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1. INTRODUCTION

Given a dynamical form E’, we can ask if there is a locally variational form, equivalent
with E’. The integrating factor G such that F = GFE’ is a locally variational form is then
called a variational integrating factor.

A complete solution of the problem of searching for variational integrating factors in
general is yet not known. There have been achieved some particular results concerning
mainly second-order ODE (see e.g. [2], [4], [12], [14]). Concerning PDE, there is only one
paper containing a short remark on a solution of the multiplier problem for a single second
order partial differential equation (see [2]).

The aim of this work is to study the problem of variational integrating factors for a dy-
namical form, which represents a system of first order PDE. We prove that if an everywhere
regular matrix G is a variational integrating factor for a regular variational form E’, then
E = GE' is regular and the associated dynamical differential ideals coincide. With help of
the variationality conditions for PDE (see [1], [9]) we find a system of equations for varia-
tional integrating factors by the assumption that E’ is a polynomial in the first derivatives.
Finally we compute concrete conditions for variational integrating factors in two special
cases, namely when E’ represents quasilinear equations with constant coefficients and 2
independent and 1 dependent variable (resp. 2 independent and 2 dependent variables).

In this work we use our recently obtained results concerning variationality of a system
of PDE (see [5],[6],[7])-

The paper is organized as follows. In Section 2 we introduce notations and necessary
concepts and results concerning the calculus of variations on fibred manifolds. In Section 3
we recall some results concerning variational propertis of systems of first-order PDE. Main
results concerning integrating factors are stated and proved in Section 4.

2. BASIC DEFINITIONS AND KNOWN RESULTS

In what follows, all manifolds and mappings are smooth, and summation over repeated
indices is understood. We consider a fibred manifold 7 : Y — X, dim X = n,dimY = m+n.
We denote J! the 1-jet prolongation functor, 71 : J'Y — X, 719 : J'Y — Y. Let us recall
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some basic definitions. A mapping v : U — Y, where U C X is an open subset, is called
a section of 7, if m oy = idy. A vector field £ on Y is said to be w-vertical, if Tw.§ = 0.
Similarly, a vector field £ on J'Y is called m-vertical (resp. m g-vertical), if Tm1.& = 0
(resp. T'my 9.6 = 0). A g-form n on J1Y is called 7 -horizontal (resp. m1,0-horizontal), if
i¢n = 0 for every mi-vertical (resp. 7 o-vertical) vector field & on J'Y. We denote by h
the horizontalization of differential forms. h is defined to be an R-linear wedge-product
preserving mapping such that for a g-form 1 on Y hn is a g-form on J'Y, and

(2.1) hdx' = dx*, hdy® = ;’dasj, hf = fomp.

It’s easy to see, that

(2.2) hdf = d;fdz!, where d;f = f 8—f 7.

n is called contact, if J1y*n = 0 for every section v of m. A contact my -horizontal
g-form 7 is called 1-contact, if for every mi-vertical vector field £ on J'Y the form i¢n is
mi-horizontal; i is called k-contact, 2 < k < g, if 4¢n is (k— 1)-contact. Recall that for every
1 0-horizontal g-form on J'Y there is a unique decomposition n = no+mn1 + - - +14, where
Mo is a m1-horizontal form, and n;, 1 < i < q, is a i-contact form on J'Y; we set hn = no,
pin = 1n;, and call it the horizontal and i-contact part of n, respectively. Consequently, every
g-form on Y can be uniquely decomposed as follows

(2.3) T 0N = hn +pin+ -+ pgn.

We denote by (z,y7) (vesp. (z',57,y7)) local fibred coordinates on Y (resp. the associ-
ated coordinates on J'Y), and set

(2.4) wo = dzt Ada? - Ada", w7 = dy° —yf da®,
. wj = ia/azj wo, Wi, = ia/aij Wiy s etc.

A 1-contact 71 g-horizontal (n + 1)-form E on J'Y is called a dynamical form. In fibred
coordinates, E = E, w’ Awg, where E, = E,(z*,y",y¥). A section v of 7 is called a path of
E,if EoJ'y =0, i.e., if the components v” of 7 satisfy the following system of m first-order
PDE:

(2.5) E( ,y,‘?])zo, 1<o<m.

By a first-order Lagrangian we mean a horizontal n-form X on J'Y. In fibred coordinates,
A = Lwy, where L = L(z%, y”, y¥).

