# On normal forms of irreducible $\mathfrak{sl}_n$ -valued zero curvature representations

Peter Sebestyén

Mathematical Institute, Silesian University in Opava, Na Rybníčku 1, 794 01 Opava, Czech Republic e-mail: Peter.Sebestyen@math.slu.cz

#### Abstract

We find normal forms of irreducible  $\mathfrak{sl}_n$ -valued zero curvature representations (ZCR) with the characteristic element possessing a single Jordan cell.

**Keywords:** Zero curvature representation, gauge transformation, normal form, nonlinear partial differential equation, jet space.

#### 1 Introduction

In nineties, Marvan [3] and independently Sakovich [7] introduced characteristic elements of zero-curvature representations [12] of integrable PDE and gave various applications [1, 2, 5, 8, 9]. The most important property is that gauge equivalent zero-curvature representations have conjugated characteristic elements. This opens way to classification of zero curvature representations based on the Jordan normal form of the characteristic element. In the simplest case of  $\mathfrak{sl}_2$ -valued zero curvature representations Marvan [4] showed that only two classes exist which do not belong to a solvable subalgebra. The case of  $\mathfrak{sl}_3$  exhibits a similar pattern (Sebestyén [11]): for every  $\mathfrak{sl}_3$ -matrix in Jordan normal form there are finitely many normal forms of zero-curvature representation irreducible to a solvable subalgebra. In this paper we extend these results to  $\mathfrak{sl}_n$ -valued zero curvature representations with the characteristic element possessing a single Jordan cell.

## 2 Preliminaries

Let us consider a system of nonlinear differential equations

$$F^{l}(t, x, u^{k}, \dots, u_{I}^{k}, \dots) = 0, \tag{1}$$

in two independent variables t and x, a finite number of dependent variables  $u^k$  and their derivatives  $u_I^k$ , where I denotes a finite symmetric multiindex over t and x. Moreover, we consider an infinite-dimensional jet space  $J^{\infty}$  such that t, x,  $u^k$ ,  $u_I^k$  are local jet coordinates on it. We have two distinguished vector fields on  $J^{\infty}$ :  $D_t$  and  $D_x$ , which are usual total derivatives.

Let  $D_I = D_{i_1} \cdots D_{i_\kappa}$ , where  $D_{i_\iota}$  denotes  $D_x$  or  $D_t$ . Then  $\sum_{l,I} D_I F^l = 0$  represent an equation manifold  $\mathcal{E}$  as a submanifold of  $J^{\infty}$ .

Let  $\mathfrak{g}$  be a matrix Lie algebra. A  $\mathfrak{g}$ -valued zero curvature representation (ZCR) [12] for equations (1) is a pair (A, B) of  $\mathfrak{g}$ -valued functions on  $J^{\infty}$ , which satisfy

$$D_t A - D_x B + [A, B] = 0, (2)$$

when restricted to  $\mathcal{E}$ .

By (2) we mean that there exists  $\mathfrak{g}$ -valued functions  $K_I^I$  on  $J^{\infty}$  such that

$$D_t A - D_x B + [A, B] = \sum_{l, I} D_I F^l \cdot K_l^I.$$
 (3)

Let G be the connected and simply connected matrix Lie group associated with  $\mathfrak{g}$ . Then for every G-valued function W on  $\mathcal{E}$  we define the gauge transformation of ZCR (A, B) by the formulas

$$A^{W} := D_{x}W \cdot W^{-1} + W \cdot A \cdot W^{-1}, \tag{4}$$

$$B^W := D_t W \cdot W^{-1} + W \cdot B \cdot W^{-1}. \tag{5}$$

Then  $(A^W, B^W)$  is a ZCR again, and we say that it is gauge equivalent to ZCR (A, B).

We consider the differential operator  $\widehat{D}_I$  defined on  $J^{\infty}$  by

$$\widehat{D}_x M = D_x M - [A, M], \qquad \widehat{D}_t M = D_t M - [B, M],$$

where M is arbitrary G-matrix,  $\widehat{D}_I = \widehat{D}_{i_1} \cdots \widehat{D}_{i_\kappa}$  and  $\widehat{D}_{i_\iota}$  is  $\widehat{D}_x$  or  $\widehat{D}_t$ .

**Definition 1** ([4],[7]) Let  $\mathfrak{g}$ -matrices  $K_l^I$  satisfy (3). Put

$$C_l = \sum_{I} (-\widehat{D})_I K_l^I.$$

Then  $C_l$ , restricted to  $\mathcal{E}$ , is the *characteristic element* for ZCR (A, B).

