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Reducibility of zero curvature representations

with application to recursion operators

Michal Marvan∗

Abstract

We present a criterion for reducibility of zero curvature representations
to a solvable subalgebra, hence to a chain of conservation laws. Our results
are applied to inversion of recursion operators.

1 Introduction

To establish integrability of a nonlinear partial differential equation in the sense
of soliton theory [1, 22], at least in two dimensions, one usually looks for a zero
curvature representation (ZCR) [26], possibly in the form of a Lax pair [13].
If depending on a non-removable (spectral) parameter, a ZCR may serve as a
starting point of methods to derive infinitely many independent conservation
laws and large classes of exact solutions.

However, certain ZCR’s do not imply integrability because of specific degen-
eracy, which does not even contradict possible presence of one or more nonre-
movable parameters. E.g., Calogero and Nucci [2] presented a formula to assign
a Lax pair to any nonlinear system possessing a single conservation law, arguing
that such systems are too abundant to be all integrable. Recently Sakovich [20]
observed that the Calogero–Nucci examples can be singled out by properties
of their associated cyclic bases; in particular, they do not generate integrable
hierarchies.

In this paper we postulate that a ZCR is degenerate if it takes values in a
solvable Lie algebra or is gauge equivalent to such (Sect. 4). This idea is, of
course, certainly not new (Dodd and Fordy [6, Sect. 3]). In the case of abelian
Lie algebras it was shown in [1, Sect. 3.2.c] that the ZCR is equivalent to a
set of local conservation laws. In the more general case of solvable algebras, it
follows rather easily from the Lie theorem that every such ZCR is equivalent
to a chain of nonlocal conservation laws. In particular, the result renders any
attempts to generate infinitely many independent conservation laws out of a
degenerate ZCR rather unrealistic.

In Sect. 5 we concentrate on the problem of detecting reducibility to a subalge-
bra, in particular, a solvable one. Purely algebraic criteria are insufficient since
the Lie algebra a ZCR takes values in may be altered by gauge transformation.
On the other hand, when trying to find the reducing gauge matrix directly, one
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encounters a rather untractable underdetermined differential system. Our idea is
to restrict the manifold of gauge matrices by employing appropriate matrix de-
compositions, in particular, the Gram and Gauss decomposition, also known as
the QR- and LU-decomposition, respectively. Remarkable connections between
these decompositions and integrable systems were discovered in numerical anal-
ysis, see [4, 5, 25] and references therein.

Section 6 is devoted to recursion operators in Guthrie form, which involve a
ZCR. Such a recursion operator can be expressed in the traditional terms of
inverse total derivatives D−1 ([14, 15]) whenever the ZCR is strictly lower tri-
angular or gauge equivalent to such. In combination with the results of previous
sections, we get a recipe for inversion of recursion operators in terms of D−1. In
the last section of the paper, we invert the recursion operator of the Tzitzéica
equation.

2 Preliminaries

Let E be a system of nonlinear partial differential equations (PDE)

F l = 0 (1)

on a number of functions uk in two independent variables x, y. Here each
F l is a smooth function depending on a finite number of variables x, y, uk,
uk

x, uk
y , . . . , uk

I , . . ., where I stands for a symmetric multiindex over the two-
element set of indices {x, y}. Besides the local variables x, y, uk, uk

I , we shall
also need non-local variables or pseudopotentials [24], which may be introduced
as additional variables satisfying a system of equations

zi
x = f i, zi

y = gi, (2)

where f i, gi are functions depending on a finite number of local variables as well
as the pseudopotentials zj ; we require that the system (2) be compatible as a
consequence of (1).

Within their geometric theory of systems of PDE’s, Krasil’shchik and Vino-
gradov [11] introduced the notion of a covering, which separates the invariant
content of nonlocality from its coordinate presentation. Pseudopotentials then
correspond to a particular choice of coordinates along the fibres of the covering
in question. We recall the basic facts below; details we had to leave aside may
be drawn from [11] and also from [12, Ch. 6].

Let J∞ be an infinite jet space equipped with local jet coordinates x, y, uk, uk
I ;

the functions F l then may be interpreted as functions defined on J∞. For sim-
plicity we define J∞ to be the space of jets of local sections of a fibred manifold
Y −→ M over a two-dimensional base manifold M equipped with local coordi-
nates x, y, while uk are local coordinates along the fibres. In every domain of
definition of the independent variables x, y, we have two distinguished commut-
ing vector fields on J∞,

Dx =
∂

∂x
+

∑
k,I

uk
Ix

∂

∂uk
I

, Dy =
∂

∂y
+

∑
k,I

uk
Iy

∂

∂uk
I

,
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which are called total derivatives.
The equation manifold E associated with system (1) is defined to be the sub-

manifold in J∞ determined by the infinite system of equations F l = 0 and
DIF

l = 0 for I running through all symmetric multiindices in x, y. The total
derivatives Dx, Dy are vector fields on J∞ tangent to E , therefore they admit
a restriction to E . The restricted fields then generate the Cartan distribution C
on E . The pair (E , C), called a diffiety, is an invariant geometric object associ-
ated with system (1). In what follows, we shall not make significant difference
between equations and the corresponding diffieties.

