
Preprint Series in Global Analysis

Preprint GA 5/2002, Mathematical Institute

Silesian University in Opava, Czech Republic

June 2002, pp. 8
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Jana Šeděnková

Abstract

The r-th order variational sequence is the quotient sequence of the
De Rham sequence on the r-th jet prolongation of a fibered manifold,
factored through its contact subsequence. In this paper, the first order
variational sequence on a fibered manifold with one-dimensional base
is considered. A new representation of all quotient spaces as some
spaces of (global) forms is given. The factorization procedure is based
on a modification of the interior Euler operator, used in the theory of
(infinite) variational bicomplexes.

1 Introduction

The aim of this paper is to extend some recent results on the structure of
variational sequences in mechanics (Krupka [7, 8]).

In [7] an invariant description of the classes in the “variational” terms
of the sequence was given (lagrangians, Euler-Lagrange forms, Helmholtz-
Sonin forms). Analogous results were obtained for the higher order field
theory by Krbek, Musilová, and Kašparová [4, 5]. Musilová and Krbek [10]
found a solution of the problem of the reconstruction of forms from their
(invariant) classes for the “variational” terms in higher order mechanics.

In this paper we show that similar results can be obtained and substan-
tially extended by means of the techniques known in the theory of (infinite)
variational bicomplexes. We use a slight (finite order) modification of an
operator I, called by Anderson the interior Euler operator (see Anderson
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[1], and Kuperschmidt [9], Dedecker and Tulczyjew [3], Bauderon [2], where
this operator was denoted by τ+, τ and D∗ respectively). Our I is defined
on forms on the underlying fibered manifold; we show that the factorization
induced by I yealds exactly the first order variational sequence in mechan-
ics. In this way we obtain an invariant description of all, not only the
“variational”, terms in the variational sequence.

Throughout this paper the standard notation of the theory of variational
sequences in mechanics is used (see Krupka [7]). For generalities on the cal-
culus of variations on fibered spaces related to the concept of the variational
sequence, we refer to [1, 6, 9].

2 The variational sequence and its representations

Let π : Y → X be a fibered manifold over a one-dimensional base X,
dimY = m+1, let JrY be the r-jet prolongation of Y , and let πr,s : JrY →
JsY , where 0 ≤ s ≤ r, be the canonical jet projections. Let Ωr

k be the direct
image of the sheaf of smooth k-forms over JrY by the jet projection πr,0,
where k ≥ 0. Denote

Ωr
0,c = {0}, Ωr

k,c = ker pk−1, Θr
k = Ωr

k,c + dΩr
k−1,c,

where k ≥ 1, and dΩr
k−1,c is the image sheaf of Ωr

k−1,c by d. Then for every
open set W ⊂ Y , Ωr

kW (resp. Ωr
k,cW ) is the Abelian group of k-forms (resp.

k-contact k-forms) on W r = (πr,0)−1(W ), dΩr
k−1,cW is the Abelian group

of forms which can be locally expressed as differentials of (k − 1)-contact
(k − 1)-forms on W r, and Θr

kW is a subgroup of Ωr
kW . (Recall that a form

ρ on JrY is said to be contact if it vanishes along the r-jet prolongation Jrγ
of every section γ of Y .)

We get a sequence

0 → Θr
1 → Θr

2 → Θr
3 → . . . → Θr

M → 0 (1)

in which all arrows denote the exterior differentiation d, and M = mr + 1.
The sequence (1) is an exact subsequence of the De Rham sequence

0 → RY → Ωr
0 → Ωr

1 → Ωr
2 → . . . → Ωr

N−1 → Ωr
N → 0 (2)

where N = dimJrY = 1 + m(r + 1). The quotient sequence

0 → RY → Ωr
0 → Ωr

1/Θ
r
1 → Ωr

2/Θ
r
2 → . . .

. . . → Ωr
M/Θr

M → Ωr
M+1 → . . . → Ωr

N−1 → Ωr
N → 0

(3)
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is also exact. (3) is called the r-th order variational sequence. The class of a
differential form ρ ∈ Ωr

kW in the variational sequence (3) is denoted by [ρ].
For every ρ ∈ Ω1

k+1W there exists a unique decomposition

(π2,1)∗ρ = pkρ + pk+1ρ, (4)

where pkρ denotes the k-contact component of ρ (p0ρ = hρ denotes the
horizontal component of ρ).

Let (V, ψ), ψ = (t, qσ) be a fibered chart on Y and let (V 3, ψ3), ψ3 =
(t, qσ, q̇σ, q̈σ,

...
qσ) be the associated fibered chart on J3Y . We set

Ξ =
∂

∂t
+ q̇σ

∂

∂qσ
+ q̈σ

∂

∂q̇σ
+
...
qσ

∂

∂q̈σ
. (5)

Ξ is a vector field on V 3. If ρ ∈ Ω1
k+1V , k ≥ 1, we define

I(V,ψ)(ρ) = 1
kω

α ∧ [i ∂
∂qα

pkρ− ∂Ξ i ∂
∂q̇α

pkρ],

= pkρ− 1
k∂Ξ(ωα ∧ i ∂

∂q̇α
pkρ).