Let p be an n-form on Y. Then A = hp is a first-order Lagrangian (with the function L
polynomial of degree < n in the first-order derivatives), and

"L/ 12 O*L
2.6 rop=Lwo+ (—)7 TN AWTE A W)
( ) T1,0P wo + 2 L ay;rll . ayq: w w Wiy - gk

(see [8] and also [3]). We denote p§ = 7} op and call this n-form the Krupka form of A. The
at most 1-contact part of pf, ie.,

oL
(27) 0y = Lwy + aigw Awj,



is called the Poincaré—Cartan form of X. Note that Ey = p1dp is a dynamical form on J'Y;
it is called the Fuler—Lagrange form of A\, and the corresponding equations for paths of E
are called the Fuler—Lagrange equations. Obviously, E\ = E,(L)w?’ A wg, where

oL oL
2. Ey(L) = — —dj=—,
( 8) ( ) 6ya- Jayjq

and the Fuler—Lagrange expressions E,, 1 < o < m, are all polynomials of degree < n in
the yj’s.

A dynamical form E on J'Y is called variational, if for every point z € J'Y there exists
a neighbourhood U and Lagrangian A defined on U such, that E = E. Thus, for variational
forms equations for paths (2.5) are the Euler-Lagrange equations. It is known (see [15]) that

if E = E,w’ Awy is a variational dynamical form on J'Y, then to every point in J'Y there
exists a neighbourhood U such that A = Lwy, where L is a function on U defined by

1
(2.9) L= y”/o Eq(a', uy”, uy}) du,

is a Lagrangian for F, called Vainberg—Tonti Lagrangian.
For more details see [10], [11], [13].

3. VARIATIONAL PROPERTIES OF SYSTEMS OF FIRST-ORDER PDE

In the sequel, we recall some properties of systems of first-order PDE on manifolds as
obtained in [6],[7].

First of all, for any system of first-order PDE to be variational, polynomiality in the
first-order derivatives is a necessary property:

Proposition 3.1. Let E be a dynamical form on J'Y, E = E,w’ Awg. If E is locally
variational, then the E, are polynomials of degree < mn in the y;’s.

In view of the above proposition, the components F, of a locally variational form E
on J'Y are polynomials of degree at most n in the y¥’s with the coefficients completely
antisymmetric in both the upper and lower indices. We set

E,=B,+ B y;_/ll 4.4 Brin y}"f ...y;_f:,

(3 1) avy OVy:VUn
: idpdardk oy d1edarip ik ik 10k
Biudedadk g dvdeds o opavede g oivie 1< E <o,
P q q P 1 D k plV1 k

Next, first-order locally variational forms are equivalent to closed (n + 1)-forms on Y.

Theorem 3.1. Let E be a dynamical form on J'Y. The following conditions are equiva-
lent:

(1) In every fibered chart the components E, of E satisfy the following conditions:

dE, OE, _ 0E, 0E,  0E,

I =0, — — — + i
ayy " oy? oyr 0y Oy

(3.2)

=0, 1<o,v<m, 1<5<n.

(2) There ezists a unique closed (n + 1)-form o on'Y such that E = p1a.
(3) E is locally variational.

Taking into account the relation between dynamical forms and partial differential equa-
tions, we obtain an explicit characterization of variational first order PDE and their La-
grangians:



Theorem 3.2. A system of C™ first-order partial differential equations is variational if
and only if for some r, 1 <r < n, it is of the form

(3_3) B Jiir ayyl ayw + ... +B Jij2 83/”1 8yyz J1 ayyl

oviVr a$]1 axjr ovivz ax]l a$]2 o1 81’]1

+B, =0,

where the coefficients are functions of (z*,y"), completely antisymmetric in the upper and
lower indices, and the (n + 1)-form

1 .
a:BUdy"/\wo—ﬁ—g Bl dy® Ndy"t Awj, + ...

oy
(3.4) X E
Ty Do T NN NN g,

on Y is closed. In this case, « is the exterior derivative of the Krupka form px (2.6)
associated with the corresponding Vainberg—Tonti Lagrangian L (which is a polynomial of
degree r in the variables y;’)

Let E be a dynamical form on J'Y. By a Lepage class of E we mean the equivalence
class [a] of (possibly local) (n + 1)-forms on J'Y such that

(3.5) a€la)] <= pa=E.

This means that every element of the class [a] is of the form o = F + F where F is an at
least 2-contact form.

By definition, (n + 1)-forms belonging to the Lepage class of a first-order dynamical
form E are defined on open subsets of J'Y. We say that E is Y -pertinent if to every point
in Y there exists a neighborhood U and a form ay belonging to the Lepage class of E,
projectable onto U. In other words, E is Y-pertinent if it can be represented by a Lepage
class defined on Y.