Mappings between diffieties that preserve the Cartan distributions are called
morphisms of diffieties; they map solutions to solutions. We additionally require
that morphisms commute with projections to the base manifold M ; these will be
called morphisms over M . Bijective morphisms are called isomorphisms; their
inverses are isomorphisms, too.

A covering over a diffiety E consists of another diffiety E ′ and a surjective
submersion E ′ −→ E over M such that the Cartan distribution on E ′ is projected
onto the Cartan distribution on E .

The system formed by equation (1) and the 2k additional equations (2) gener-
ates a covering, where E ′ is the product E×R

k and z1, . . . , zk provide coordinates
along R

k. In particular, the projection preserves the coordinates x, y. If f i, gi

are functions defined on E′ such that the vector fields

D′
x = Dx +

k∑
i=1

f i ∂

∂zi , D′
y = Dx +

k∑
i=1

gi ∂

∂zi (3)

commute (which is a geometric way of saying that equations (2) are compatible),
then E ′ equipped with the vector fields (3) is a diffiety and a k-dimensional
covering over E . Recall from [11] that every finite-dimensional covering is locally
of this form.

Two coverings E ′ and E ′′ are said to be isomorphic over E if there exists
an isomorphism of the diffieties E ′ ∼= E ′′ that commutes with the projections
to E . Isomorphic coverings result from invertible transformations of nonlocal
variables. A k-dimensional covering is said to be trivial if it is isomorphic to one
with f i = gi = 0; such a covering is essentially a family of identical copies of E .

The simplest yet useful covering (2) may be associated with a single nontrivial
conservation law α = f dx + g dy, i.e., a pair of functions f, g defined on E and
satisfying Dyf = Dxg on E :

Definition 1 A one-dimensional abelian covering associated with a conserva-
tion law α = f dx + g dy is defined to be the product projection E × R −→ E ,
equipped with total derivatives

D′
x = Dx + f

∂

∂z
, D′

y = Dx + g
∂

∂z
,

where z denotes the coordinate along R.

One easily checks that the vector fields D′
x, D′

y on E ′ commute if and only if
Dyf = Dxg. In this case, the variable z is called the potential of the conservation
law α. We have D′

xz = f , D′
yz = g or briefly zx = f , zy = g.
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Recall that a conservation law is said to be trivial if there exists a (local)
function h on E such that f = Dxh, g = Dyh. A covering associated to a trivial
conservation law is isomorphic to a trivial covering through the invertible change
of variables z = z′ + h.

A covering ĒE −→ E is said to be trivializing for a conservation law α = f dx +
g dy, if the pullback ᾱα of α along the projection ĒE −→ E is a trivial conservation
law on ĒE . Obviously, the one-dimensional abelian covering associated with the
conservation law α trivializes α.

A general n-dimensional abelian covering is obtained by repeating the con-
struction of the one-dimensional abelian covering (cf. [24, Sect. IV]):

Definition 2 An n-dimensional covering ẼE over E is said to be abelian, if
(1) either n = 1 and ẼE is a one-dimensional abelian covering over E ;
(2) or ẼE is a one-dimensional abelian covering over an (n − 1)-dimensional

abelian covering E ′ over E .

Let us note that Khorkova [10] introduced the universal abelian covering,
which need not be finite-dimensional.

3 Zero-curvature representations

Pseudopotentials can also come from zero-curvature representations. Let g be
a matrix Lie algebra (recall that according to the Ado theorem every finite-
dimensional Lie algebra has a matrix representation). By a g-valued zero-
curvature representation (ZCR) for E we mean a g-valued one-form α =
A dx + B dt defined on E such that

DyA−DxB + [A, B] = 0 (4)

holds on E , which means that (4) holds as a consequence of system (1) (we do
not insist that (4) necessarily reproduces system (1), which is normally required
in integrability theory).

Let G be the connected and simply connected matrix Lie group associated with
g. Then for an arbitrary G-valued function S, the form αS = AS dx + BS dt,
where

AS = DxSS−1 + SAS−1, BS = DySS−1 + SBS−1 (5)

is another ZCR, which is said to be gauge equivalent to the former.
A ZCR is said to be trivial if it is gauge equivalent to zero, i.e., if A = DxSS−1,

B = DySS−1. A covering ĒE −→ E is said to trivialize a ZCR α = A dx + B dy
if the pullback ᾱα of α along the projection ĒE −→ E is a trivial ZCR.

