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Abstract

In this paper we discuss the necessity of the axioms of scalar quan-
tum mechanics introduced by Mario Paschke and clearly demonstrate
their meaning. We show that reasonable nonrelativistic quantum me-
chanics is given exactly with the axioms specified. A system describing
the electric Aharonov–Bohm effect is presented too. It illustrates the
topological obstructions for the existence of Hamiltonian.

1 Introduction

In 1948 R.P. Feynman showed F.J. Dyson how to prove homogeneous Max-
well equations assuming only Newton’s law and commutation relations

[xj , xk] = 0, m[xj , ẋxk] = iδjk.

Feynman was not interested in publishing it, so the proof was only published
in 1990 (two years after Feynman’s death) with Dyson’s editorial comment,
see [1]. First it was considered to be a historical feature, but it raised some
new questions soon and inspired new research directions. The proof was
generalized in several ways, recently for some noncommutative configuration
spaces [2, 3], but e.g. a satisfactory relativistic generalization remains still
open, cf. [4].

The Feynman proof has inspired M. Paschke in the study of the relation
between noncommutative geometry and quantum physics. A generalization
of the Feynman proof to arbitrary configuration spaces led him to the at-
tempt on an algebraic definition of quantum mechanics (for one nonrela-
tivistic particle) over an arbitrary manifold Q, see [5]. Paschke calls it scalar
quantum mechanics and proves the existence of Hamiltonian with desired
properties from his axioms, but the necessity of all axioms remained doubt-
ful. In this paper we work out examples that justify each axiom and present
its meaning. Thus, we examine the notion of scalar quantum mechanics
(SQM in short). In this meaning, this paper is a sequel to [5].

The paper is organized as follows: Section 2 is devoted to recapitulation
of the definition and main properties of SQM. In Section 3 we study two
dynamical systems on the circle (Q = S1) and we perform a construction of
Hamiltonian for each of them. One Hamiltonian is time-independent and the
other one is time-dependent. These examples demonstrate how SQM works.
In Section 4 we consider SQM stepwise with one of the axioms violated
letting the other axioms hold and show that some essential property of the
quantum world fails to hold. Finally, in Section 5 we illustrate topological
obstructions for the existence of the Hamiltonian for multiply connected
configuration spaces, more precisely we show that for such Q that H1(Q) �= 0
there need not exist a Hamiltonian with a potential in A = C∞

0 (Q).
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2 Scalar quantum mechanics

In this section we review the concept of SQM as given by Paschke in [5]. It
is captured by the algebra A = C∞

0 (Q), the set of smooth real-valued func-
tions on Q vanishing at infinity, where Q is a smooth orientable configuration
manifold. The observables are constructed from a representation of the al-
gebra on the Hilbert space H = L2(Q, E), i.e. the space of square integrable
sections of the complex line bundle π : E −→ Q. A particular dynamical
system is uniquely determined by assigning a time evolution operator U on
a corresponding Hilbert space H.

Definition 1. Let A = C∞
0 (Q). The system {At | t ∈ R} of unitary rep-

resentations of the algebra A is called scalar quantum mechanics over Q if
the following conditions hold:

(a) Localizability: Representations of the operators at ∈ At are iso-
morphic to the representations of the functions f ∈ C∞

0 (Q) on the
Hilbert space H = L2(Q, E).

(b) Scalarity: The commutant of At, i.e. the set of all operators that
commute with all at ∈ At, is just the closure of At in the weak topol-
ogy,

A′
t = —AtAt ∀t ∈ R.

(c) Smoothness: The time evolution is smooth with respect to the strong
topology and it holds

i[At, ȦAt] ⊂ At ∀t ∈ R.

(d) Positivity and nontriviality: For every operator at the inequal-
ity

−i[at, ȧat] ≥ 0

holds. If there exists an operator at such that [at, ȧat] = 0, then ȧat = 0.