**Proposition 1** ([3],[7]) Gauge equivalent ZCR's have conjugate characteristic elements.

**Definition 2** ([6]) If a ZCR (A, B) is gauge equivalent to another ZCR with values in a proper subalgebra of  $\mathfrak{g}$ , then we say that the ZCR is *reducible*. Otherwise it is said to be *irreducible*. A ZCR gauge equivalent to zero is called *trivial*.

# 3 Normal forms with respect to gauge equivalence

Consider an  $\mathfrak{sl}_n$ -valued ZCR (A, B). Using Definition 1 we compute its characteristic element C. Without loss of generality we can suppose that C is in Jordan normal form. If not, then we transform C by conjugation to its Jordan normal form J and simultaneously we transform the ZCR (A, B) by gauge transformation. Following Proposition 1, we consider the stabilizer group  $H_J$  of the Jordan normal form J with respect to conjugation. The stabilizer  $H_J$  is a proper subgroup of  $SL_n$ . We compute its action on the matrix A and find the corresponding normal forms.

In this work we consider ZCR's for which the Jordan normal form J of the corresponding characteristic element C consists of a single cell. Then Jand an arbitrary matrix W of the corresponding stabilizer subgroup  $H_J$  are

$$J = \begin{pmatrix} 0 & 0 & \dots & 0 & 0 \\ 1 & 0 & \dots & 0 & 0 \\ 0 & 1 & \dots & 0 & 0 \\ \vdots & \vdots & \ddots & \vdots & \vdots \\ 0 & 0 & \dots & 1 & 0 \end{pmatrix}, \quad W = \begin{pmatrix} 1 & 0 & \dots & 0 & 0 \\ w_1 & 1 & \dots & 0 & 0 \\ w_2 & w_1 & \dots & 0 & 0 \\ \vdots & \vdots & \ddots & \vdots & \vdots \\ w_{n-1} & w_{n-2} & \dots & w_1 & 1 \end{pmatrix}.$$

Here  $w_j$  are parameters of (n-1)-dimensional subgroup  $H_J$ . Denoting by  $w_j^i$  elements of the matrix W we have  $w_k = w_{l-k}^l$  for all l. For example  $w_1^2 = w_2^3 = \ldots = w_{n-1}^n = w_1$ .

We denote

$$\widehat{A} := A^W = D_x W \cdot W^{-1} + W \cdot A \cdot W^{-1}$$
$$\widehat{a}_i^i = D_x w_s^i \cdot \overline{w}_i^s + w_s^i \cdot a_r^s \cdot \overline{w}_i^r,$$

where  $\widehat{a}_{j}^{i}$  (resp.  $w_{j}^{i}$ ) are elements of  $\widehat{A}$  (resp. W) and  $\overline{w}_{j}^{i}$  (resp.  $\overline{w}_{j}$ ) are elements of  $W^{-1}$  (resp. parameters of  $W^{-1}$  in  $H_{J}$ ),

$$\bar{w}_{j}^{i} = \sum_{\substack{1 \leq r \leq n-1\\ j=j_{0} < j_{1} < \dots < j_{r}=i}} (-1)^{r} w_{j_{0}}^{j_{1}} w_{j_{1}}^{j_{2}} \dots w_{j_{r-1}}^{j_{r}},$$

$$\bar{w}_j = \sum_{\substack{1 \le r \le j \\ 1i_1 + 2i_2 + \dots + ri_r = j \\ i_r \ne 0}} \Gamma_{i_1, \dots, i_r}(w_1)^{i_1}(w_2)^{i_2} \dots (w_r)^{i_r}, \tag{6}$$

where  $\Gamma_{i_1,\dots,i_r}$  is a nonzero integer. For r=j is  $\Gamma_{0,\dots,0,1}=-1$ .

The principle is to annihilate as many elements  $\hat{a}_{j}^{i}$  as possible by solving equations  $\hat{a}_{j}^{i} = 0$  for appropriate elements  $w_{k}$ . The next lemma shows when we can solve these equations purely algebraically.

**Lemma 1** Let  $a_j^i \neq 0, i < j$  be an element of A such that all elements  $a_l^k, 1 \leq k \leq i, n \geq l \geq j$  except  $a_j^i$  are zero. Then  $\widehat{a}_{j-t}^i = a_j^i w_t + f_{j-t}^i$  for all  $t = i, \ldots, j-1$  and  $\widehat{a}_j^{i+t} = a_j^i w_t + g_j^{i+t}$  for all  $t = n+1-j, \ldots, n-i$ . The expressions  $f_{j-t}^i, g_j^{i+t}$  do not depend on  $w_s, s \geq t$ .