A trivializing covering for the ZCR α can be obtained in the following way.

Proposition 3 For every g-valued ZCR α on E there exists a covering πα :
ẼEα −→ E that trivializes α.
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Proof Let α = A dx + B dy be a ZCR, where A and B are n × n matrices
belonging the algebra g. Put ẼEα = E × G, where G is the matrix Lie group
associated with g. Given an element C ∈ g, denote by ξC the right-invariant
vector field on G corresponding to C. Given a g-valued function C on E , let us
denote by ΞC the unique vector field on ẼEα with the E-component zero and the
G-component equal to ξC , at each point of ẼEα. Consider the vector fields

D̃Dx = Dx + ΞA, D̃Dy = Dy + ΞB

on ẼEα, where Dx, Dy are the total derivatives on E . Let us show that D̃Dx, D̃Dy

are the total derivatives for a trivializing covering πα : ẼEα −→ E of α.
Let A = (aij), B = (bij). Let us first consider G = GLn with its natural

parametrization GLn = {(zij) | det zij �= 0}. We have

ΞA =
∑
i,j,l

aijzjl
∂

∂zil
, ΞB =

∑
i,j,l

bijzjl
∂

∂zil
.

Then D̃Dx, D̃Dy commute since

[D̃Dx, D̃Dy] = [Dx, Dy] + [Dx,ΞB ]− [ΞA, Dy] + [ΞA,ΞB ]

= ΞDxB−DyA−[A,B]

= 0.

The same holds for arbitrary G ⊆ GLn, since the vector fields ΞA,ΞB are
tangent to G whenever A, B belong to g.

Now denote by Θ the projection ẼEα = E ×G −→ G viewed as a matrix-valued
function on ẼEα. Then DxΘ = 0 and therefore

(D̃DxΘ)µν = (ΞAΘ)µν =
∑
i,j,l

aijzjl
∂

∂zil
zµν =

∑
j

aµjzjν = (AΘ)µν .

Thus, D̃DxΘ ·Θ−1 = A and similarly D̃DyΘ ·Θ−1 = B, whence the pullback of α
on ẼEα is trivial.

The system (2) corresponding to ẼEα can be compactly written in terms of a
single matrix Θ as

Θx = AΘ, Θy = BΘ. (6)

Under the gauge transformation (5), the matrix Θ becomes SΘ. The coverings
ẼEα and ẼEαS are isomorphic via Θ �−→ SΘ with the inverse Θ �−→ S−1Θ.

The trivializing covering πα just constructed has the following factorization
property:

Proposition 4 Let p : E ′ −→ E over M be a trivializing covering for a ZCR α
on E. Then there exists a morphism p� : E ′ −→ ẼEα such that πα ◦ p� = p.

Proof Let α = A dx + B dy. Since p is over M , we have p∗α = p∗A dx +
p∗B dy. By assumption this is a trivial ZCR, whence p∗A = D′

xSS−1 and p∗B =
D′

ySS−1 for a suitable G-valued function S on E ′. Recall that fibres of the
covering ẼEα are isomorphic to the Lie group G. Therefore we can define p� :
E ′ −→ ẼEα by the formula Θ ◦ p� = S, where, as above, Θ denotes the projection
ẼEα = E ×G −→ G.

5



4 Lower triangular ZCR’s

Let tn denote the algebra of matrices
a11 0 · · 0
a21 a22 0 · ·
a31 a32 a33 · ·
· · · · 0

an1 an2 an3 · ann

. (7)

Denote by t
(k)
n , k ≥ 1, the derived algebra formed by matrices satisfying aij = 0

whenever i− j < k.
ZCR’s with values in tn are, in a sense, equivalent to an abelian covering.

Proposition 5 Every tn-valued ZCR can be trivialized by means of an abelian
covering of dimension ≤ 1

2n(n + 1).

Proof Let α = A dx+B dy be a ZCR such that A and B are lower triangular.
We shall construct an abelian covering E(n−1) in n steps.

It follows from equation (4) that γ1 = a11 dx+b11 dy, γ2 = a22 dx+b22 dy, . . . ,
γn = ann dx+bnn dy are conservation laws. Let us denote by E(0) the associated
abelian covering with potentials h1, . . . , hn satisfying

hi,x = aii, hi,y = bii for i = 1, . . . , n.