Note that the above axioms do not use a metric structure on Q. Indeed,
the metric is characterized by the corresponding SQM and it can be recon-
structed from the given time evolution. For all t ∈ R it holds (cf. [5, Lemma
3.2]):

(1) gt(dat,dbt) = −i[at, ḃbt],

where gt is the inverse Riemannian metric.
We also note that this approach corresponds to the Heisenberg picture

of the traditional formulation of quantum mechanics—the configuration ob-
servables (elements of A) depend on t and quantum states (vectors in H)
are kept fixed.

Let us recall the main result from [5]:
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Theorem 2. ([5]) Under the assumptions (a)–(d) there exists ∀t ∈ R a
unique Riemannian metric gt given by (1), a unique covariant derivative
∇(At, gt) on the complex line bundle π : E −→ Q and a closed one-form
φ = ϕ1 dϕ2 such that for all bt ∈ At it holds:

(2) ḃbt = i[bt,∆(At, gt)], (Heisenberg equation of motion)

(3) b̈bt = i[ḃbt,∆(At, gt)] + i[bt, ∂∆(At, gt)/∂t] − iϕ1[ϕ2, ḃbt],
(Newton’s law)

where ∆(At, gt) is the covariant Laplacian. If φ = dϕt is exact, then there
exists a Hamiltonian, which is of the form:

(4) H(t) = ∆(At, gt) + ϕt.

One may wonder that even very general axioms of Definition 1. specify
the admissible dynamics so strictly—spatial derivatives are governed by a
second-order Hamiltonian and the time derivatives fulfill the Newton law
expressed by (3).

Remark 3. Let x denote the independent variable on the Hibert space
H = L2(Q, E). We often need to compute the commutator of an operator
a(x) ∈ A, which acts on states ψ(x) ∈ H by multiplication, with some
differential operator, particularly with dx := d/dx and d2

x := d2/dx2. The
latter operators are defined on a dense subspace H∞ ⊂ H and for any vector
ψ(x) ∈ H∞ the following operator identities hold:

(5a) [a,dx] = −dxa,

(5b) [a,d2
x] = −d2

xa − 2(dxa)dx.

We use them in the sequel frequently. Moreover, generalizing the latter equa-
tions with respect to the order of the derivatives, we get the expression

(5c) [a,dm
x ] = −

m−1∑
q=0

(m
q

)
(dm−q

x a)dq
x ∀m ∈ N.

3 Examples of SQM over S1

It is quite instructive to construct a Hamiltonian in some model cases. In
order to stress the role of topology in SQM we concentrate on topologically
nontrivial configuration spaces.

In the first example, particularly simple one, we demonstrate the con-
struction of a Hamiltonian, where the topology of Q does not play any role.
Despite of this, the example was chosen to be an essential ingredience in
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the next constructions of counterexamples. The second example illustrates
construction of a time-dependent Hamiltonian.

However, the main intention of this paper is to show the destructive ex-
amples, we do not attempt to construct the most general system imaginable.

We use the same setup in this section, namely the algebra At = C∞(S1),
its representation on the Hilbert space H = L2(S1, S1 × C) and the Fourier
basis |m〉 = eimϕ , m ∈ Z on H. The states of the system with respect to
this basis have the form |ψ〉 =

∑
m am|m〉. Note that the only difference

between the two systems resides in the dynamics. In each case it is defined
by assigning a particular time evolution operator U .

3.1 Time-independent case without potentials

Let the dynamics of the system be defined by the time evolution operator

U(t)|ψ〉 =
∑
m∈Z

ame−im2t |m〉.

First, we compute the total time derivative of the arbitrary operator at =
U †(t) · a · U(t):

(6) ȧat = U †(t)[im2|m〉〈m|, a]U(t).

If we switch to the coordinate basis and denote dn
ϕ = dn/dϕn, we can write

(7) ȧa = i[a,d2
ϕ].