The next picture shows two possible situations in Lemma 1.



 $(w_t)$  denotes a linear polynomial in  $w_t$ , independent of  $w_s$ , s > t.

*Proof.* Let  $a_j^i \neq 0$  satisfy the assumption of Lemma 1. For shortness we denote r = j - t for all  $t = i, \dots, j - 1$ .

$$\widehat{a}_{r}^{i} = \sum_{\alpha=1}^{n} D_{x} w_{\alpha}^{i} \cdot \bar{w}_{r}^{\alpha} + \sum_{\alpha=1}^{n} \sum_{\beta=1}^{n} w_{\alpha}^{i} \cdot a_{\beta}^{\alpha} \cdot \bar{w}_{r}^{\beta}$$

$$= \sum_{\alpha=r}^{i-1} D_{x} w_{\alpha}^{i} \cdot \bar{w}_{r}^{\alpha} + \sum_{\alpha=1}^{i} \sum_{\beta=r}^{j} w_{\alpha}^{i} \cdot a_{\beta}^{\alpha} \cdot \bar{w}_{r}^{\beta}.$$

The only summand to contain  $w_t$  is  $w_i^i \cdot a_j^i \cdot \bar{w}_r^j = a_j^i \cdot \bar{w}_{j-t}^j = a_j^i \cdot \bar{w}_t$  and using (6) we see that  $w_t$  is the parameter with the highest index.

Let s = i + t for all  $t = n + 1 - j, \dots, n - i$ . Then

$$\widehat{a}_{j}^{s} = \sum_{\alpha=1}^{n} D_{x} w_{\alpha}^{s} \cdot \overline{w}_{j}^{\alpha} + \sum_{\alpha=1}^{n} \sum_{\beta=1}^{n} w_{\alpha}^{s} \cdot a_{\beta}^{\alpha} \cdot \overline{w}_{j}^{\beta}$$

$$= \sum_{\alpha=j}^{s} D_{x} w_{\alpha}^{s} \cdot \overline{w}_{j}^{\alpha} + \sum_{\alpha=i}^{s} \sum_{\beta=j}^{n} w_{\alpha}^{s} \cdot a_{\beta}^{\alpha} \cdot \overline{w}_{j}^{\beta}.$$

The only summand to contain  $w_t$  is  $w_i^s \cdot a_j^i \cdot \bar{w}_j^j = w_i^{i+t} \cdot a_j^i = w_t \cdot a_j^i$  and  $w_t$  is the parameter with the highest index.

We use one obvious automorphism of  $\mathfrak{sl}_n$ :

$$A \mapsto -P \cdot A^{\top} \cdot P^{-1} =: A^*,$$

i.e., transposition  $A \mapsto -A^{\top}$  followed by conjugation by permutation matrix P,

$$P = \begin{pmatrix} 0 & 0 & \dots & 0 & 1 \\ 0 & 0 & \dots & 1 & 0 \\ \vdots & \vdots & & \vdots & \vdots \\ 0 & 1 & \dots & 0 & 0 \\ 1 & 0 & \dots & 0 & 0 \end{pmatrix},$$

which can be described by the rule:  $a_k^l \mapsto -a_r^s$ , r = (n+1)-l, s = (n+1)-k. In this case the Jordan normal form of the characteristic element of the ZCR  $(A^*, B^*)$  is again J.

**Definition 3** We say that the ZCR (A, B) is equivalent with a ZCR (C, D) and write  $(A, B) \sim (C, D)$ , if (A, B) is gauge equivalent with the ZCR (C, D) or with the ZCR  $(C^*, D^*)$ .

**Proposition 2** The relation  $\sim$  is reflexive, symmetric and transitive.

*Proof.* Let we have two ZCRs (A, B) and (C, D). It is enough to show the proof for one matrix of a ZCR. The reflexivity is trivial. By simple computation we obtain the nontrivial part of symmetry: if  $A^W = C^*$  then  $C^W = A^*$ , i.e.,  $(A^*)^{W^{-1}} = C$ .

Let we have a third ZCR (E,F). For the nontrivial parts of transitivity we have: if  $A^{W_1}=C^*$  and  $C^{W_2}=E^*$  then  $A^{W_1\cdot W_2^{-1}}=E$ . If  $A^{W_1}=C^*$  and  $C^{W_2}=E$  then  $A^{W_1\cdot W_2^{-1}}=E^*$ .

