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1. Introduction

Given a dynamical form E′, we can ask if there is a locally variational form, equivalent
with E′. The integrating factor G such that E = GE′ is a locally variational form is then
called a variational integrating factor.

A complete solution of the problem of searching for variational integrating factors in
general is yet not known. There have been achieved some particular results concerning
mainly second-order ODE (see e.g. [2], [4], [12], [14]). Concerning PDE, there is only one
paper containing a short remark on a solution of the multiplier problem for a single second
order partial differential equation (see [2]).

The aim of this work is to study the problem of variational integrating factors for a dy-
namical form, which represents a system of first order PDE. We prove that if an everywhere
regular matrix G is a variational integrating factor for a regular variational form E′, then
E = GE′ is regular and the associated dynamical differential ideals coincide. With help of
the variationality conditions for PDE (see [1], [9]) we find a system of equations for varia-
tional integrating factors by the assumption that E′ is a polynomial in the first derivatives.
Finally we compute concrete conditions for variational integrating factors in two special
cases, namely when E′ represents quasilinear equations with constant coefficients and 2
independent and 1 dependent variable (resp. 2 independent and 2 dependent variables).

In this work we use our recently obtained results concerning variationality of a system
of PDE (see [5],[6],[7]).

The paper is organized as follows. In Section 2 we introduce notations and necessary
concepts and results concerning the calculus of variations on fibred manifolds. In Section 3
we recall some results concerning variational propertis of systems of first-order PDE. Main
results concerning integrating factors are stated and proved in Section 4.

2. Basic definitions and known results

In what follows, all manifolds and mappings are smooth, and summation over repeated
indices is understood. We consider a fibred manifold π : Y → X, dimX = n, dimY = m+n.
We denote J1 the 1-jet prolongation functor, π1 : J1Y → X, π1,0 : J1Y → Y . Let us recall
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some basic definitions. A mapping γ : U → Y , where U ⊂ X is an open subset, is called
a section of π, if π ◦ γ = idU . A vector field ξ on Y is said to be π-vertical, if Tπ.ξ = 0.
Similarly, a vector field ξ on J1Y is called π1-vertical (resp. π1,0-vertical), if Tπ1.ξ = 0
(resp. Tπ1,0.ξ = 0). A q-form η on J1Y is called π1-horizontal (resp. π1,0-horizontal), if
iξη = 0 for every π1-vertical (resp. π1,0-vertical) vector field ξ on J1Y . We denote by h
the horizontalization of differential forms. h is defined to be an R-linear wedge-product
preserving mapping such that for a q-form η on Y hη is a q-form on J1Y , and

(2.1) hdxi = dxi, hdyσ = yσ
j dxj , hf = f ◦ π1,0.

It’s easy to see, that

(2.2) hdf = difdxi, where dif =
∂f

∂xi
+

∂f

∂yσ
yσ

i .

η is called contact, if J1γ∗ η = 0 for every section γ of π. A contact π1,0-horizontal
q-form η is called 1-contact, if for every π1-vertical vector field ξ on J1Y the form iξη is
π1-horizontal; η is called k-contact, 2 ≤ k ≤ q, if iξη is (k−1)-contact. Recall that for every
π1,0-horizontal q-form on J1Y there is a unique decomposition η = η0 +η1 + · · ·+ηq, where
η0 is a π1-horizontal form, and ηi, 1 ≤ i ≤ q, is a i-contact form on J1Y ; we set hη = η0,
piη = ηi, and call it the horizontal and i-contact part of η, respectively. Consequently, every
q-form on Y can be uniquely decomposed as follows

(2.3) π∗
1,0η = hη + p1η + · · · + pqη.

We denote by (xi, yσ) (resp. (xi, yσ, yσ
j )) local fibred coordinates on Y (resp. the associ-

ated coordinates on J1Y ), and set

(2.4)
ω0 = dx1 ∧ dx2 · · · ∧ dxn, ωσ = dyσ − yσ

k dxk,

ωj = i∂/∂xj ω0, ωj1j2 = i∂/∂xj2 ωj1 , etc.