Next, we demonstrate that the axioms (a)–(d) are fulfilled:
– Localizability is obvious.
– Scalarity: The commutant A′

t = At, because A is commutative
∀t ∈ R. Closure —AtAt = At as well, because A is complete in norm
∀t ∈ R, so the assertion follows.

– Smoothness: The time evolution is obviously smooth and ∀a, b ∈ A
it holds

(8)
i[a, ḃb] = i[a, i[b, d2

ϕ]]
(5b)
= −[a,−d2

ϕb − 2dϕb dϕ] = 2[a,dϕb dϕ]

(5a)
= −2dϕb dϕa ∈ At.

– Positivity: Using (8) we easily get

(9) −i[at, ȧat] = 2dϕadϕa = 2(dϕa)2,

that is nonnegative.
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– Nontriviality: According to the assumption, we have an operator
at ∈ At such that [a, ȧa] = 0. We shall show that ȧa = 0 as well. This
follows by a simple calculation:

ȧa
(7)
= i[a,d2

ϕ]
(5b)
= −i d2

ϕa − 2i(dϕa)dϕ = 0,

since dϕa = 0 by (9).

We proceed with constructing the metric on Q. It is given by, cf. [5, Lemma
3.2],

(10) igt(db, dc)
(1)
= [b, ċc]

(8)
= 2i dϕb dϕc,

so the metric g = 1
2 is static. Taking the total derivative of (7) gives äa =

−[[a,d2
ϕ],d2

ϕ]. It is consistent with (3) only when −d2
ϕ = ∆. The Hamiltonian

is then of the form H = −d2
ϕ + ft, where φ = dft. From (3) it follows (cf.

also [5, Lemma 3.9]) that ft = 0 and

(11) H = −d2
ϕ.

Remark 4. If the existence of the Hamiltonian is ensured, then we can com-
pute it directly from the given time evolution, as U(t) = T (exp[i

∫ t
0 H dt]).

It is then of the form

(12) H(t) = i
dU(t)

dt
· U(t)−1.

For the time-independent Hamiltonians we can utilize the Stone Theorem
expressed in the formula U(t) = exp[iHt]. (Hamiltonian is the generator of
the time evolution U .) It is then obtained by a simple calculation and it
reads

(13) H = i
d
dt

∣∣∣∣
t=0

U(t).

3.2 Time-dependent case: expanding circle

Now, let the dynamics of the system be defined by

U(t) = exp[−im2G(A)(t)],

where G(A) is an arbitrary increasing function of time. We use Remark 4.,
especially (12), to compute the Hamiltonian. In coordinate representation
it is given by H(t) = −g(A)d2

ϕ, where g(A)(t) = dG(A)(t)/dt. Now, we can
compute the total time derivative of an arbitrary operator a, cf. (2),

(14) ȧa = i g(A)[a,d2
ϕ].
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It is obvious that the axioms (a)–(d) hold, we only briefly comment on the
positivity axiom: The expression

(15) −i[at, ȧat]
(8)
= 2g(A)dϕadϕa = 2g(A)(dϕa)2

is nonnegative if g(A) is nonnegative, that is, if G(A) is increasing, which we
assume. We note that the function g(A) governs the velocity of expanding of
the circle:

Remark 5. The function g(A) is the inverse Riemannian metric on Q and
it holds

g(A)(t) =
1

2R2(t)
,

where R is the radius of the circle Q.

4 Violating the axioms of SQM

In this section we show that none of the axioms of SQM can be dropped. We
consider SQM stepwise with just one of them violated and in all four cases
there is a significant property of the quantum world which fails to hold.

The localizability axiom only sets up the framework of smooth manifolds,
C∗-algebras and their representations on Hilbert spaces, therefore we do not
violate it and do not explicitly show that it is fulfilled. We work mainly on
one-dimensional manifolds S1 and R here.

We keep the notation from the Section 3.1 (the objects without sub-
script and with subscript t), because we use that example in the following
constructions.