**Definition 4** A type is a subset N of the set  $\{(i,j) \mid i=1,\ldots,n,j=1,\ldots,n\}$ . A matrix A is said to be of type N if for every couple  $(i,j) \in N$  we have  $a_i^i = 0$ .

**Construction 1** Let  $((i_1, j_1), \ldots, (i_m, j_m))$  be an m-tuple of couples of natural numbers,  $1 \le m \le \lfloor n/2 \rfloor$ , satisfying the following inequalities:

$$\begin{split} 1 &= i_1 < i_2 < \dots < i_m \leq \lfloor n/2 \rfloor, \\ 1 &< j_1 < j_2 < \dots < j_m \leq n, \\ i_\alpha &< j_\alpha \text{ for } \alpha = 1, \dots, m, \\ j_m &> \lfloor n/2 \rfloor, \\ j_m &\leq n-1 \text{ and } j_\alpha \leq \lfloor n/2 \rfloor \text{ for } \alpha = 1, \dots, m-1 \text{ and } m > 1. \end{split}$$

We construct the type  $N_{j_1,\dots,j_m}^{i_1,\dots,i_m}$  as the union of the sets:

$$\begin{array}{lll} U_{\alpha} & := & \{(k,l) \mid k \leq i_{\alpha}, l \geq j_{\alpha}\} \setminus \{(i_{\alpha},j_{\alpha})\}, \\ V & := & \{(k,n) \mid k < n+1-i_{1}\}, \\ P_{\alpha} & := & \{(i_{\alpha},q) \mid q=1,\ldots,j_{\alpha}-j_{\alpha-1}\}, \\ Q_{\alpha} & := & \{(p,j_{\alpha}) \mid p=n+1-(\hat{i}_{\alpha+1}-i_{\alpha}),\ldots,n\}, \end{array}$$

where  $\alpha = 1, \ldots, m, j_0 := 1, i_{m+1} := n+1-j_m$  and  $\hat{i}_{\alpha} := min(i_{\alpha}, n+1-j_m)$ . If  $\hat{i}_{\alpha+1} - i_{\alpha} < 1$  then  $Q_{\alpha} = \emptyset$ .

The next picture shows one of the possible cases in  $\mathfrak{sl}_7$ :



Here  $\bullet \in N_{j_1,j_2}^{i_1,i_2}$ ,  $\square_{\alpha} = (i_{\alpha},j_{\alpha})$ , further  $r_{\alpha} = \#P_{\alpha}$  and  $c_{\alpha} = \#Q_{\alpha}$ .

**Definition 5** We say, that a ZCR (A,B) with single cell of Jordan normal form of its characteristic element is in a *normal form*, if the matrix A is of one of the types  $N_{j_1,\ldots,j_m}^{i_1,\ldots,i_m}$  from Construction 1. For shortness, we denote the normal form by the same symbol  $N_{j_1,\ldots,j_m}^{i_1,\ldots,i_m}$ .

**Theorem 1** Let (A, B) be an irreducible  $\mathfrak{sl}_n$ -valued ZCR with Jordan normal form of the corresponding characteristic element equal to J. Then A either belongs to one of the subalgebras

$$L_k = \{(a_j^i) \in \mathfrak{sl}_n \mid a_j^i = 0 \text{ for all } i = 1, \dots, k, j = k+1, \dots, n\},$$
 (7)

where k = 1, ..., n - 1, or is equivalent to a matrix in the normal form.

#### 4 Proof of Theorem 1

This section is dedicated to the proof of Theorem 1. We introduce a procedure of computation of the gauge matrix W wich sends the matrix A to the corresponding normal form by gauge transformation. The idea is based on multiple usage of Lemma 1. The procedure is a sequence of three simple algorithms. In Algorithm 1 we choose between A and  $A^*$  to lower the number of normal forms. In Algorithm 2 we establish the m-tuple from Construction 1. Algorithm 3 computes the parameters of the gauge matrix W and returns the normal form  $N_{j_1,\ldots,j_m}^{i_1,\ldots,i_m} := A^W$ . If Algorithm 2 stop with A in a subalgebra then we escape the rest of the procedure and we do not compute the normal form.

#### **Algorithm 1** Choose between A and $A^*$

Input:  $A \in \mathfrak{sl}_n$ . Output: A.