Then

H =


e−h1 0 0 · 0

0 e−h2 0 · 0
0 0 e−h3 · 0
· · · · ·
0 0 0 · e−hn

,

is a matrix defined on E(0), with the property that all diagonal entries of A′ =
AH vanish:

A′ =


0 · · 0 0

a′
21 0 · · 0

a′
31 a′

32 0 · ·
· · · · ·

a′
n1 a′

n2 · a′
n,n−1 0

, (8)

and similarly for B′. Hence, A′, B′ take values in t
(1)
n .

By the same equation (4), γ′
2 = a′

21 dx + b′21 dy, γ′
3 = a′

32 dx + b′32 dy, . . . ,
γ′

n = a′
n−1,n dx + b′n−1,n dy are conservation laws on E(0). Let us introduce a

covering E ′ over E(0) with potentials h′
2, . . . , h

′
n satisfying

h′
i,x = a′

i,i−1, h′
i,y = b′i,i−1 for i = 2, . . . , n.
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Denoting

H ′ =


1 0 · 0 0
−h′

2 1 · · 0
0 −h′

3 1 · ·
· · · · ·
0 · 0 −h′

n 1

,

the gauge equivalent matrices A′′ = A′H′
and B′′ = B′H′

take values in t
(2)
n

now. Compared with (8), A′′ and B′′ have one more subdiagonal of zeroes.
The next step is similar: γ′′

3 = a′′
31 dx + b′′31 dy, γ′′

4 = a′′
42 dx + b′′42 dy, . . . , γ′′

n =
a′′

n−2,n dx + b′′n−2,n dy are conservation laws on E ′. Let us introduce a covering
E ′′ over E ′ with potentials h′′

2 , . . . , h′′
n satisfying

h′′
i,x = a′′

i,i−2, h′′
i,y = b′′i,i−2 for i = 3, . . . , n.

Denoting

H ′′ =



1 0 · 0 0 0
0 1 · · 0 0
−h′′

3 0 1 · · 0
0 −h′′

4 0 1 · ·
· · · · · ·
0 · 0 −h′′

n 0 1


we observe that A′′′ = A′′H′′

, B′′′ = B′′H′′
take values in t

(3)
n , and so on.

Continuing the process until A(n), B(n) become zero, we end up with a sequence
of 1

2n(n + 1) conservation laws

γ1 γ2 γ3 . . . γn

γ′
2 γ′

3 . . . γ′
n

γ′′
3 . . . γ′′

n

. . .

γ
(n−2)
n−1 γ(n−2)

n

γ(n−1)
n ,

(9)

where (a) γ1, . . . , γn are conservation laws on E ; (b) γ
(n−ι)
n−ι+1, . . . , γ

(n−ι)
n are con-

servation laws defined on the abelian covering E(n−ι−1) associated with the
conservation laws of all the previous levels.

Finally, αHH′···H(n−1)
= α(n) = 0, where each H(ι) is defined on E(ι). Summing

up, the covering E(n−1) trivializes α.

The sequence (9) will be called an n-fold chain of conservation laws; the
associated abelian covering E(n−1) of dimension 1

2n(n + 1) will be called an
n-fold chain covering.

Obviously, every finite-dimensional abelian covering is a reduction of an n-fold
chain covering for a sufficiently large n (one may add as many trivial conserva-
tion laws as needed).

Proposition 6 Let α be a tn-valued ZCR, then the associated covering πα is
isomorphic to an abelian covering of dimension ≤ 1

2n(n + 1).
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Proof According to Proposition 5, there is an abelian covering p : E(n−1) −→ E
that is trivializing for α; namely, we have αK = 0, where K = HH ′ · · ·H(n−1)

(see proof of Proposition 5). Hence, α = 0K−1
and, according to Proposition 4,

there is a morphism of diffieties p� : E(n−1) −→ ẼEα, given by Θ = K−1. Here Θ
represents the totality of coordinates along the fibres of the covering ẼEα, while
K is parametrised by coordinates h

(ι)
s along the fibres of the covering E(n−1). It

follows that p� is bijective on the fibres, hence isomorphism.

5 Reducibility

A g-valued ZCR is said to be reducible if it is gauge equivalent to a ZCR taking
values in a proper subalgebra h ⊂ g; otherwise it is said to be irreducible.

Let h ⊂ g be a subalgebra. We present a simple criterion for reducibility of
a g-valued ZCR to h. Let H ⊂ G be the Lie subgroup corresponding to the
subalgebra h. We call H a right factor if there exists a submanifold K ⊂ G
(possibly with singularities) such that the multiplication map

µ : K ×H −→ G, (K, H) �−→ KH (10)

is a surjective local diffeomorphism. The manifold K will be called a cofactor.
By surjectivity, every element S ∈ G can be decomposed as a product S = KH,
where K ∈ K and H ∈ H, possibly non-uniquely. The map µ being a local
diffeomorphism, K has the minimal possible dimension dimK = dimG−dimH.
If H is closed, then the assignment K �−→ KH defines a local diffeomorphism of
K onto the homogeneous space G/H.