4.1 Violating the scalarity axiom

The axiom is to be broken by choosing a “larger” Hilbert space H, where
an operator exists that commutes with all at ∈ At, but that does not fall
into —AtAt . Thus, we suppose that

(16) A′
t � —AtAt .

We can construct an example of such a system by modifying the example
from Section 3.1 as follows. We consider the algebra A = C∞(S1) represented
on the Hilbert space H(1) = H⊗ C2 = L2(S1, S1 × C) ⊗ C2.

Note, that all operators from the example of Section 3.1 can be expressed
in the form A � a(1) = at ⊗ 1lC2 , where at is represented on H. An operator
a(1) on H(1) that illustrates the effects the condition (16), i.e. a(1) ∈ A′

t \
—AtAt ,

can be constructed with help of an arbitrary Pauli matrix σi (i = 1, 2, 3). It
is of the form a(1) = at ⊗ σi, where at is again represented on H.
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The dynamics is defined with help of the time evolution operator U(t)
from Section 3.1 It reads U(1)(t) = (U ⊗ UC2)(t) = e−im2t ⊗ e−ifj(t)σj , where
f j are arbitrary functions and the summation convention on index j has
been used. According to Remark 4. we can compute the Hamiltonian from
(12):

H(1)(t) = i
d(U ⊗ UC2)

dt
· (U ⊗ UC2)−1

= i
dU

dt
· U−1 ⊗ UC2 · (UC2)−1 + iU · U−1 ⊗ dUC2

dt
· (UC2)−1

= H ⊗ 1lC2 + 1l ⊗ HC2 ,

where HC2 = ḟf j(t)σj . We only demand that the f ’s are Hermitean operators,
i.e. real functions on C. We note that ḢH (1) = 1l ⊗ f̈f j(t)σj .

However, the rest of the axioms of SQM is fulfilled. Let us demonstrate it.
– Smoothness: The time evolution is obviously smooth and the re-

quired inclusion follows from (8):

(17)

i[a(1), ḃb(1)] = i[a(1), i[b(1), H(1)]]

= −[a(1), [bt ⊗ 1lC2 , H ⊗ 1lC2 + 1l ⊗ HC2 ]]

= i[at, i[bt, H]︸ ︷︷ ︸
=ḃbt

] ⊗ 1lC2 − [a(1), [bt ⊗ 1lC2 , 1l ⊗ HC2 ]︸ ︷︷ ︸
=0

]

(8)
= −2dϕb dϕa ⊗ 1lC2 ∈ A.

– Positivity: Using (17) and (8) we easily get

−i[a(1), ȧa(1)] = −i[at, ȧat] ⊗ 1lC2 = 2(dϕa)2 ⊗ 1lC2 ≥ 0.

– Nontriviality follows by the same reasoning as in the example of
Section 3.1, since 0(1) = 0 ⊗ 1lC2 .

We shall show that in this system we cannot express the second time
derivative of an arbitrary operator b(1) from the first and zeroth one (New-
ton’s law). Let us consider operator b(1) = bt ⊗ σi. From (2) it follows that

(18) ḃb(1) = −i[b(1), H(1)] = i[bt,d2
ϕ] ⊗ σi + 2εijkḟf

j bt ⊗ σk,

where the summation convention on indices j, k has been used. The second
time derivative can be obtained by a tedious calculation

b̈b(1) = −i
d
dt

[b(1), H(1)]

= −i[i[bt,d2
ϕ] ⊗ σi,−d2

ϕ ⊗ 1lC2 ] − i[i[bt,d2
ϕ] ⊗ σi, 1l ⊗ ḟf jσj ]

− i[2ḟf jεijk bt ⊗ σk,−d2
ϕ ⊗ 1lC2 ] − i[2εijkḟf

j bt ⊗ σk, 1l ⊗ ḟf jσj ]

− i[bt ⊗ σi, f̈f
j1l ⊗ σj ]
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Using (18), this indeed becomes

(19)
b̈b(1) =−[[bt,d2

ϕ],d2
ϕ] ⊗ σi + 4i εijkḟf

j [bt,d2
ϕ] ⊗ σk

+ (4δinδjkf
jfn − 4δik(f j)2 + 2εijkf̈f

j) bt ⊗ σk,

(summation over n, j, k). So there remains an arbitrary function f and its
first and second derivatives that stem from HC2 and we cannot control the
time evolution of the system by means of Newton’s law (3).