A 1-contact π1,0-horizontal (n + 1)-form E on J1Y is called a dynamical form. In fibred
coordinates, E = Eσ ωσ ∧ω0, where Eσ = Eσ(xi, yν , yν

k). A section γ of π is called a path of
E, if E ◦J1γ = 0, i.e., if the components γν of γ satisfy the following system of m first-order
PDE:

(2.5) Eσ

(
xi, γν ,

∂γν

∂xj

)
= 0, 1 ≤ σ ≤ m.

By a first-order Lagrangian we mean a horizontal n-form λ on J1Y . In fibred coordinates,
λ = Lω0, where L = L(xi, yν , yν

k).
Let ρ be an n-form on Y . Then λ = hρ is a first-order Lagrangian (with the function L

polynomial of degree ≤ n in the first-order derivatives), and

(2.6) π∗
1,0ρ = L ω0 +

n∑
k=1

( 1
k!

)2 ∂kL

∂yσ1
j1

· · · ∂yσk
jk

ωσ1 ∧ · · · ∧ ωσk ∧ ωj1···jk

(see [8] and also [3]). We denote ρKλ = π∗
1,0ρ and call this n-form the Krupka form of λ. The

at most 1-contact part of ρKλ , i.e.,

(2.7) θλ = Lω0 +
∂L

∂yσ
j

ωσ ∧ ωj ,
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is called the Poincaré–Cartan form of λ. Note that Eλ = p1dρ is a dynamical form on J1Y ;
it is called the Euler–Lagrange form of λ, and the corresponding equations for paths of Eλ

are called the Euler–Lagrange equations. Obviously, Eλ = Eσ(L)ωσ ∧ ω0, where

(2.8) Eσ(L) =
∂L

∂yσ
− dj

∂L

∂yσ
j

,

and the Euler–Lagrange expressions Eσ, 1 ≤ σ ≤ m, are all polynomials of degree ≤ n in
the yν

j ’s.
A dynamical form E on J1Y is called variational, if for every point x ∈ J1Y there exists

a neighbourhood U and Lagrangian λ defined on U such, that E = Eλ. Thus, for variational
forms equations for paths (2.5) are the Euler–Lagrange equations. It is known (see [15]) that
if E = Eσωσ ∧ω0 is a variational dynamical form on J1Y , then to every point in J1Y there
exists a neighbourhood U such that λ = Lω0, where L is a function on U defined by

(2.9) L = yσ

∫ 1

0

Eσ(xi, uyν , uyν
j ) du,

is a Lagrangian for E, called Vainberg–Tonti Lagrangian.
For more details see [10], [11], [13].

3. Variational properties of systems of first-order PDE

In the sequel, we recall some properties of systems of first-order PDE on manifolds as
obtained in [6],[7].

First of all, for any system of first-order PDE to be variational, polynomiality in the
first-order derivatives is a necessary property:

Proposition 3.1. Let E be a dynamical form on J1Y , E = Eσ ωσ ∧ ω0. If E is locally
variational, then the Eσ are polynomials of degree ≤ n in the yν

j ’s.

In view of the above proposition, the components Eσ of a locally variational form E
on J1Y are polynomials of degree at most n in the yν

k ’s with the coefficients completely
antisymmetric in both the upper and lower indices. We set

(3.1)
Eσ = Bσ + B j1

σν1
yν1

j1
+ · · · + B j1···jn

σν1···νn
yν1

j1
· · · yνn

jn
,

B
j1···jp···jq···jk

σν1···νp···νq···νk = B
j1···jq···jp···jk

σν1···νq···νp···νk , B j1···jk
σν1···νp···νk

= −B j1···jk
νpν1···σ···νk

, 1 ≤ k ≤ n.

Next, first-order locally variational forms are equivalent to closed (n + 1)-forms on Y .