(6)

For k = 0 and ρ ∈ Ω1
1, we define

I(V,ψ)(ρ) = hρ.

Note that the form I(V,ψ)(ρ) depends only on the k-contact (k+1)-form
pkρ.

Lemma. Let (V, ψ), ψ = (t, qσ), (V̄ , ψ̄), ψ = (t̄, q̄σ) be two fibered charts
on Y such that V ∩ V̄ �= 0. Then for every ρ ∈ Ω1

k+1(V ∩ V̄ ), k ≥ 0,

I(V,ψ)(ρ) = I(V̄ ,ψ̄)(ρ). (7)

Proof. We prove the Lemma by a direct calculation. We use the fol-
lowing transformation formulas

ω̄σ =
∂q̄σ

∂qα
ωα, Ξ̄ =

dt

dt̄
Ξ + Fα ∂

∂
...
qα

,

∂

∂ ˙̄qσ
=

∂q̇α

∂ ˙̄qσ
∂

∂q̇α
+

∂q̈α

∂ ˙̄qσ
∂

∂q̈α
+

∂
...
qα

∂ ˙̄qσ
∂

∂
...
qα

,
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where Fα are functions of t, qσ, q̇σ, q̈σ,
...
qσ. We also use the identity

∂gξfη = fg∂ξη + d(fg)iξη + giξ(df ∧ η),

where f, g are functions, ξ is a vector field and η is a differential form.
Then by definition,

I(V̄ ,ψ̄)(ρ) = pkρ− 1
k∂Ξ̄(ω̄σ ∧ i ∂

∂ ˙̄qσ
pkρ)

= pkρ− 1
k

dt̄

dt

dt

dt̄
∂Ξ(ωα ∧ i ∂

∂q̇α
pkρ)

− 1
kd

(
dt̄

dt

dt

dt̄

)
iΞ(ωα ∧ i ∂

∂q̇α
pkρ)

− 1
k

dt

dt̄
iΞ

(
d

(
dt̄

dt

)
∧ ωα ∧ i ∂

∂q̇α
pkρ

)

= pkρ− 1
k∂Ξ(ωα ∧ i ∂

∂q̇α
pkρ) = I(V,ψ)(ρ).

Some of the terms in this expression vanish identically because the form pkρ
contains only linear forms dt, ωσ, ω̇σ, and p0ρ = hρ contains only the linear
form dt. This completes the proof.

Using the invariance of (6), we define I(ρ) to be the (k+1)-form defined
locally by (6). In accordance with Anderson [1], we call I the interior
Euler-Lagrange operator.

The following theorem shows basic properties of the operator I.

Theorem 1. Let k ≥ 0 and ρ ∈ Ω1
k+1V . Then

a) I(ρ) lies in the same class as (π3,1)∗ρ.
b) I2 = I.

Proof. a) We can see that

I(ρ) = pkρ− 1
k∂Ξ(ωα ∧ i ∂

∂q̇α
pkρ)

= ρ− pk+1ρ− 1
k iΞd(ω

α ∧ i ∂
∂q̇α

pkρ) − 1
kdiΞ(ωα ∧ i ∂

∂q̇α
pkρ).

The second and third terms are (k+1)−contact, the last term is the exterior
derivative of a k-contact form, i.e. the last three terms lie in the kernel
Θ3
k+1V , and the class [(π3,1)∗ρ] is the same as the class [I(ρ)].

b) Condition b) means, that I is a projector. For k = 0 we have trivially
I2(ρ) = h2ρ = hρ = I(ρ). For k ≥ 1, if ρ is on higher jet prolongation
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then the definition of I(ρ) is modified. The form µ = I(ρ) is on third jet
prolongation and pkµ = µ. Then we put

Ξ =
∂

∂t
+ q̇α

∂

∂qα
+ q̈α

∂

∂q̇α
+
...
qα

∂

∂q̈α
+ qα4

∂

∂
...
qα

and the operator I is defined by

I(µ) = 1
kω

α ∧ [i ∂
∂qα

µ− ∂Ξ i ∂
∂q̇α

µ + ∂Ξ∂Ξi ∂
∂q̈α

µ],

where only last terms in Ξ and I(µ) are new. The condition I(I(ρ)) = I(ρ)
follows from a direct computation. For simplicity, denote η = pkρ. In the
following we use the identities

i[Ξ,θ]ω = ∂Ξiθω − iθ∂Ξω

[Ξ, ∂
∂qα ] = 0, [Ξ, ∂

∂q̇α ] = − ∂
∂qα [Ξ, ∂

∂q̈α ] = − ∂
∂q̇α .

