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BUTCHER SERIES FOR EVOLUTIONS ON

CLIFFORD ALGEBRAS

Alžběta Haková ∗

Abstract

Numerical solution methods for dynamical systems are known to be
organized by the algebra of rooted trees which also allows to manipulate
them due to its Hopf algebra structure. The particular case of evolution
on Clifford algebras is discussed.

1 Introduction

The aim of this paper is to discuss the solution of the differential equation
dx(s)/ds = F [x(s)] which is known as a flow of a vector field. There is a special
numerical method which solves this differential equation and it is known as
the Runge-Kutta method. In 1972 John Butcher published an article where he
analysed general Runge-Kutta methods on the basis of the algebra of rooted
trees. He also defined sums over trees which form another type of algorithms
solving our differential equation. These sums are now called B-series in honour
of Butcher.

We assume that the function F in the equation is a commutator in generators
of the Clifford algebra and we compare the solution that provides Runge-Kutta
methods and B-series.

The paper is organized as follows. In Section 2 we introduce notations and
necessary concepts concerning Clifford algebras, rooted trees and Butcher series.
In Section 3 we show that B-series and Runge-Kutta methods coincide in the
case of a second order commutator on the right hand side and in Section 4 we
discuss the situation in the fourth order case.

∗The research was supported, in part, by the grant 201/03/H152 from the Grant Agency
of the Czech Republic, and the MSM 192400002 from the Czech Ministry of Education.
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2 Definitions and known results

2.1 Clifford algebras

Let V be an arbitrary real vector space upon which g : V ×V → R is a positive-
definite inner product. By a Clifford map on V we shall mean a real-linear map
f : V → B into a unital associative complex algebra B such that if v ∈ V then
f(v)2 = g(v, v)1. We define a complex Clifford algebra over V to be a unital
associative complex algebra A together with a Clifford map Φ : V → A satisfy-
ing the following universal mapping property: if f : V → B is any Clifford map,
then there exists a unique algebra map F : A → B such that F ◦ Φ = f . We
denote Cl(V, g) a complex Clifford algebra over V .

Theorem 2.1.1([6], Theorem 1.1.1) The complex Clifford algebra Cl(V, g) is
generated by its real subspace V satisfying the Clifford relations

x, y ∈ V ⇒ xy + yx = 2g(x, y)1. (1)

2.2 Rooted trees

A rooted tree is a graph with a designated vertex called a root such that there
is a unique path from the root to any other vertex in the tree (see [7]). In what
follows, we will use several operations and functions on trees.

If t1, t2, ..., tk are trees, t = B+(t1, t2, ..., tk) is defined as the tree obtained
by creating a new vertex r and by joining the roots of t1, t2, ..., tk to r, which
becomes the root of t. This operation is called merging of trees.

We denote by |t| the number of vertices of a tree t.
The tree factorial t! is defined recursively as

�! = 1, (2)
B+(t1, t2, ..., tk)! = |B+(t1, t2, ..., tk)|t1!t2!...tk!. (3)

α(t) is defined as the number of times tree t appears in N |t|(1).
Assume we want to solve the equation

dx(s)
ds

= F [x(s)], (4)

where x(s0) = x0, s is a real, x is in R
N and F is a smooth function from R

N to
R

N with components f i(x). This is the equation of flow of a vector field.
If we use the following notation

f i = f i[x(s)] (5)

f i
j1j2...jk

=
∂kf i

∂xj1 ...∂xjk

[x(s)] (6)
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we can write the derivatives of the i-th component of x(s) with respect to s:

dxi(s)
ds

= f i = � (7)

d2xi(s)
ds2

= f i
jf

j = �

�
(8)

d3xi(s)
ds3

= f i
jkf jfk + f i

jf
j
kfk = �

�� ��
+

�

�

�

(9)

d4xi(s)
ds4

= f i
jklf

jfkf l + 3f i
jkf j

l fkf l + f i
jf

j
klf

kf l + f i
jf

j
kfk

l f l = (10)

�

�� ���
+ 3

�

�� ��

�

+
�

�

�� ��

+
�

�

�

�

(11)

This one-to-one relation between a rooted tree with n vertices and a term
dnx(s)/dsn was established by Arthur Cayley in 1857 (see [4]).

We call elementary differentials (see [3])the δt defined recursively for each
rooted tree t by

δi
� = f i (12)

δi
t = f i

j1j2...jk
δj1
t1 δj2

t2 ...δjk
tk

where t = B+(t1, t2, ..., tk). (13)

2.3 Butcher series

To solve a flow equation dx(s)/ds = F [x(s)], some efficient numerical algorithms
are known as Runge-Kutta methods. They are determined by an m×m matrix
a and an m-dimensional vector b. At each step a vector xn is defined as a
function of the previous value xn−1 by:

Xi = xn−1 + h

m∑
j=1

aijF (Xj), (14)

xn = xn−1 + h

m∑
j=1

bjF (Xj), (15)

where i ranges from 1 to m.