- 1: Find the highest column index k in the first row of A such that  $a_k^1 \neq 0$ ; if all elements in the first row are zero then put k = 0
- 2: Find the highest column index l in the first row of  $A^*$  such that  $a^*_l \neq 0$ ; if all elements in the first row are zero then put l = 0
- 3: if k < l then
- 4:  $A := A^*$
- 5: **end if**
- 6: **return** A

## **Algorithm 2** Find the *m*-tuple $((i_1, j_1), \ldots, (i_m, j_m))$

```
Input: A \in \mathfrak{sl}_n. Output: m-tuple ((i_1, j_1), \dots, (i_m, j_m)).
 1: m := 0, i_0 := 0 and j_0 := 1
 2: repeat
       r := i_m
 3:
       repeat
 4:
         r := r + 1
 5:
         Find the highest column index k in the r-th row of A such that
 6:
         a_k^r \neq 0; if all elements in the r-th row are zero then put k=0
 7:
       until k > j_m or r > \lfloor n/2 \rfloor
       m := m + 1
 8:
       (i_m, j_m) := (r, k)
 9:
       if i_m \geq j_m or i_m > j_{m-1} then
10:
11:
         STOP: A in subalgebra L_{i_m} or L_{i_m-1}
       end if
12:
13: until j_m > |n/2|
14: return ((i_1, j_1), \dots, (i_m, j_m))
```

# **Algorithm 3** Compute the gauge matrix W and the normal form $N^{i_1,\ldots,i_m}_{j_1,\ldots,j_m}$

```
Input: m-tuple ((i_1, j_1), \ldots, (i_m, j_m)). Output: N_{j_1, \ldots, j_m}^{i_1, \ldots, i_m}
 1: j_0 := 1, i_{m+1} := n + 1 - j_m
 2: for \alpha = 1, ..., m do
         for t = j_{\alpha-1}, \ldots, j_{\alpha} - 1 do
            solve \hat{a}_{i_{\alpha}-t}^{i_{\alpha}}=0 for w_t and insert w_t back into W
 4:
         end for
 5:
 6: end for
 7: for \alpha = m, ..., 1 do
         if i_{\alpha} \geq n + 1 - j_m then
 8:
            i_{\alpha} := n + 1 - j_m
 9:
10:
11:
            for t = n + 1 - i_{\alpha+1}, \dots, n - i_{\alpha} do
                solve \hat{a}_{j_{\alpha}}^{i_{\alpha}+t}=0 for w_t and insert w_t back into W
12:
13:
         end if
14:
15: end for
16: N^{i_1,...,i_m}_{j_1,...,j_m} := A^W
17: return N_{j_1,...,j_m}^{i_1,...,i_m}
```

Algorithm 2 always ends. Indeed, if in all tuples  $(i_{\alpha}, j_{\alpha})$ ,  $\alpha = 1, \ldots, m$  we have  $i_{\alpha} < j_{\alpha}$ , then the algorithm stops at the latest in the  $\lfloor n/2 \rfloor$ -th row of A since  $j_m > i_m$ , i.e.,  $j_m > \lfloor n/2 \rfloor$ . Moreover, all elements  $a_{j_{\alpha}}^{i_{\alpha}}$  satisfy assumption of Lemma 1. If  $i_m \geq j_m$  for some m then  $a_l^k = 0$  for all  $k \leq i_m$ ,  $l > j_m$  and by (7) A belongs to the subalgebra  $L_{i_m}$ . If  $i_m > j_{m-1}$  then  $a_l^k = 0$  for all  $k < i_m$ ,  $l > j_{m-1}$  and by (7)  $A \in L_{i_m-1}$ .

To prove correctness of Algorithm 3 we must, firstly, show that t runs through the sequence  $1, \ldots, n-1$  without repetitions. But  $t=j_0, \ldots, j_1-1, j_1, \ldots, j_2-1, \ldots, j_{m-1}, \ldots, j_m-1$  where  $j_0=1$ . Further  $t=n+1-i_{k+1}, \ldots, n-i_k, n+1-i_k, \ldots, n-i_{k-1}, \ldots, n+1-i_1, \ldots, n-i_1$  for some  $k, m \geq k \geq 1$ , where  $n+1-i_{k+1}=j_m$  and  $i_1=1$ .

Secondly, we must show that the corresponding  $\hat{a}^{i_{\alpha}}_{j_{\alpha}-t}$  (resp.  $\hat{a}^{i_{\alpha}+t}_{j_{\alpha}}$ ) in step 4 (resp. 12) depends on  $w_t$  for exactly one t, moreover linearly. But this follows from Lemma 1, since in step 4 we have  $j_{\alpha-1} \geq i_{\alpha}$  and in step 12 we have  $i_{\alpha+1} \leq j_{\alpha}$ . In all above equations  $w_t$  is the only parameter since parameters with lower indices have been already solved and inserted back in previous steps.