Theorem 3.1. Let E be a dynamical form on J1Y . The following conditions are equiva-
lent:

(1) In every fibered chart the components Eσ of E satisfy the following conditions:

(3.2)
∂Eσ

∂yν
j

+
∂Eν

∂yσ
j

= 0,
∂Eσ

∂yν
− ∂Eν

∂yσ
+ di

∂Eν

∂yσ
i

= 0, 1 ≤ σ, ν ≤ m, 1 ≤ j ≤ n.

(2) There exists a unique closed (n + 1)-form α on Y such that E = p1α.
(3) E is locally variational.

Taking into account the relation between dynamical forms and partial differential equa-
tions, we obtain an explicit characterization of variational first order PDE and their La-
grangians:
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Theorem 3.2. A system of C∞ first-order partial differential equations is variational if
and only if for some r, 1 ≤ r ≤ n, it is of the form

(3.3) B j1···jr
σν1···νr

∂yν1

∂xj1
· · · ∂yνr

∂xjr
+ . . . + B j1j2

σν1ν2

∂yν1

∂xj1

∂yν2

∂xj2
+ B j1

σν1

∂yν1

∂xj1
+ Bσ = 0,

where the coefficients are functions of (xi, yν), completely antisymmetric in the upper and
lower indices, and the (n + 1)-form

(3.4)
α = Bσdyσ ∧ ω0 +

1
2!

B j1
σν1

dyσ ∧ dyν1 ∧ ωj1 + . . .

+
1

(r + 1)!
B j1···jr

σν1···νr
dyσ ∧ dyν1 ∧ · · · ∧ dyνr ∧ ωj1···jr

on Y is closed. In this case, α is the exterior derivative of the Krupka form ρλ (2.6)
associated with the corresponding Vainberg–Tonti Lagrangian L (which is a polynomial of
degree r in the variables yν

j ).

Let E be a dynamical form on J1Y . By a Lepage class of E we mean the equivalence
class [α] of (possibly local) (n + 1)-forms on J1Y such that

(3.5) α ∈ [α] ⇐⇒ p1α = E.

This means that every element of the class [α] is of the form α = E + F where F is an at
least 2-contact form.

By definition, (n + 1)-forms belonging to the Lepage class of a first-order dynamical
form E are defined on open subsets of J1Y . We say that E is Y -pertinent if to every point
in Y there exists a neighborhood U and a form αU belonging to the Lepage class of E,
projectable onto U . In other words, E is Y -pertinent if it can be represented by a Lepage
class defined on Y .

In [7] the following proposition is proved

Proposition 3.2. Let E be a dynamical form on J1Y .
The following four conditions are equivalent:

(1) E is Y -pertinent.
(2) In every fiber chart, E is of the form E = Eσdyσ ∧ ω0, where

(3.6)
Eσ = Bσ + B j1

σν1
yν1

j1
+ · · · + B j1···jn

σν1···νn
yν1

j1
· · · yνn

jn
,

B
j1···jp···jq···jk

σν1···νp···νq···νk = B
j1···jq···jp···jk

σν1···νq···νp···νk , B j1···jk
σν1···νp···νk

= −B j1···jk
νpν1···σ···νk

, 1 ≤ k ≤ n.

(3) There exists a unique (n + 1)-form α on Y such that E = p1α.
(4) The (n + 1)-form

(3.7) Lep2(E) = Eσωσ ∧ ω0 +
n∑

k=1

1
k!(k + 1)!

∂kEσ

∂yν1
j1

· · · yνk
jk

ωσ ∧ ων1 ∧ · · · ∧ ωνk ∧ ωj1···jk
,

is projectable onto Y .
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The mapping Lep2, defined by (3.7) is a bijection between Y -pertinent dynamical forms
on J1Y and (n + 1)-forms on Y . The inverse to Lep2 is the mapping p1.