Proposition 7 In the above notation, a g-valued ZCR α is reducible to the
subalgebra h if and only if there exists a local K-valued matrix function K such
that αK lies in h.

Proof The gauge equivalence with respect to H ∈ H preserves the subalgebra
h. Therefore, the gauge-equivalent ZCR αS = (αK)H lies in h if and only if αK

lies in h.

Otherwise said, if a ZCR is reducible to h, then the corresponding gauge
matrix can be found in K. Understandably, different choices of the cofactor K
may lead to different reducibility criteria.

In this paper we are primarily interested in detecting reducibility to a solv-
able subalgebra. By the well-known Lie theorem ([7, Sect. 9.2]), every finite-
dimensional representation of a solvable Lie algebra is equivalent to a represen-
tation by lower triangular matrices. Hence, every ZCR reducible to a solvable
subalgebra is reducible to tn (and can be trivialized using an abelian covering
according to Proposition 5).

Let us therefore apply Proposition 7 to h = tn. There are two standard ways
to make tn a right factor in gln.
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The QR or Gram decomposition is an alternative formulation of the
Gram–Schmidt algorithm. Namely, every n × n complex matrix A can be de-
composed as a product A = QR, where Q ∈ SUn and R ∈ tn [18, Ch. 6, Sect.
1.9]. Proposition 7 then yields

Proposition 8 A real (complex) ZCR α is reducible to lower triangular if and
only if there exists an SOn-valued (SUn-valued) local function K such that αK

is lower triangular.

However, the factors Q and R are unique up to a unimodular diagonal mul-
tiplier: QR = QΘ · Θ−1R, where Θ = diag(θ1, . . . , θn) ∈ S(U1 × · · · × U1),
i.e., |θι| = 1 and

∏n
ι=1 θι = 1. Thus, the mapping (10) is not a local diffeo-

morphism unless it is restricted to a suitable immersion of the orbit space
SUn/S(U1 × · · · × U1) into SUn. In the real case we have θι = ±1 and we
get a 2n−1-to-one local diffeomorphism (10) with K = SOn.

When n = 2, the condition is, in the real case,

Proposition 9 A gl2-valued ZCR

α = A dx + B dy =
(

a11 a12

a21 a22

)
dx +

(
b11 b12

b21 b22

)
dy

is reducible to lower triangular if and only if there exists a local solution φ of
the system

Dxφ = −a12 cos2 φ + (a11 − a22) sinφ cos φ + a21 sin2 φ,

Dyφ = −b12 cos2 φ + (b11 − b22) sinφ cos φ + b21 sin2 φ.
(11)

Proof An arbitrary SO2 matrix is

K =
(

cos φ sinφ

− sinφ cos φ

)
.

By Proposition 8, the ZCR α is reducible to lower triangular if and only if αK

is lower triangular, which is exactly the meaning of conditions (11).

Example 10 The ZCR

α =
( 1

2 λ 1
4 u + 1

2 λ
1
4 u− 1

2 λ − 1
2 λ

)
dx

+
( 1

4 λu 1
4 ux + 1

8 u2 + 1
4 λu

1
4 ux + 1

8 u2 − 1
4 λu − 1

4 λu

)
dt

of the Burgers equation ut = uxx +uux (see [3]) is reducible to lower triangular.
Indeed, in this case equations (11) have a local solution φ = 1

4π. The SO2 matrix
to make this ZCR lower triangular comes out as

K =
( 1

2

√
2 1

2

√
2

− 1
2

√
2 1

2

√
2

)
.
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Observe that we could obtain the result algebraically, since K is a constant
matrix.

Let us also remark that Dodd and Fordy [6] established solvability of the
Wahlquist–Estabrook prolongation algebra of the Burgers and the Kaup equa-
tion.

The LU or Gauss decomposition can be derived from the Gaussian elim-
ination algorithm. We have the following corollary of [18, Ch. 6, Sect. 1.8]:

Proposition 11 For every non-singular matrix A there exist matrices P, U, L
such that A = PUL, L is lower triangular, U is upper triangular with diagonal
entries equal to 1, and P is a permutation matrix. The matrix P can be omitted
if all principal minors of the matrix A are nonzero.

(Recall that Gaussian elimination may require row swapping, which is where
the permutation matrix P comes from.) Let K denote the set of all products
PU where P is a permutation matrix and U is an upper triangular matrix with
diagonal entries equal to 1. Then K is a union of n intersecting submanifolds,
labelled by permutation matrices P . Each of these submanifolds can lead to a
different condition.