As a conclusion we can say that our algorithms find for every  $\mathfrak{sl}_n$  matrix A the corresponding normal form, or stop when A belongs to some subalgebra  $L_i$ .

**Remark 1** If the matrix A belongs to one of the subalgebras  $L_i$ , and B does not, then we can apply the procedure of computation of a normal form to the matrix B using (5) instead of (4).

Remark 2 The normal forms constructed in this paper are not the only possible. Lemma 1 allows us to construct different normal forms. But every normal form of the other type will be equivalent (in sense of Definition 3) with some normal form of our type.

**Remark 3** Normal forms of a ZCR with the characteristic element possessing a single Jordan cell provide a base for the classification of all ZCRs. This, however, requires further research.

# 5 Examples

**Example 1** The set of normal forms for  $\mathfrak{sl}_7$ .

$$N_7^1 = \begin{pmatrix} 0 & 0 & 0 & 0 & 0 & a_7^1 \\ \vdots & \vdots & \ddots & \vdots & \ddots & \vdots \\ \vdots & \vdots & \ddots & \ddots & \ddots & \vdots \\ \vdots & \vdots & \ddots & \ddots & \ddots & \vdots \\ \vdots & \vdots & \ddots & \ddots & \ddots & \vdots \\ \vdots & \vdots & \ddots & \ddots & \ddots & \vdots \end{pmatrix}, \quad N_6^1 = \begin{pmatrix} 0 & 0 & 0 & 0 & a_6^1 & 0 \\ \vdots & \vdots & \ddots & \ddots & \ddots & \vdots \\ \vdots & \vdots & \ddots & \ddots & \ddots & \vdots \\ \vdots & \vdots & \ddots & \ddots & \ddots & \vdots \\ \vdots & \vdots & \ddots & \ddots & \ddots & \vdots \\ \vdots & \vdots & \ddots & \ddots & \ddots & \vdots \\ \vdots & \vdots & \ddots & \ddots & \ddots & \vdots \\ \vdots & \vdots & \ddots & \ddots & \ddots & \vdots \\ \vdots & \vdots & \ddots & \ddots & \ddots & \vdots \\ \vdots & \vdots & \ddots & \ddots & \ddots & \vdots \\ \vdots & \vdots & \ddots & \ddots & \ddots & \vdots \\ \vdots & \vdots & \ddots & \ddots & \ddots & \vdots \\ \vdots & \vdots & \ddots & \ddots & \ddots & \vdots \\ \vdots & \vdots & \ddots & \ddots & \ddots & \vdots \\ \vdots & \vdots & \ddots & \ddots & \ddots & \vdots \\ \vdots & \vdots & \ddots & \ddots & \ddots & \vdots \\ \vdots & \vdots & \ddots & \ddots & \ddots & \vdots \\ \vdots & \vdots & \ddots & \ddots & \ddots & \vdots \\ \vdots & \vdots & \ddots & \ddots & \ddots & \vdots \\ \vdots & \vdots & \ddots & \ddots & \ddots & \vdots \\ \vdots & \vdots & \ddots & \ddots & \ddots & \vdots \\ \vdots & \vdots & \ddots & \ddots & \ddots & \vdots \\ \vdots & \vdots & \ddots & \ddots & \ddots & \vdots \\ \vdots & \vdots & \ddots & \ddots & \ddots & \vdots \\ \vdots & \vdots & \ddots & \ddots & \ddots & \vdots \\ \vdots & \vdots & \ddots & \ddots & \ddots & \vdots \\ \vdots & \vdots & \ddots & \ddots & \ddots & \vdots \\ \vdots & \vdots & \ddots & \ddots & \ddots & \vdots \\ \vdots & \vdots & \ddots & \ddots & \ddots & \vdots \\ \vdots & \vdots & \ddots & \ddots & \ddots & \vdots \\ \vdots & \vdots & \ddots & \ddots & \ddots & \vdots \\ \vdots & \vdots & \ddots & \ddots & \ddots & \vdots \\ \vdots & \vdots & \ddots & \ddots & \ddots & \vdots \\ \vdots & \vdots & \ddots & \ddots & \ddots & \vdots \\ \vdots & \vdots & \ddots & \ddots & \ddots & \vdots \\ \vdots & \ddots & \ddots & \ddots & \ddots & \vdots \\ \vdots & \vdots & \ddots & \ddots & \ddots & \vdots \\ \vdots & \vdots & \ddots & \ddots & \ddots & \vdots \\ \vdots & \vdots & \ddots & \ddots & \ddots & \vdots \\ \vdots & \vdots & \ddots & \ddots & \ddots & \vdots \\ \vdots & \vdots & \ddots & \ddots & \ddots & \vdots \\ \vdots & \vdots & \ddots & \ddots & \ddots & \vdots \\ \vdots & \vdots & \ddots & \ddots & \ddots & \vdots \\ \vdots & \vdots & \ddots & \ddots & \ddots & \vdots \\ \vdots & \vdots & \ddots & \ddots & \ddots & \vdots \\ \vdots & \vdots & \ddots & \ddots & \ddots & \vdots \\ \vdots & \vdots & \ddots & \ddots & \ddots & \vdots \\ \vdots & \vdots & \ddots & \ddots & \ddots & \vdots \\ \vdots & \vdots & \ddots & \ddots & \ddots & \vdots \\ \vdots & \vdots & \ddots & \ddots & \ddots & \vdots \\ \vdots & \vdots & \ddots & \ddots & \ddots & \vdots \\ \vdots & \vdots & \ddots & \ddots & \ddots & \vdots \\ \vdots & \vdots & \ddots & \ddots & \ddots & \vdots \\ \vdots & \vdots & \ddots & \ddots & \ddots & \vdots \\ \vdots & \vdots & \ddots & \ddots & \ddots & \vdots \\ \vdots & \vdots & \ddots & \ddots & \ddots & \vdots \\ \vdots & \vdots & \ddots & \ddots & \ddots & \vdots \\ \vdots & \vdots & \ddots & \ddots & \ddots & \vdots \\ \vdots & \vdots & \ddots & \ddots & \ddots & \vdots \\ \vdots & \ddots & \ddots & \ddots & \ddots & \vdots \\ \vdots & \vdots & \ddots & \ddots & \ddots & \vdots \\ \vdots & \vdots & \ddots & \ddots & \ddots & \vdots \\ \vdots & \vdots & \ddots & \ddots & \ddots & \vdots \\ \vdots & \vdots & \ddots & \ddots & \ddots & \vdots \\ \vdots & \vdots & \ddots & \ddots & \ddots & \vdots \\ \vdots & \vdots & \ddots & \ddots & \ddots & \vdots \\ \vdots & \vdots & \ddots & \ddots & \ddots & \vdots \\ \vdots & \ddots & \ddots & \ddots & \ddots & \vdots \\ \vdots & \vdots & \ddots & \ddots & \ddots & \vdots \\ \vdots & \vdots & \ddots & \ddots & \ddots & \vdots \\ \vdots & \vdots & \ddots & \ddots & \ddots & \ddots & \vdots \\ \vdots & \vdots & \ddots & \ddots & \ddots & \ddots & \vdots \\ \vdots & \vdots & \ddots & \ddots & \ddots & \ddots & \vdots \\ \vdots & \vdots & \ddots & \ddots & \ddots & \ddots & \vdots \\ \vdots & \vdots & \ddots & \ddots & \ddots & \ddots & \vdots \\ \vdots & \vdots & \ddots & \ddots & \ddots & \ddots & \ddots & \vdots \\ \vdots & \vdots & \ddots & \ddots & \ddots$$