In [2] Butcher proved that the solution of the corresponding equations

Xi(s) = x0 + (s − s0)
m∑

j=1

aijF (Xj(s)), (16)

x(s) = x0 + (s − s0)
m∑

j=1

bjF (Xj(s)) (17)
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is given by

Xi(s) = x0 +
∑

t

(s − s0)|t|

|t|! α(t)
m∑

j=1

aijφj(t)δt(s0), (18)

x(s) = x0 +
∑

t

(s − s0)|t|

|t|! α(t)t!φ(t)δt(s0). (19)

These series over trees are called B-series in honour of John Butcher (see
[5]). The homomorphism φ is defined recursively as a function of a and b, for
i = 1, ..., m:

φi( �) = 1, (20)

φi(B+(t1, ..., tk)) =
∑

j1,...,jk

aij1 ...aijk
φj1(t1)...φjk

(tk), (21)

φ(t) =
m∑

i=1

biφi(t). (22)

For more see [1].

3 An example in the second order case

In this section, we assume that the right hand side of (4) is a commutator
in generators of the Clifford algebra and show that in this case Runge-Kutta
methods and B-series coincide.

Let V be a vector space, y1, y2, y3, y4 its orthonormal basis. By Cl(V, g) we
denote a Clifford algebra over V , g(yi, yj) = δi

j . We want to solve the following
equation:

dyi

ds
= [y1y2 − y2y1, yi] (23)

= 4y1g(y2, yi) − 4y2g(y1, yi). (24)

Therefore

dy1

ds
= −4y2,

dy2

ds
= 4y1 and

dy3

ds
=

dy4

ds
= 0. (25)

The classical 4-th order Runge-Kutta method is given by

k1 = f(xn, yn), (26)

k2 = f

(
xn +

hn

2
, yn +

hn

2
k1

)
, (27)
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k3 = f

(
xn +

hn

2
, yn +

hn

2
k2

)
, (28)

k4 = f(xn+1, yn + hnk3), (29)

yn+1 = yn + hn
k1 + 2k2 + 2k3 + k4

6
(30)

Using this algorithm we receive the solution

y(s) = y1(cos(4s)) − y2(sin(4s)). (31)

Now, we want to know what trees may appear in sums for B-series:

� : f1 =
dy1

ds
= −4y2

f2 =
dy2

ds
= 4y1

f3 = f4 = 0

�

�
: f1

1 = f2
2 = 0

f2
1 = −f1

2 = 4

�

�� ��
,

�

�� ���
: f i

jk = f i
jkl = 0 for all i, j, k ∈ {1, 2, 3, 4}.

It turns out that in B-series will be only following trees

�,
�

�
,

�

�

�

,

�

�

�

�

.

The B-series for initial conditions y1(0) = y1, y2(0) = y2 and aij , bj repre-
senting the classical 4-th order Runge-Kutta method are

y(s) = y1

(
1 − (4s)2

2!
+

(4s)4

4!

)
+ y2

(
−4s +

(4s)3

3!

)
, (32)

y(s) = y1

(
4s − (4s)3

3!

)
+ y2

(
1 − (4s)2

2!
+

(4s)4

4!

)
. (33)

Therefore

y(s) = y1(cos(4s)) − y2(sin(4s)), (34)
y(s) = y1(sin(4s)) + y2(cos(4s)). (35)

We see that B-series and Runge-Kutta methods coincide.
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4 The 4-th order case

In this section we discuss the solution of our differential equation in the case
that function F is a 4-th order commutator in generators of the Clifford algebra.

Let y1, y2, ..., yn be an orthonormal basis of V , g(yi, yj) = δi
j . We want to

solve the equation

dyi

ds
= [y1y2y3y4, yi]. (36)

Then

dy1

ds
= −2y2y3y4,

dy2

ds
= 2y1y3y4, (37)

dy3

ds
= −2y1y2y4,

dy4

ds
= 2y1y2y3, (38)

dyi

ds
= 0 for all i > 4. (39)

Trees available in B-series are

� : f i =
dyi

ds
, (40)

�

�
: f1

2 = −2y3y4, f2
1 = 2y3y4, f2

3 = −2y1y4 (41)
f3
1 = −2y2y4, f1

3 = 2y2y4, f3
2 = 2y1y4, (42)

f1
4 = −2y2y3, f4

1 = 2y2y3, f3
4 = −2y1y2, (43)

f4
2 = −2y1y3, f2

4 = 2y1y3, f4
3 = 2y1y2, (44)