In view of Proposition 3.2, equations for paths of an Y -pertinent dynamical form E on
J1Y read

(3.8) γ∗iξαE = 0 for every vertical vector field ξ on Y ,

where αE is the unique Lepage form on Y , associated to E. In other words, paths of E are
integral sections of the ideal of differential forms on Y , generated by the following system
of n-forms:

(3.9) DαE
= {iξαE | ξ runs over all vertical vector fields on Y }.

Computing local generators explicitly, we obtain DαE
= span{ησ, 1 ≤ σ ≤ m}, where

(3.10) ησ = Bσω0 +
n∑

k=1

1
k!

B j1···jk
σν1···νk

dyν1 ∧ · · · ∧ dyνk ∧ ωj1···jk
.

Definition 3.1. An Y -pertinent dynamical form E on J1Y (respectively, equations (3.8),
respectively, an (n + 1)-form α on Y ) is called regular if

(3.11) rankDαE
= m.

Condition (3.11) obviously means that generators (3.10) of DαE
are linearly independent

at each point of Y , or equivalently, that rank of the matrix

(3.12) B = ( Bσ B j1
σν1

B j1j2
σν1ν2

· · · B j1···jn
σν1···νn

) ,

where σ labels rows and the other sets of indices label columns, is maximal and equal to
m = dimY − dimX at each point of Y .

The matrix (3.12) is equivalent with the matrix

(3.13)

(
Eσ

∂Eσ

∂yν1
j1

∂2Eσ

∂yν1
j1

yν2
j2

· · · ∂nEσ

∂yν1
j1

· · · yνn
jn

)
.

From this fact immediately follows

Proposition 3.3. Let E be an Y -pertinent dynamical form on J1Y . For E be regular any
of the following n conditions is sufficient:

(3.14) rank
( ∂kEσ

∂yν1
j1

· · · yνk
jk

)
= m, 1 ≤ k ≤ n,

where σ labels rows and the other incides label columns.
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4. Variational integrating factors for first-order PDE

In this section we will study the question on the existence of variational integrating
factors for first-order PDE. The setting of the problem is as follows: given a dynamical form
E′, we can ask if in a neighbourhood U of every point x ∈ J1Y there is a locally variational
form E, such that E = GE′ for a regular matrix G on π1,0(U) ⊂ Y . If this is the case, we
call E′ equivalent with E and G a variational integrating factor, or variational multiplier
for E′.

We shall discuss properties of the ideals DαE
and DαE′ , regularity conditions, and con-

ditions for an integrating factor G to be variational.
In what follows, we denote by Eσ the components of E, and by E′

ν the components of E′.
In fibered coordinates Eσ = Gν

σE′
ν , where Gν

σ, 1 ≤ σ, ν ≤ m, are functions of the variables
(xi, yκ).

Taking into account Definiton 3.1 it is easy to show that the assumption of regularity of
the matrix G means that the differential systems DαE

and DαE′ are of the same rank.

Proposition 4.1. Let E,E′ be two Y -pertinent dynamical forms on U ⊂ J1Y , E = GE′

for an (mxm)-matrix G. If G is regular then rankDαE
= rankDαE′ .

Proof. Using the fact that Gν
σ are functions of the variables (xi, yκ), and the relation Eσ =

Gν
σE′

ν , we get

(4.1)
∂kEσ

∂yν1
j1

. . . ∂yνk
jk

=
∂kGν

σE′
ν

∂yν1
j1

. . . ∂yνk
jk

= Gν
σ

∂kE′
ν

∂yν1
j1

. . . ∂yνk
jk

, 1 ≤ k ≤ n.

Hence, if G is regular, we obtain by (3.12), rankDαE
= rankDαE′ . �

Remark 4.1. Similar result is valid for systems of ODE of any order (see [12], [13]).

Denote by I(DαE
) the ideal generated by the system of n-forms DαE

.

Proposition 4.2. Let E,E′ be two Y -pertinent dynamical forms on J1Y , E = GE′ on
U ⊂ J1Y . If G is regular then I(DαE

) = I(DαE′ ).