In [7] the following proposition is proved

Proposition 3.2. Let E be a dynamical form on J'Y .
The following four conditions are equivalent:
(1) E is Y -pertinent.
(2) In every fiber chart, E is of the form E = E,dy® Awg, where

= I Jrdn g M1 e
EO’ - BG’ + Baylyjl + + Bo’l/l-nlrlnyjl yjna

Sdpdade g diedasdeed Jdk g v
BUVl"'Vp"'Vq"'Vk = Ba‘lll-“l/q-"llp"'l/k’ [ Z R 2 7 Bl/pl/l“'a"‘l’k’ 1 S k S s

(3.6)

(3) There exists a unique (n+ 1)-form « on'Y such that E = p1a.
(4) The (n+ 1)-form

1 OFE,
o W AW A AR AWy

(37) £2p2<E) =FE,w’ Nwy + 7
kgl Kl(k+ 1) Oyj! - y;

is projectable onto Y.



The mapping Lepa, defined by (3.7) is a bijection between Y -pertinent dynamical forms
on JYY and (n + 1)-forms on Y. The inverse to Lepy is the mapping p;.

In view of Proposition 3.2, equations for paths of an Y-pertinent dynamical form E on

JYY read
(3.8) Yiearp =0 for every vertical vector field { on Y,

where ag is the unique Lepage form on Y, associated to F. In other words, paths of E are
integral sections of the ideal of differential forms on Y, generated by the following system
of n-forms:

(3.9) Do, = {icag | £ runs over all vertical vector fields on Y'}.

Computing local generators explicitly, we obtain D,,, = span{n,, 1 < o < m}, where

(3.10) Ne = Bywo + Z o BArds dy" A Ady"c Awy, .o,
k=1

Definition 3.1. An Y-pertinent dynamical form E on J'Y (respectively, equations (3.8),
respectively, an (n + 1)-form « on Y) is called regular if

(3.11) rank Dy, =m

Condition (3.11) obviously means that generators (3.10) of D, are linearly independent
at each point of Y, or equivalently, that rank of the matrix

(3.12) B = (B BJ1 B2 ... BG];}1'::<]-1;:L ) ,

ovy oVi1V2

where o labels rows and the other sets of indices label columns, is maximal and equal to
m =dimY — dim X at each point of Y.
The matrix (3.12) is equivalent with the matrix

OF, 0%’E O"E,
(3.13) E, o A a o |-
8yj1 ay]l y]z 8yj1 Y5,

From this fact immediately follows
Proposition 3.3. Let E be an Y -pertinent dynamical form on J'Y . For E be regular any
of the following n conditions is sufficient:

(3.14) rank(

where o labels rows and the other incides label columns.



4. VARIATIONAL INTEGRATING FACTORS FOR FIRST-ORDER PDE

In this section we will study the question on the existence of variational integrating
factors for first-order PDE. The setting of the problem is as follows: given a dynamical form
E’, we can ask if in a neighbourhood U of every point 2 € J'Y there is a locally variational
form E, such that E = GE’ for a regular matrix G on 7 o(U) C Y. If this is the case, we
call B/ equivalent with E and G a variational integrating factor, or variational multiplier
for E'.

We shall discuss properties of the ideals D, and D, , regularity conditions, and con-
ditions for an integrating factor G to be variational.

In what follows, we denote by E, the components of E, and by E/, the components of E’.
In fibered coordinates E, = GYLE!,, where G¥, 1 < o,v < m, are functions of the variables
(@', y").

Taking into account Definiton 3.1 it is easy to show that the assumption of regularity of
the matrix G means that the differential systems D, and D, , are of the same rank.

Proposition 4.1. Let E,E’ be two Y -pertinent dynamical forms on U C J'Y, E = GE’
for an (mxm)-matriz G. If G is regular then rank D, = rank D, .

Proof. Using the fact that G¥ are functions of the variables (z%,y"), and the relation £, =
GYE!, we get

k 1Y alZ8 nl] k
0" E, "GV E], v o"E], 1<k<n

oyt ... Oysr N dyst ... Oysr 7oyt oy

(4.1)

Hence, if G is regular, we obtain by (3.12), rank D, = rankD,,. O
Remark 4.1. Similar result is valid for systems of ODE of any order (see [12], [13]).
Denote by Z(D,,,,) the ideal generated by the system of n-forms D, .

Proposition 4.2. Let E,E' be two Y -pertinent dynamical forms on J'Y, E = GE' on
U C JYY. If G is regular then I(Dy,,) = Z(Day,, )-

Proof. This assertion follows from the fact that Z(D,, ) and Z(D,,,) are generated by the
same system of n-forms.

Indeed,
(4.2) igOéE = igOéGE/ = GigaE/.

O
Let us prove the main result of this section.