Proposition 12 A ZCR α is reducible to lower triangular if and only if there
exists a permutation matrix P and a matrix-valued local function

H =


1 h12 h13 · ·
0 1 h23 · ·
0 0 1 · ·
· · · · ·
0 · · 0 1

 (12)

such that αPH is lower triangular.

When n = 2, the reducibility conditions are

Proposition 13 A gl2-valued ZCR

α = A dx + B dy =
(

a11 a12

a21 a22

)
dx +

(
b11 b12

b21 b22

)
dy

is reducible to lower triangular if and only if
1. either there exists a local function p on E such that

Dxp = −a12 + (a11 − a22)p + a21p
2,

Dyp = −b12 + (b11 − b22)p + b21p
2;

(13)

2. or A, B are upper triangular:

a21 = b21 = 0.

10



Proof An arbitrary K-valued function is K = PU , where

U =
(

1 p

0 1

)
and P is one of the two 2× 2 permutation matrices

P12 =
(

1 0
0 1

)
, P21 =

(
0 1
1 0

)
.

Cases 1 and 2 correspond to the choices P = P12 and P = P21, respectively,
and express the conditions that APU , BPU are lower triangular.

Recall that a quadratic or Riccati pseudopotential p associated to an sl2-valued
ZCR α is defined by the compatible system

px = −a12 + (a11 − a22)p + a21p
2,

py = −b12 + (b11 − b22)p + b21p
2,

(14)

which is essentially identical to Equations (13). Proposition 13 then says that
a non-upper-triangular ZCR is reducible to lower triangular if and only if the
quadratic pseudopotential exists as a local function on E .

Example 14 Returning to Example 10, we have Case 1, while the equations
(13) have a local solution p = 1. It follows that the upper triangular gauge
matrix to make the ZCR lower triangular is

K =
(

1 1
0 1

)
.

Example 15 Let us find an explicit reduction of the Calogero–Nucci ZCR [2] 0 1

η
fx

f
+ λf2 + ηµf − η2 fx

f
+ µf − 2η

 dx

+

 η
g

f
+ ν

g

f
ηgx

f
+ λfg + ηµg − η2 g

f

gx

f
+ µg − η

g

f
+ ν

 dy

(15)

of an arbitrary equation possessing a conservation law

ft = gx.

Here η, λ, µ, ν are arbitrary constants. Again, we have Case 1 and one easily
finds a local solution

p =
1
2

(µ +
√

µ2 + 4λ )f − 2η

λf2 + ηµf − η2

of equations (13). Hence, the above ZCR is reducible to lower triangular; how-
ever, here one can continue and reach reduction to an abelian subalgebra. Indeed,
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if p is as above and

q =
λf2 + ηµf − η2√

µ2 + 4λ f
,

r =
(λf2 + ηµf − η2)(2λf + (µ−

√
µ2 + 4λ )η)

2λf + (µ +
√

µ2 + 4λ )η
,

then the product of gauge matrices(√
r /f 0
0 1/

√
r

)(
1 0
q 1

)(
1 p

0 1

)
takes the ZCR to the diagonal form(

1
2

(µ−
√

µ2 + 4λ )f − η 0

0 1
2

(µ +
√

µ2 + 4λ )f − η

)
dx

+

(
1
2

(µ−
√

µ2 + 4λ )g + ν 0

0 1
2

(µ +
√

µ2 + 4λ )g + ν

)
dy,

hence to an abelian subalgebra.

In case of sl3 we have six permutation matrices, hence six subcases. We list
them in the following proposition.

Proposition 16 An sl3-valued ZCR α = A dx + B dy, where A = (aij) and
B = (bij), is reducible to lower triangular if and only if

1. either there exists local functions p, q, r on E such that

Dxp = a21p
2 + a31pq + (a11 − a22)p− a32q − a12,

Dxq = a31q
2 + a21pq + (a11 − a33)q − a23p− a13,

Dxr = −a31pr2 + a32r
2 − a21pr + a31qr + a21q + (a22 − a33)r − a23,

Dyp = b21p
2 + b31pq + (b11 − b22)p− b32q − b12,

Dyq = b31q
2 + b21pq + (b11 − b33)q − b23p− b13,

Dyr = −b31pr2 + b32r
2 − b21pr + b31qr + b21q + (b22 − b33)r − b23;

(16)

2. or there exist local functions r, s on E such that

a31r + a21 = 0,

b31r + b21 = 0,

Dxr = a32r
2 + (a22 − a33)r − a23,

Dyr = b32r
2 + (b22 − b33)r − b23,

Dxs = −a31s
2 + a32rs− a12r + (a11 − a33)s + a13,

Dys = −b31s
2 + b32rs− b12r + (b11 − b33)s + b13;