$$N_{3,5}^{1,3} = \begin{pmatrix} 0 & 0 & a_3^1 & 0 & 0 & 0 & 0 \\ 0 & \cdot & \cdot & \cdot & 0 & 0 & 0 & 0 \\ 0 & 0 & \cdot & \cdot & a_5^3 & 0 & 0 \\ \cdot & \cdot & \cdot & \cdot & \cdot & \cdot & 0 \\ \cdot & \cdot & \cdot & \cdot & \cdot & \cdot & \cdot \\ \cdot & \cdot & 0 & \cdot & \cdot & \cdot & \cdot \\ \cdot & \cdot & 0 & \cdot & \cdot & \cdot & \cdot \end{pmatrix}, N_{3,4}^{1,3} = \begin{pmatrix} 0 & 0 & a_3^1 & 0 & 0 & 0 & 0 \\ \cdot & \cdot & \cdot & 0 & 0 & 0 & 0 \\ 0 & \cdot & \cdot & a_4^3 & 0 & 0 & 0 \\ 0 & \cdot & \cdot & a_4^3 & 0 & 0 & 0 \\ \cdot & \cdot & \cdot & \cdot & \cdot & \cdot & \cdot \\ \cdot & \cdot & 0 & \cdot & \cdot & \cdot & \cdot \\ \cdot & \cdot & 0 & \cdot & \cdot & \cdot & \cdot \\ \cdot & \cdot & 0 & 0 & \cdot & \cdot & \cdot \end{pmatrix},$$