Theorem 4.1. Consider an Y -pertinent dynamical form E' on J'Y . Set
n . .
(4.3) E,=Dy,+ Y DIk ity
k=1

Let x € J'Y be a point, G a regular matriz defined in a neighbourhood of m o(z). G is
a variational integrating factor for E' if and only if it satisfies the following system of
equations:

6D, + iDL, =0
Gngjz"'jk . + GZDljz“'jk =0, 2<k<n,

VpK2 K VOK2 K

(4.4)

6



oGy 0GY, oD oD . 0GY oD:
Dy( o _ P) Gl/ ViGV v D P v 1{0:0’
oyr  0y° +Go oyP P oye +Puo oxt & ozt
v v v ljo--g
Lz jk (afo — aG”) + D2k Lray OD i
VKK2 Kk ayp 81/0 VOK2 K ayﬁ o ayp
ODJx oDk, OGY ODy3% k.
7Gy VKK2 K G,, VOK2 K ,pD’Lle”]k Gl, VO'KKVQ Kk _ 0’
(4.5) - +G, By~ Bt Dvannaim, T G5 57—
2<k<n-1,
Dz in (6Gg _ GGZ) | Dliz=in oGy
VKK Kn ayp 8yg VoK Kn 8y“
ODg2an oDz n oDz
Gy VKK Kn —GV VKK Kn Gy VOK2 Rn 0.
+ o ayp P ayo + P ay/{
Proof. As we have shown above, the components E, of a locally variational form satisfy
equations (3.2). Taking into account the first of them and using the relation E, = GLE,,
we get
0 :E)Eg oE,
oyl dyp
OFE! OF!
:GZ 14 + Gl/ v
(4.6) aylﬂ p oYy

n
—v(nt E lj2-+jk
_Ga (Dup + Dl/pﬁz---ﬁk
k=2

This polynomial is equal to zero if and only if all its coefficients are equal to zero, giving us

(4.4).

Next, the E,’s satisfy also the second of the equations (3.2). Similarly as above we obtain

J2
yKQ

N e
ol ) Gy (Dl + YD Dz s k)
k=2

0 :8E(7 _ 0E, OE,
oyP oy° ' oy?
oGr.  0GY OF' OF'
=F g _ P v v o_ v
A oye  oy° )+ G oy~ ooy
oGy O, , O°E!
(4'7) i o 14 1Oy°
0zt Oy 0zt 0y¢
= oy7 " dyrayg
oGy oE, . PE,
+ Dy Dye Ymi pmymi'
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Last two terms are obviously equal to zero. Differentiating E!, and using (4.3) we get

" N\ 0GY 0GY
(DV'FZ_:D}ZI/{ljknkynlan);)(ayp - ayg)
( 8D‘17/11-§1 k)ik y]l . y )

oyP ok
- 5fom]n
( Ay° Y y“k)

k 1

(4.8)

aGZ i ij2 gk Jk
8Ii (Dua + ZDUOK2 nkynz : 'ynk)

y 6D7' aDlyh Jk .
+Gp( o +Z Y --yi’;)
k=2

+8GZ Dt o~ ZDU2 ik Tk gk
ayK voli + VOK2: nkyrw ynkyz

L (9D, D2 ,
+Gp( oy Vi +Zﬁyi§ 'yffkyf) =0

It remains to express the last equation as a polynomial and compare the coefficients at the
terms of the same degree. Finally we obtain (4.5). O

Corollary 4.1. Let dim X =2, dimY = 3. Suppose that (4.3) is quasilinear, i.e.
(4.9) Ey =D+ Dllyl + D11y2a

where at least one of the DY, k € {1,2}, is nonzero. Then E' has no variational integrating
factor.

Proof. The first of equations (4.4) immediately gives

G1Dy; + G Dy =0,

(4.10)
GiD}, + Gi D}, =0.

The only solution of this system of equations is G = (G1) = 0 Hence, there is no non-zero
integrator for £/. O

Corollary 4.2. Let dim X =2, dimY = 4. Suppose that

By =1+4yi +y,
(4.11) , 1 )
Ey=1+wy +vs.
Then every regular matriz G, satisfying the following equations

GI1+G3=0,

4.12
(4.12) G+ G2 -0,

8



5

a variational integrating factor for E'.

Proof. In view of (4.11), the coefficients Dék are the following

(4

Dy =Dy =1,
-13) D%l = D%Q = D%1 = DSQ =1,
D%z = D%l = D%l = D%l =0,

and only the first equation from the system of equations (4.4) (resp.(4.5)) is nontrivial. For
different choice of the coefficients 1, o, p, where 1 < I,0,p < 2, the first of equations (4.4)
gives six equations as follows

(4

2G1 +2G3 =0,
2GL +2G2 =0,
Gy +G3=0,
Gl+G?=0.

14)

Similarly, the second of equations (4.5) gives four equations, which vanish identically. Fi-
nally, we conclude (4.12). O
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