12



3. or there exist local functions p, q on E such that

−a31p + a32 = 0,

−b31p + b32 = 0,

Dxp = a21p
2 + (a11 − a22)p− a12,

Dyp = b21p
2 + (b11 − b22)p− b12,

Dxq = a31q
2 + a21pq − a23p + (a11 − a33)q − a13,

Dyq = b31q
2 + b21pq − b23p + (b11 − b33)q − b13;

4. or the ZCR is 1, 2-block upper triangular:

a21 = a31 = b21 = b31 = 0;

and there exists a local function r on E such that

Dxr = a32r
2 + (a22 − a33)r − a23,

Dyr = b32r
2 + (b22 − b33)r − b23;

5. or the ZCR is 2, 1-block upper triangular:

a31 = a32 = b31 = b32 = 0;

and there exists a local function p on E such that

Dxp = a21p
2 + (a11 − a22)p− a12,

Dyp = b21p
2 + (b11 − b22)p− b12;

6. or the ZCR is upper triangular:

a21 = a31 = a32 = b21 = b31 = b32 = 0.

In Cases 2 and 3, if both a31, b31 are zero, we get a subcase in Cases 4 and 5,
respectively. Otherwise we get a system that is essentially algebraic in p, r, and
differential in q, s.

Proof An arbitrary K-valued function is K = PU , where

U =

1 p q

0 1 r

0 0 1


and P is one of the six 3× 3 permutation matrices

P123 =

1 0 0
0 1 0
0 0 1

, P213 =

0 1 0
1 0 0
0 0 1

, P132 =

1 0 0
0 0 1
0 1 0


P231 =

0 1 0
0 0 1
1 0 0

, P312 =

0 0 1
1 0 0
0 1 0

, P321 =

0 0 1
0 1 0
1 0 0

.
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Cases 1 to 6 correspond to the choices P = P123 to P = P321, respectively. In
Case 2, we set s = pr − q.

As already mentioned, the case of general position (when the permutation
matrix P equals the identity matrix) is characterized by the property that all
principal minors of the gauge matrix K are nonzero. Then we can derive explicit
formulas that generalize formulas (13) and (16) to arbitrary n.

Proposition 17 A gln-valued ZCR α = A dx + B dy, where A = (aij) and
B = (bij), is reducible to lower triangular by means of a gauge matrix with
nonzero principal minors if and only if the system

Dxpkl = −
∑

0≤r≤n−1
i0<i1<···<ir=l

(−1)raki0pi0i1pi1i2 · · · pir−1ir

−
∑

0≤r≤n−1
k<j

i0<i1<···<ir=l

(−1)rpkjaji0pi0i1pi1i2 · · · pir−1ir
,

Dypkl = −
∑

0≤r≤n−1
i0<i1<···<ir=l

(−1)rbki0pi0i1pi1i2 · · · pir−1ir

−
∑

0≤r≤n−1
k<j

i0<i1<···<ir=l

(−1)rpkjbji0pi0i1pi1i2 · · · pir−1ir

(17)

on 1
2 (n− 1)n unknown functions pkl, k < l, has a local solution.

The same system may be rewritten in terms of determinants as follows:

Dxpkl = (−1)k

∣∣∣∣∣∣∣∣∣∣∣∣∣∣

ãak1 ãak2 ãak3 · · · ãakk ãakl

1 p12 p13 · · · p1k p1l

0 1 p23 · · · p2k p2l

...
...

...
...

...
0 0 0 · · · pk−1,k pk−1,l

0 0 0 · · · 1 pkl

∣∣∣∣∣∣∣∣∣∣∣∣∣∣
,

Dypkl = (−1)k

∣∣∣∣∣∣∣∣∣∣∣∣∣∣

b̃bk1 b̃bk2 b̃bk3 · · · b̃bkk b̃bkl

1 p12 p13 · · · p1k p1l

0 1 p23 · · · p2k p2l

...
...

...
...

...
0 0 0 · · · pk−1,k pk−1,l

0 0 0 · · · 1 pkl

∣∣∣∣∣∣∣∣∣∣∣∣∣∣
,

where

ãakj = akj +
∑
i>k

pkiaij , b̃bkj = bkj +
∑
i>k

pkibij .
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Proof According to Proposition 11, a general gauge matrix S with nonzero
principal minors can be expressed in the form S = LU , where L is lower trian-
gular and

U =


1 p12 p13 . . . p1n

0 1 p23 . . . p2n

0 0 1 . . . p3n

...
...

...
...

0 0 0 . . . 1

.

Its inverse is

U−1 =


1 q12 q13 . . . q1n

0 1 q23 . . . q2n

0 0 1 . . . q3n

...
...