4.2 Violating the smoothness axiom

The smoothness condition is also called the second-order condition, because
it guarantees that the Hamiltonian is at the most of second-order. Indeed, a
violation of this axiom would admit too wild time evolution of the systems,
e.g. such one that is governed by a higher-order Hamiltonian.

In order to show how strange time evolutions are admissible in SQM
without the smoothness condition, we construct a system on the bundle
R × C π−→ R that is determined by the time evolution operator U(2)(t) =
exp[it · exp[−p2]]. We immediately see that this time evolution is generated
by the Hamiltonian

H(2) = e−p2
=

∞∑
n=0

(−1)n

n!
p2n,

which is “of order ∞”. This Hamiltonian is a well defined self-adjoint oper-
ator on the Schwartz space S(R), the space of smooth complex functions f
on R such that

lim
|x|→∞

|x|mf (n)(x) = 0, ∀n, m = 0, 1, 2, . . . ,

see [7, Section V.3]. It follows from the well-known result that the Fourier
transformation is an isometry of S(R).

We recall that S(R) is dense in L2(R, R × C). According to Plancherel
Theorem, see [7, Theorem IX.6], the Fourier transform map on S(R) extends
uniquely to a linear isometry of L2(π) and consequently H(2) is well-defined
operator on entire Hilbert space H.

In order to illustrate the smoothness requirement for this particular sys-
tem, we shall compute the time derivative of an arbitrary operator a(2) ∈
A(2) = C∞

0 (R),

ȧa(2)(x) = −i[a(2)(x), H(2)] = −i
∞∑

n=0

(−1)n

n!
[a(2)(x), p2n]
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Let us compute the commutators in the coordinate representation, where
p|ψ〉 = −i dxψ. Then, we get

ȧa(2)(x) = −
∞∑

n=0

(−1)n

n!
[a(2)(x),d2n

x ]

(5c)
=

∞∑
n=0

(−1)n

n!

2n−1∑
r=0

(2n
r

)
(d2n−r

x a(2))d
r
x.

We proceed with computing the commutator i[b(2), ȧa(2)]:

(20)

i[b(2), ȧa(2)] = i
∞∑

n=0

(−1)n

n!

2n−1∑
r=0

(2n
r

)
[b(2), (d

2n−r
x a(2))d

r
x]

(5c)
= −i

∞∑
n=0

(−1)n

n!

2n−1∑
r=0

(2n
r

)
(d2n−r

x a(2))
(r−1∑

s=0

(r
s

)
(dr−s

x b)ds
x

)
and then show that the latter expression does not fall into A. For this, we
should outline that it does not commute with some operator c(2) ∈ A(2).
But it is obvious, as the commutator cuts the order of free derivatives by
one and the sum remains to be infinite.

Should it fall into A(2), the summation index s would have to be at the
most equal to 1 (so as n) and we get that H(2) would have to be of second
order.

However, the operator defined by (20) does not commute even after a
finite number of commutators with operators from A(2)!

4.3 Violating the nontriviality axiom

The nontriviality condition guarantees that the Hamiltonian is at least of
second order. We shall construct a model, where there exists an operator
at ∈ At such that

(21) [at, ȧat] = 0 and ȧat �= 0.

We consider SQM over R, i.e. A(3) = C∞
0 (R),H(3) = L2(R, R × C),

with the time evolution given by U(3)(t)|ψ〉 = ψ(x − t). Let us compute its
generator:

ψ(x − t) =
∞∑

k=0

(−t)k

k!
dkψ

dxk = e−tdx ψ(x).