Proof. This assertion follows from the fact that I(DαE
) and I(DαE′ ) are generated by the

same system of n-forms.
Indeed,

(4.2) iξαE = iξαGE′ = GiξαE′ .

�
Let us prove the main result of this section.

Theorem 4.1. Consider an Y -pertinent dynamical form E′ on J1Y . Set

(4.3) E′
ν = Dν +

n∑
k=1

D j1···jk
νκ1···κk

yκ1
j1

· · · yκk
jk

Let x ∈ J1Y be a point, G a regular matrix defined in a neighbourhood of π1,0(x). G is
a variational integrating factor for E′ if and only if it satisfies the following system of
equations:

(4.4)
Gν

σDl
νρ + Gν

ρDl
νσ = 0

Gν
σDlj2···jk

νρκ2···κk
+ Gν

ρDlj2···jk
νσκ2···κk

= 0, 2 ≤ k ≤ n,
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(4.5)

Dν

(∂Gν
σ

∂yρ
−

∂Gν
ρ

∂yσ

)
+ Gν

σ

∂Dν

∂yρ
− Gν

ρ

∂Dν

∂yσ
+ Di

νσ

∂Gν
ρ

∂xi
+ Gν

ρ

∂Di
νσ

∂xi
= 0,

Dlj2···jk
νκκ2···κk

(∂Gν
σ

∂yρ
−

∂Gν
ρ

∂yσ

)
+ Dlj2···jk

νσκ2···κk

∂Gν
ρ

∂yκ
+ Gν

σ

∂Dlj2···jk
νκκ2···κk

∂yρ

−Gν
ρ

∂Dlj2···jk
νκκ2···κk

∂yσ
+ Gν

ρ

∂Dlj2···jk
νσκ2···κk

∂yκ
+

∂Gν
ρ

∂xi
Dilj2···jk

νσκκ2···κk
+ Gν

ρ

∂Dilj2···jk
νσκκ2···κk

∂xi
= 0,

2 ≤ k ≤ n − 1,

Dlj2···jn
νκκ2···κn

(∂Gν
σ

∂yρ
−

∂Gν
ρ

∂yσ

)
+ Dlj2···jn

νσκ2···κn

∂Gν
ρ

∂yκ

+Gν
σ

∂Dlj2···jn
νκκ2···κn

∂yρ
− Gν

ρ

∂Dlj2···jn
νκκ2···κn

∂yσ
+ Gν

ρ

∂Dlj2···jn
νσκ2···κn

∂yκ
= 0.

Proof. As we have shown above, the components Eσ of a locally variational form satisfy
equations (3.2). Taking into account the first of them and using the relation Eσ = Gν

σE′
ν

we get

(4.6)

0 =
∂Eσ

∂yρ
l

+
∂Eρ

∂yσ
l

=Gν
σ

∂E′
ν

∂yρ
l

+ Gν
ρ

∂E′
ν

∂yσ
l

=Gν
σ

(
Dl

νρ +
n∑

k=2

Dlj2···jk
νρκ2···κk

yj2
κ2

· · · yjk
κk

)
+ Gν

ρ

(
Dl

νσ +
n∑

k=2

Dlj2···jk
νσκ2···κk

yj2
κ2

· · · yjk
κk

)

This polynomial is equal to zero if and only if all its coefficients are equal to zero, giving us
(4.4).

