 ... 0 0
00 ... 10 Wp—-1 Wp—2 ... W1 1

Here w; are parameters of (n — 1)-dimensional subgroup H;. Denoting

by wé elements of the matrix W we have wy = wf_ i for all [. For example

2,3 _ N ) _
’LUl —w2—...—wn71_w1'
We denote

A=A = DW-Wliw.A - W

s

a; = Dywg-w]+wg-ap - wj,

where @ (resp. w') are elements of A (resp. W) and u?j- (resp. w;) are

J J
elements of W~ (resp. parameters of W—!in Hj),

= _1\TJ1,, 02 Jr
= Z (1) wigwyy .- wy
1<r<n—1
J=Jjo<j1<-<jr=t



wj = > iy, iy (w1)" (w2) 2 . (), (6)
1<r<y
li1+2i9+~+rip=j
ir 0
where I';, ;. is a nonzero integer. For r = j is I'g 01 = —1.
The principle is to annihilate as many elements a;. as possible by solving
equations ZL\; = 0 for appropriate elements wy. The next lemma shows when
we can solve these equations purely algebraically.

Lemma 1 Let aé- # 0,4 < j be an element of A such that all elements
af, 1<k<i,n>12>j except a;'» are zero. Then a;i_t = aéwt + f;_t for all
t=14,...,57—1 and&\;“ :a§wt+g§+t forallt=n+1—j,...,n—1. The
i+t

eTpressions f]’fft,gj do not depend on wg, s > t.

The next picture shows two possible situations in Lemma 1.

n==~06

@ denotes a linear polynomial in wy, independent of wg, s > t.

Proof. Let aé- = 0 satisfy the assumption of Lemma 1. For shortness
we denote r =j —t forallt =4,...,5 — 1.

n n n
~ 7 — 7 a -0
a, = E Dzwa'wr—i—g E We - ag - Wy
a=1 a=1 ﬂ:l
i—1 i g
7 — 7 [
= g waa-wr—i—g g wa-aﬁ-wf.
a=r a=1 p=r
The only summand to contain w; is w; - a} T a; . w;ft = a} - and

using (6) we see that w; is the parameter with the highest index.



Let s=i+tforallt=n+1—j,...,n—4. Then

n n n
~s s -« s a -0
@ = D Dew @i+ Y wh-aj -
a=1

<

a=18=1
S S n
_ S g S g
S N R R RS D WA R
a=j a=i f=j
The only summand to contain w; is w; - a§ . u_J? = wf” . aj- = wy - az. and w;
is the parameter with the highest index. O

We use one obvious automorphism of sl,,:
A —P-AT . P71 = A%,

i.e., transposition A — — AT followed by conjugation by permutation matrix
P,

00 ... 01

00 ... 10
P=1:: o]

01 0 0

1 0 0 0

which can be described by the rule: al — —a$, 7 = (n+1)—1l,s = (n+1)—k.
In this case the Jordan normal form of the characteristic element of the ZCR
(A*, B¥) is again J.

Definition 3 We say that the ZCR (A, B) is equivalent with a ZCR (C, D)
and write (A4, B) ~ (C, D), if (A, B) is gauge equivalent with the ZCR (C, D)
or with the ZCR (C*, D*).

Proposition 2 The relation ~ is reflexive, symmetric and transitive.

Proof. Let we have two ZCRs (A, B) and (C, D). It is enough to show
the proof for one matrix of a ZCR. The reflexivity is trivial. By simple
computation we obtain the nontrivial part of symmetry: if AW = C* then
CV = A% ie., (AV =C.

Let we have a third ZCR (FE, F'). For the nontrivial parts of transitivity
we have: if AWt = C* and CW2 = E* then AW1Ws ' = E. If AW = C* and
CW2 = E then AW1W2' — p~, 0



Definition 4 A type is a subset N of the set {(i,7) | i = 1,...,n,j =
1,...,n}. A matrix A is said to be of type N if for every couple (i,5) € N

we have a} =0.

Construction 1 Let ((i1,71),-- -, (im, jm)) be an m-tuple of couples of nat-
ural numbers , 1 < m < |n/2], satisfying the following inequalities:

1:i1<i2<---<im§{n/2j,
1<ji<je<-<jm<mn,
la < jJo fora=1,...,m,
Jm > [n/2],
Jm <n—1and j, < [n/2] fora=1,...,m—1and m > 1.

We construct the type N;ll ;:: as the union of the sets:

Uo = {(kD) |k <ia,l > ja} \{(iasja)},
V = {(k,n)|k<n+1—1i},
Py = {(ie,@) |¢=1,..",ja — Ja-1}
Qo = {(paja) ’p:n—i—l—(ia_H—ia),---,n},
where o = 1,...,m, jo := 1, ipm41 = n+1—jn and iy = min(ia, n+1=jm).

If/i\a+1 — i < 1 then Q, = 0.

The next picture shows one of the possible cases in sl7:

J J2
1 ° o [ |e ° ° ° Uiub UV
1

O |e °

2 T

2

. 02{.

. Cl{o . 02{0

i2 | & ® {N;

Here o ¢ Nﬁ;;, O = (ia, Ja), further ro, = #P, and ¢, = #Q,.