According to (13) it is generated by the Hamiltonian H(3) = −i dx. As in
the preceding sections, we compute the time derivative ȧa(3) of an operator
a(3),

(22) ȧa(3) = −i[a(3),−i dx] = dxa(3),
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and test the other SQM-axioms:
– Scalarity: As A(3) is commutative and closed ∀t ∈ R, the assertion

follows by the same arguments as in Section 3.1
– Smoothness: The time evolution of the system is obviously smooth

and ∀a(3), b(3) ∈ A(3) it holds

(23) i[a(3), ḃb(3)] = i[a(3),dxb(3)] = 0 ∈ A(3),

because dxb(3) ∈ A(3) and A(3) is commutative.
– Positivity: Using (23) we easily get −i[a(3), ȧa(3)] = 0 ≥ 0.

We illustrate the behavior of the system on the position operator x(3). From
(22) it follows that ẋx(3) = dxx(3) = 1l and the momentum operator is given
by p(3) = m1l. Let us compute the canonical commutation relation:

(24) [x(3), p(3)] = m[x(3), 1l] = 0,

the position operator commutes with the momentum operator and therefore
this model describes an unquantized mechanical system.

Let us try to construct the Hamiltonian from the definition. From (23)
it follows that the metric g(3) is degenerate, even identically zero. Thus, the
construction of the covariant Laplacian breaks down, H(3) is not of the form
(4) and its spectrum σ(H(3)) = R has neither lower nor upper bound!

4.4 Violating the positivity axiom

We discuss SQM on the torus T = S1×S1 as a product of two SQM over the
circle that has been worked out in Section 3.1 Thus, we consider the algebra
A(4) = C∞(T) represented on H(4) = L2(T, T × C). The product states are
of the form |ψ〉 =

∑
m,n amn|m, n〉, where |m, n〉 = |eimα , einβ〉 and α and β

denote the angular coordinates on the corresponding circles.
Let the dynamics of the system be defined by the time evolution operator

U(4)(t)|ψ〉 =
∑

m,n∈Z
amn(α, β)e−im2t ein2t |m, n〉.

As in Section 3.1, we first compute the total time derivative of an arbitrary
operator a(4)(α, β) that is by virtue of (6) and (7)

(25) ȧa(4) = i[a(4),d
2
α] − i[a(4),d

2
β].

So we can construct a Hamiltonian with the same procedure as in Section 3.1
or compute it with the help of Remark 4., in particular by eqn. (13). Anyway,
it is of the form H(4) = d2

β − d2
α.

Next, we demonstrate that the other axioms are fulfilled. In doing so, let us
suppress the index (4).
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– Scalarity: The assertion follows by the same argument as in the
preceding sections.

– Smoothness: The time evolution is obviously smooth and ∀a, b ∈ A
it holds

(26)

i[a, ḃb] = i[a, i[b,d2
α]−i[b,d2

β]]

= −[a,−d2
αb−2dαbdα]+[a,−d2

βb−2dβbdβ]

= [a,d2
αb]︸ ︷︷ ︸

=0

+2[a,dαbdα]︸ ︷︷ ︸
∈A

−[a,d2
βb]︸ ︷︷ ︸

=0

−2[a,dβbdβ]︸ ︷︷ ︸
∈A

= −2dαbdαa+2dβbdβa ∈ A.

– Nontriviality follows from the smoothness axiom. From (25) we
get

ȧa = i[a,d2
α]−i[a,d2

β]

(5b)
= −d2

αa−2(dαa)dα+d2
βa+2(dβa)dβ

= 0,

since dαa = 0 = dβa by assumption, cf. Section 3.1

With help of the smoothness axiom (26) we can easily illustrate the violation
of the positivity axiom and its consequences. The expression

−i[a(4), ȧa(4)] = 2(dαa(4))
2 − 2(dβa(4))

2

is obviously indefinite. Nevertheless, we can construct a metric on T, it only
fails to be Riemannian. More precisely, (T, gT) is a manifold with pseudo-
Riemannian metric

gT =
(1

2 0

0 − 1
2

)
,

and the spectrum of the Hamiltonian H(4) has neither lower nor upper
bound!