Next, the Eσ’s satisfy also the second of the equations (3.2). Similarly as above we obtain

(4.7)

0 =
∂Eσ

∂yρ
− ∂Eρ

∂yσ
+ di

∂Eρ

∂yσ
i

=E′
ν

(∂Gν
σ

∂yρ
−

∂Gν
ρ

∂yσ

)
+ Gν

σ

∂E′
ν

∂yρ
− Gν

ρ

∂E′
ν

∂yσ

+
∂Gν

ρ

∂xi

∂E′
ν

∂yσ
i

+ Gν
ρ

∂2E′
ν

∂xi∂yσ
i

+
∂Gν

ρ

∂yκ

∂E′
ν

∂yσ
i

yκ
i + Gν

ρ

∂2E′
ν

∂yκ∂yσ
i

yκ
i

+
∂Gν

ρ

∂yκ
m

∂E′
ν

∂yσ
i

yκ
mi + Gν

ρ

∂2E′
ν

∂yκ
m∂yσ

i

yκ
mi.
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Last two terms are obviously equal to zero. Differentiating E′
ν and using (4.3) we get

(4.8)

(
Dν +

n∑
k=1

Dj1···jk
νκ1···κk

yj1
κ1

· · · yjk
κk

)(∂Gν
σ

∂yρ
−

∂Gν
ρ

∂yσ

)

+ Gν
σ

(∂Dν

∂yρ
+

n∑
k=1

∂Dj1···jk
νκ1···κk

∂yρ
yj1

κ1
· · · yjk

κk

)

− Gν
ρ

(∂Dν

∂yσ
+

n∑
k=1

∂Dj1···jk
νκ1···κk

∂yσ
yj1

κ1
· · · yjk

κk

)

+
∂Gν

ρ

∂xi

(
Di

νσ +
n∑

k=2

Dij2···jk
νσκ2···κk

yj2
κ2

· · · yjk
κk

)

+ Gν
ρ

(∂Di
νσ

∂xi
+

n∑
k=2

∂Dij2···jk
νσκ2···κk

∂xi
yj2

κ2
· · · yjk

κk

)

+
∂Gν

ρ

∂yκ

(
Di

νσyκ
i +

n∑
k=2

Dij2···jk
νσκ2···κk

yj2
κ2

· · · yjk
κk

yκ
i

)

+ Gν
ρ

(∂Di
νσ

∂yκ
yκ

i +
n∑

k=2

∂Dij2···jk
νσκ2···κk

∂yκ
yj2

κ2
· · · yjk

κk
yκ

i

)
= 0

It remains to express the last equation as a polynomial and compare the coefficients at the
terms of the same degree. Finally we obtain (4.5). �

Corollary 4.1. Let dimX = 2, dimY = 3. Suppose that (4.3) is quasilinear, i.e.

(4.9) E′
1 = D1 + D1

11y
1
1 + D2

11y
1
2 ,

where at least one of the Dk
11, k ∈ {1, 2}, is nonzero. Then E′ has no variational integrating

factor.

Proof. The first of equations (4.4) immediately gives

(4.10)
G1

1D
1
11 + G1

1D
1
11 =0,

G1
1D

2
11 + G1

1D
2
11 =0.

The only solution of this system of equations is G = (G1
1) = 0 Hence, there is no non-zero

integrator for E′. �

Corollary 4.2. Let dimX = 2, dimY = 4. Suppose that

(4.11)
E′

1 = 1 + y1
1 + y2

2 ,

E′
2 = 1 + y1

1 + y2
2 .

Then every regular matrix G, satisfying the following equations

(4.12)
G1

1 + G2
1 = 0,

G1
2 + G2

2 = 0,
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is a variational integrating factor for E′.

Proof. In view of (4.11), the coefficients Dl
jk are the following

(4.13)

D1 = D2 = 1,

D1
11 = D2

12 = D1
21 = D2

22 = 1,

D1
12 = D2

11 = D1
21 = D2

21 = 0,

and only the first equation from the system of equations (4.4) (resp.(4.5)) is nontrivial. For
different choice of the coefficients l, σ, ρ, where 1 ≤ l, σ, ρ ≤ 2, the first of equations (4.4)
gives six equations as follows

(4.14)

2G1
1 + 2G2

1 = 0,

2G1
2 + 2G2

2 = 0,

G1
2 + G2

2 = 0,

G1
1 + G2

1 = 0.

Similarly, the second of equations (4.5) gives four equations, which vanish identically. Fi-
nally, we conclude (4.12). �
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