Definition 5 We say, that a ZCR (A, B) with single cell of Jordan normal
form of its characteristic element is in a normal form, if the matrix A is of
one of the types Nﬁ;z from Construction 1. For shortness, we denote the

17---7im

normal form by the same symbol N ;1 g

Theorem 1 Let (A, B) be an irreducible sl,,-valued ZCR with Jordan nor-
mal form of the corresponding characteristic element equal to J. Then A
either belongs to one of the subalgebras

Ly={(a}) €sly|a;=0foralli=1,....k,j=k+1,...,n}, (7)

where k =1,...,n— 1, or is equivalent to a matriz in the normal form.

4 Proof of Theorem 1

This section is dedicated to the proof of Theorem 1. We introduce a pro-
cedure of computation of the gauge matrix W wich sends the matrix A to
the corresponding normal form by gauge transformation. The idea is based
on multiple usage of Lemma 1. The procedure is a sequence of three sim-
ple algorithms. In Algorithm 1 we choose between A and A* to lower the
number of normal forms. In Algorithm 2 we establish the m-tuple from
Construction 1. Algorithm 3 computes the parameters of the gauge matrix
W and returns the normal form N = AW If Algorithm 2 stop with
A in a subalgebra then we escape the rest of the procedure and we do not
compute the normal form.

Algorithm 1 Choose between A and A*
Input: A € sl,. Output: A.
1: Find the highest column index k in the first row of A such that aj # 0;
if all elements in the first row are zero then put k = 0
2: Find the highest column index [ in the first row of A* such that a*} # 0;
if all elements in the first row are zero then put [ =0
if £ <! then
A= A*
end if
return A




Algorithm 2 Find the m-tuple ((i1,71),. .-, (¢m,Jm))
Input: A € sl,. Output: m-tuple ((i1,71),- -, (im,Jm))-

1: m:=0,i:=0and jp:=1

2: repeat

3 T i=1y

4 repeat

5: ri=r+1

6 Find the highest column index k in the r-th row of A such that

ay, # 0; if all elements in the r-th row are zero then put k = 0
until k& > j,,, or r > [n/2]
o m:=m+1
9 (im,Jm) == (1, k)
10:  if %y, > Jm OT 4y, > Jm—1 then

* 3

11: STOP: A in subalgebra L;,  or L; _;
12:  end if

13: until j,, > |n/2|

14: return ((i1,51), -+, (4myJm))

Algorithm 3 Compute the gauge matrix W and the normal form N;ll ’:_‘:’;Z

Input: m-tuple ((i1,71),- .., (im,Jm)). Output: N;ll;:
1 jor=1 41 :=n+1—Jn

2: fora=1,...,mdo

3 fort=jo-1,...,ja — 1 do

4 solve 6;&% = 0 for w; and insert w; back into W
5 end for

6: end for

7. fora=m,...,1 do

8 if i, >n+1-— 7, then

9 lo:=n+1—7Jn

10:  else

11: fort=n+1—1i441,...,n — i do

12: solve a;'f;” = 0 for w¢ and insert w; back into W
13: end for

14:  end if

15: end for

6 Njiog = AV

17: return N;ll;::




Algorithm 2 always ends. Indeed, if in all tuples (iq,jo), @ = 1,...,m
we have i, < jo, then the algorithm stops at the latest in the |n/2]-th row
of A since jp, > lm, i€, jm > |[n/2]. Moreover, all elements a;'.‘; satisfy
assumption of Lemma 1. If ,,, > j,, for some m then af =0 for all & < iy,
l > jm and by (7) A belongs to the subalgebra L; . If i, > jmn—1 then
af =0 for all k < iy, | > jm—1 and by (7) A€ L;, 1.

To prove correctness of Algorithm 3 we must, firstly, show that ¢ runs
through the sequence 1,...,n — 1 without repetitions. But t = jg,...,j1 —
1,751,592 — 1, ..., Jm—1,---,Jm — 1 where jo = 1. Further t = n+ 1 —
Utlye- -y —ig,n+1—dp,....on—1p_1,...,n+1—14y,...,n— i for some
k,m>k>1, where n +1—ix41 = jm and 73 = 1.

Secondly, we must show that the corresponding ZZ;‘; _; (resp. a;'f;“) in
step 4 (resp. 12) depends on w; for exactly one ¢, moreover linearly. But
this follows from Lemma 1, since in step 4 we have j,_1 > i, and in step
12 we have i4+1 < jo. In all above equations wy is the only parameter since
parameters with lower indices have been already solved and inserted back
in previous steps.

As a conclusion we can say that our algorithms find for every sl, matrix A

the corresponding normal form, or stop when A belongs to some subalgebra
L;.

Remark 1 If the matrix A belongs to one of the subalgebras L;, and B
does not, then we can apply the procedure of computation of a normal form
to the matrix B using (5) instead of (4).

Remark 2 The normal forms constructed in this paper are not the only
possible. Lemma 1 allows us to construct different normal forms. But every
normal form of the other type will be equivalent (in sense of Definition 3)
with some normal form of our type.

Remark 3 Normal forms of a ZCR with the characteristic element pos-
sessing a single Jordan cell provide a base for the classification of all ZCRs.
This, however, requires further research.



5 Examples
Example 1 The set of normal forms for sl.

000000 a 00000 a 0

N} = , Ni=
0
0000 a 00 000 a 000
0 0
0
N} = , Nil= :
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0 0
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00 a 00 0 O 0 0 0
00 0 ag 0 az 0
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Example 2 The decision graph of normal forms for sl.

’ 1,2 1,2
Ly .N25 N34

1,2 1,3
Ly _Nz 4 N3

2,3,4 L3

Example 3 The Kupershmidt equation, n = 3. This example was already
published in [11]. The corresponding normal form is N.
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