$$N_{2,3,5}^{1,2,3} = \begin{pmatrix} 0 & a_2^1 & 0 & 0 & 0 & 0 & 0 \\ 0 & \cdot & a_3^2 & 0 & 0 & 0 & 0 \\ 0 & 0 & \cdot & \cdot & a_5^3 & 0 & 0 \\ \cdot & \cdot & \cdot & \cdot & \cdot & \cdot & 0 \\ \cdot & \cdot & \cdot & \cdot & \cdot & \cdot & 0 \\ \cdot & \cdot & \cdot & \cdot & \cdot & \cdot & \cdot \\ \cdot & 0 & 0 & \cdot & \cdot & \cdot & \cdot \end{pmatrix}, N_{2,3,4}^{1,2,3} = \begin{pmatrix} 0 & a_2^1 & 0 & 0 & 0 & 0 & 0 \\ 0 & \cdot & a_3^2 & 0 & 0 & 0 & 0 & 0 \\ 0 & \cdot & \cdot & a_3^3 & 0 & 0 & 0 & 0 \\ 0 & \cdot & \cdot & a_4^3 & 0 & 0 & 0 & 0 \\ \cdot & 0 \\ \cdot & 0 \\ \cdot & \cdot \\ \cdot & 0 & 0 & 0 & \cdot & \cdot & \cdot & \cdot \end{pmatrix}.$$

**Example 2** The decision graph of normal forms for  $\mathfrak{sl}_7$ .



**Example 3** The Kupershmidt equation, n = 3. This example was already published in [11]. The corresponding normal form is  $N_2^1$ .

# Acknowledgements

The support from the grant MSM 4781305904 and GA ČR 201/04/0538 is gratefully acknowledged.

#### References

- [1] A. Karasu (Kalkanlı), A. Karasu and S.Yu. Sakovich, A strange recursion operator for a new integrable system of coupled Korteweg–de Vries equations, *Acta Appl. Math.* 83, 85 (2004).
- [2] I.S. Krasil'shchik and M. Marvan, Coverings and integrability of the Gauss-Mainardi-Codazzi equations, *Acta Appl. Math.* **56**, 217 (1999).
- [3] M. Marvan, On zero curvature representations of partial differential equations, in: *Differential Geometry and Its Applications* Proc. Conf. Opava, Czechoslovakia, 1992 (online ELibEMS http://www.emis.de/proceedings), 103 (1993).
- [4] M. Marvan, A direct procedure to compute zero-curvature representations. The case sl<sub>2</sub>, in: Secondary Calculus and Cohomological Physics, Proc. Conf. Moscow 1997 (online ELibEMS http://www.emis.de/proceedings/SCCP97), 10 (1998).
- [5] M. Marvan, Scalar second order evolution equations possessing an irreducible sl2-valued zero curvature representation, *J. Phys. A: Math. Gen.* **35**, 9431 (2002).
- [6] M. Marvan, Reducibility of zero curvature representations with application to recursion operators, *Acta Appl. Math.* **83**, 39 (2004).
- [7] S. Yu. Sakovich, On zero-curvature representations of evolution equations, J. Phys. A: Math. Gen. 28, 2861 (1995).
- [8] S. Yu. Sakovich. On integrability of one third-order nonlinear evolution equation, *Phys. Lett. A* **314**, no. 3, 232 (2003).
- [9] S. Yu. Sakovich. Cyclic bases of zero-curvature representations: five illustrations to one concept, *Acta Appl. Math.* **83**, no. 1–2, 69 (2004).
- [10] J. Satsuma and D.J. Kaup, A Bäcklund transformation for a higher order Korteweg-de Vries equation, J. Phys. Soc. Japan 43, no. 2, 692 (1977).
- [11] P. Sebestyén, Normal forms of irreducible  $\mathfrak{sl}_3$ -valued zero curvature representations, *Rep. Math. Phys.* **55**, no. 3, 435 (2005).
- [12] V.E. Zakharov and A.B. Shabat, Integrirovanie nelinejnykh uravnenij matematicheskoj fiziki metodom obratnoj zadachi rasseyaniya II, Funkc. Anal. Prilozh. 13, no. 3, 13 (1979).