⇒ f i
j = −f j

i for i, j ∈ {1, 2, ..., n}. (45)

�

�� ��
: f1

23 = 2y4, f1
32 = −2y4, (46)

f1
34 = 2y2, f1

43 = −2y2, (47)
f2
31 = 2y4, f2

13 = −2y4, etc. (48)
⇒ f i

jk = −f i
jk for i, j ∈ {1, 2, ..., n}. (49)

We conclude that these trees have the following surprising proposition

�

�� ��

�

= −
�

�� ��

�

(50)
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because

�

�� ��

�

= f i
jkfk

l f jf l, (51)

�

�� ��

�

= f i
jkf j

l fkf l = f i
kjf

k
l f jf l. (52)

(53)

Now, we want to compute the Runge-Kutta method so first of all it is nec-
essary to look for a Taylor expansion of a function on generators of a Clifford
algebra

y =
n∑

k=0
i1<i2<...<ik

ai1i2...ik
yi1yi2 ...yik (54)

It’s easy to prove that

dyi

ds
yj = −yi dyj

ds
(55)

Using (55) and (36)-(38) we conclude that

dy

ds
= 2(−y1 + y2 − y3 + y4 − y2y3y4 + y1y3y4 − y1y2y4 + y1y2y3)R, (56)

d2y

ds2
= 4(y1 + y2 + y3 + y4 + y2y3y4 + y1y3y4 + y1y2y4 + y1y2y3)R, (57)

d3y

ds3
= 8(−y1 + y2 − y3 + y4 − y2y3y4 + y1y3y4 − y1y2y4 + y1y2y3)R, (58)

d4y

ds4
= 16(y1 + y2 + y3 + y4 + y2y3y4 + y1y3y4 + y1y2y4 + y1y2y3)R, (59)

where

R =
n−4∑
k=0

4<i1<i2<...<ik

ai1i2...ik
yi1yi2 ...yik . (60)

A 4-th order Runge-Kutta method is given by

y(s + h) = y(s) + b1k1 + b2k2 + b3k3 + b4k4, (61)
where k1 = hf(y), (62)

k2 = hf(y + a1k1), (63)
k3 = hf(y + a2k1 + a3k2), (64)
k4 = hf(y + a4k1 + a5k2 + a6k3). (65)
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In our case is

f(y) =
dy

ds
. (66)

Therefore

y(s + h) = y(s) +
dy

ds
(b1h + b2h + b3h + b4h) + (67)

d2y

ds2
h2(a1b2 + a2b3 + a3b3 + a4b4 + a5b4 + a6b4) + (68)

d3y

ds3
h3(b3a1a3 + b4a1a5 + b4a2a6 + b4a3a6) + (69)

d4y

ds4
h4(b4a1a3a6). (70)

If we compare this with the Taylor expansion

y(s + h) = y(s) + h
dy

ds
+

h2

2!
d2y

ds2
+

h3

3!
d3y

ds3
+

h4

4!
d4y

ds4
(71)

we conclude

1) 1 = b1 + b2 + b3 + b4 (72)

2)
1
2

= a1b2 + a2b3 + a3b3 + a4b4 + a5b4 + a6b4 (73)

3)
1
6

= b3a1a3 + b4a1a5 + b4a2a6 + b4a3a6 (74)

4)
1
24

= b4a1a3a6 (75)

This leads to a classical 4-th order Runge-Kutta method

b1 =
1
6
, b2 =

1
3
, b3 =

1
3
, b4 =

1
6
, (76)

a1 =
1
2
, a3 =

1
2
, a6 = 1, a2 = a4 = a5 = 0. (77)
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on the subject of this work, his advice and patience.

8



References

[1] Ch.Brouder: Runge-Kutta methods and renormalization.
hep-th/9904014,1999.

[2] J.C.Butcher:Coefficients for the study of Runge-Kutta integration pro-
cesses. J.Austral.Math.Soc., 3:185-201,1963.

[3] J.C.Butcher:The numerical analysis of ordinary differential equations.
Wiley, Chichester, 1987.

[4] A.Cayley:On the theory of the analytical forms called trees. Phil. Mag.,
13:172-176, 1857.

[5] E.Hairer, S.P.Norsett, G.Wanner:Solving ordinary differential equations
I. Springer, Berlin, second edition, 1993.

[6] R.J.Plymen, P.L.Robinson:Spinors in Hilbert space.

[7] A.Tucker:Apllied combinatorics. Wiley, New York, 1980.
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