We have

I(I(ρ)) = 1
kω

α ∧ [i ∂
∂qα

(η − 1
k∂Ξ(ωσ ∧ i ∂

∂q̇σ
η))

−∂Ξ i ∂
∂q̇α

(η − 1
k∂Ξ(ωσ ∧ i ∂

∂q̇σ
η))

+∂Ξ∂Ξi ∂
∂q̈α

(η − 1
k∂Ξ(ωσ ∧ i ∂

∂q̇σ
η))]

= 1
kω

α ∧ [i ∂
∂qα

η − 1
k∂Ξi ∂

∂qα
(ωσ ∧ i ∂

∂q̇σ
η)

−∂Ξ i ∂
∂q̇α

η + 1
k∂Ξ∂Ξi ∂

∂q̇α
(ωσ ∧ i ∂

∂q̇σ
η)

+ 1
k∂Ξi ∂

∂qα
(ωσ ∧ i ∂

∂q̇σ
η) − 1

k∂Ξ∂Ξi ∂
∂q̇α

(ωσ ∧ i ∂
∂q̇σ

η)

−∂Ξ∂Ξ∂Ξi ∂
∂q̈α

(ωσ ∧ i ∂
∂q̇σ

η)]

= 1
kω

α ∧ [i ∂
∂qα

η − ∂Ξ i ∂
∂q̇α

η] = I(ρ).

In particular, it follows from Theorem 1 that I(ρ) can be used as a
representative of the class [ρ] in Ω3

k+1V . In the following Corollary these
representatives are given explicitly for the second and the third columns of
the variational sequence.

Corollary. a) Let ρ ∈ Ω1
2V , where

p1ρ = Aσω
σ ∧ dt + Bσω̇

σ ∧ dt.
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Then
I(ρ) = (Aσ − d

dtBσ)ωσ ∧ dt.

b) Let ρ ∈ Ω1
3V , where

p2ρ = Aσνω
σ ∧ ων ∧ dt + Bσν ω̇

σ ∧ ων ∧ dt + Cσν ω̇
σ ∧ ω̇ν ∧ dt.

Then

I(ρ) = 1
2(Aσν −Aνσ − d

dtBσν)ωσ ∧ ων ∧ dt

+ 1
2(Bσν + Bνσ − d

dt(Cσν − Cνσ))ω̇σ ∧ ων ∧ dt

+ 1
2(Cνσ − Cσν)ω̈σ ∧ ων ∧ dt.

Now consider the quotient mappings in the variational sequence,

E : Ω1
k+1/Θ

1
k+1 
 [ρ] → E([ρ]) = [dρ] ∈ Ω1

k+2/Θ
1
k+2,

which satisfy the condition E2 = 0. Every class [ρ] ∈ Ω1
k+1/Θ

1
k+1, k ≥ 0,

can be represented by the form I(ρ) ∈ Ω3
k+1 (or I(ρ) ∈ Ω2

1 for k = 0). This
induces the associated mappings

Ē : Ω3
k+1 ⊃ IΩ1

k+1 
 β → Ē(β) = I(dβ) ∈ IΩ1
k+2 ⊂ Ω3

k+2.

We will give an independent proof of the identity Ē2 = 0 in the resulting
sequence

0 → RY → Ω1
0 → IΩ1

1 → IΩ1
2 → . . .

. . . → IΩ1
M → Ω1

M+1 → . . . → Ω1
N−1 → Ω1

N → 0,
(8)

where M = m + 1, N = 2m + 1.

Theorem 2. The associated mappings

Ē : IΩ1
k+1 
 β → Ē(β) = I(dβ) ∈ IΩ1

k+2, k ≥ 0.

satisfy condition Ē2 = 0.

Proof. Using the identity

pk+1dpk+1ρ = (−1)k+1∂Ξ(pk+1ρ ∧ dt),

we get by a direct calculation

IdI(ρ) = I(dρ).
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Then

Ē2(I(ρ)) = Ē(IdI(ρ)) = Ē(I(dρ)) = IdI(dρ) = I(ddρ) = 0.

This completes the proof.

Remark. There are many possibilities to represent the quotient spaces
Ω1
k/Θ

1
k. One possible representation is given by identifying Ω1

k/Θ
1
k with

IΩ1
k ⊂ Ω3

k. Note that the order of I(ρ), ρ ∈ Ω1
k, is in general higher

than the order of ρ. The Euler-Lagrange operator I solves the problem of
finding the invariant representatives for all k-forms, k > 0. Thus, our main
result consists of finding a complete description of the first order variational
sequence by (invariant) forms.
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vakia), J. Janyška and D. Krupka, eds., August 1989; World Scientific,
Singapore (1990), 236-254.

[9] B.A. Kuperschmidt, Geometry of jet bundles and the structure of La-
grangian and Hamiltonian formalisms, in: Geometric Methods in Math-
ematical Physics, Proc. NSF-CBMS Conf., Lowell/Mass. 1979, Lect.
Notes Math. 775 (1980), 162-218.
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