5 Topological aspects of the SQM on the multiply
connected configuration spaces

We have already seen an example of a system on a multiply connected space,
namely on S1, see Section 3.1, but in the case of a Hamiltonian without
potentials, the nontrivial topology of the configuration manifold does not
play any role.
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The construction presented here has been inspired by perhaps the most
famous experiment showing topological effects in quantum theory, namely
the Aharonov–Bohm effect in its electric form, see [8]. Thus, the results have
clear physical background and consequences.

We again modify the example of Section 3.1 in this construction; we keep
the configuration manifold Q = S1, the algebra of observables At = C∞(S1)
and its representation on the Hilbert space H = L2(S1, S1 ×C) and change
the time evolution only. We set it up namely so as to violate the existence
of a Hamiltonian with a potential in A. It reads:

U(t) =
∑
m∈Z

eiEmt |m〉〈m|.

The states of the system with respect to the coordinate basis let be of the
form

(27) ψm(ϕ) = 〈ϕ|m〉 = C1 Ai(ϕ − Em) + C2 Bi(ϕ − Em),

where Ai and Bi are the Airy functions, see e.g. [6, 9]. Note that the wave
functions (21)–(22) in [8] are just asymptotic expansions of Airy functions
(27). Here, on Q = S1, they have to fulfill the following conditions:

(28a) ψm(0) = ψm(2π),

(28b) ψ′
m(0) = ψ′

m(2π).

Provided these conditions on E hold, the spectrum of H is discrete as in the
case without potential, cf. Section 3.1 However, the spectrum cannot be given
by a simple closed formula. The Hamiltonian is of the form H = P̂P 2 + X̂X .
Note, that X̂X �∈ A = C∞(S1), as it is not continuous in ϕ = 0.

In the coordinate representation, where H = −d2
ϕ + ϕ, we can easily

describe properties of the system. The time derivative of the arbitrary ope-
rator at ∈ At can be expressed with the help of Heisenberg equation of
motion in the form

(29) ȧa = −i[a, H] = i[a,d2
ϕ] − i[a, x],

where the last term is zero by the commutativity of the multiplication of
functions in the algebra of functions F(S1) ⊃ A. Next, we compute the
metric from (1):

(30) gt(db, dc)
(1)
= −i[b, ċc]

(29)
= [b, [c,d2

ϕ]]
(8)
= 2i dϕb dϕc,

and the metric g = 1
2 agrees with the metric from Section 3.1!

We can proceed with the construction of H almost up to the end. But
in the last step we can not succeed, as the assumptions of the Theorem 2.
are not completely met. Indeed, the one-form φ = dϕ is not exact. So, the
Hamiltonian with the requied properties does not exist.
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Remark 6. There is some correspondence between SQM and Haag–Kastler
axioms for quantum field theory in 0 + 1-dimensions, see [10]. The main as-
pect is that both settings are algebraic, the spacetime is given by (sub)algebras
of observables rather than by local coordinates and topology plays a promi-
nent role in it. There is also some similarity in positivity requirement. The
main difference is that SQM is not relativistic invariant.

6 Conclusion

We have shown that no axiom in the definition of SQM can be weakened
without breaking some essential property of the quantum world. For any dy-
namical system, the scalarity axiom ensures that Newton law holds, smooth-
ness axiom specifies the form of canonical commutation relations and the
nontriviality and positivity axiom restrict the spectrum of the corresponding
Hamiltonian. In the last section it has been shown that nontrivial topological
structure can affect the spectrum of H as well.

Thus, the SQM is a good candidate for further research, e.g. an analogous
definition in the relativistic context could lead to the still missing relativistic
Feynman proof.
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