...
...

0 0 0 . . . 1

,

where

qij =
∑

1≤r≤n−1
i=i0<i1<···<ir=j

(−1)rpi0i1pi1i2 · · · pir−1ir

= (−1)i+j

∣∣∣∣∣∣∣∣∣∣∣∣∣

pi,i+1 pi,i+2 · · pi,j−1 pi,j

1 pi+1,i+2 pi+1,i+3 · · pi+1,j

0 1 pi+2,i+3 pi+2,i+4 · ·
· · 1 · · ·
0 · · · pj−2,j−1 pj−2,j

0 0 · · 1 pj−1,j

∣∣∣∣∣∣∣∣∣∣∣∣∣
,

since qkl +
∑

k<i<l pkiqil + pkl = 0 whenever k < l. Let us consider the gauge
equivalent matrix AU = UxU−1 + UAU−1. All terms that contain total deriva-
tives Dxpij occur in the first summand, which is

UxU−1 =


0 z12 z13 . . . z1n

0 0 z23 . . . z2n

0 0 0 . . . z3n

...
...

...
...

0 0 0 . . . 0

,

where

zkl =
∑

1≤r≤n−1
k=i0<i1<···<ir=l

(−1)r−1Dxpi0i1 · pi1i2 · · · pir−1ir

= (−1)k+l+1

∣∣∣∣∣∣∣∣∣∣

Dxpk,k+1 Dxpk,k+2 · Dxpk,l−1 Dxpk,l

1 pk+1,k+2 pk+1,k+3 · pk+1,l

0 1 pk+2,k+3 · ·
· · · · ·
0 0 · 1 pl−1,l

∣∣∣∣∣∣∣∣∣∣
15



for all k < l. Denoting AU =: A′ = (a′
ij), we have

a′
kl := zkl + akl +

∑
j<l

akjqjl +
∑
k<i
j<l

pkiaijqjl +
∑
k<i

pkiail.

The condition of A′ being lower triangular, a′
kl = 0 for all k < l, consti-

tutes a system of equations in total derivatives Dxpij . The equivalent sys-
tem a′

kl +
∑

k<h<l a
′
khphl = 0 is resolved with respect to the total deriva-

tives, since derivatives occur only in the summands containing zij , which are
zkl +

∑
k<h<l zkhphl = Dxpkl. The remaining summands then simplify to the

expressions given in the statement of the proposition.

6 Guthrie’s formulation of recursion operators

In 1994, G.A. Guthrie [8] suggested a general definition of a recursion operator,
free of some weaknesses of the standard definition in terms of pseudodifferential
operators. Geometrically, Guthrie’s recursion operator for an equation E is a
Bäcklund autotransformation for the linearized equation V E (see [16]). At the
level of diffieties, the linearization V E can be introduced as the vertical vector
bundle V E −→ E with respect to the projection E −→M on the base manifold.
The manifold V E carries a natural diffiety structure.

At the level of systems of PDE, the linearized system is

F l = 0, 9F l [U ] = 0, (18)

where

9F [U ] =
∑
k,I

∂F

∂uk
I

Uk
I . (19)

Here we assume summation over all k, I such that the functions F l depend on uk
I .

The Uk’s are coordinates along the fibres of the projection V E −→ E and serve as
additional dependent variables (velocities), one for each uk. Morphisms E −→ V E
that are sections of the bundle V E −→ E are in one-to-one correspondence with
local symmetries of the equation E.

Recall that nonlocal symmetries (more precisely, their shadows [11]) corre-
spond to morphisms ẼE −→ V E over E , where ẼE is a covering of the original
equation. In full generality, Guthrie’s definition includes such a covering. Let us
denote by Ṽ EV E −→ ẼE the pullback of the vertical bundle V E −→ E along the cov-
ering projection ẼE −→ E . Then nonlocal symmetries correspond to morphisms
ẼE −→ Ṽ EV E that are sections of the projection Ṽ EV E −→ ẼE . In coordinates, if the
covering ẼE is determined by equations zj

x = f j , zj
y = gj , then the diffiety Ṽ EV E

corresponds to the system

F l = 0, zj
x = f j , zj

y = gj , 9F l [U ] = 0. (20)

Definition 18 ([8]) A recursion operator for the equation (1) is given by the
following data:
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(1) a gls-valued zero-curvature representation ᾱα = –
AA dx + –

BB dy for ẼE ;
(2) an s-dimensional covering K : R −→ Ṽ EV E with nonlocal variables W j , j =

1, . . . , s, subject to equations

W j
x = –

AAj
iW

i + Aj
◦, W j

y = –
BB j

iW
i + Bj

◦, (21)

where Aj
◦ and Bj

◦ are functions on Ṽ EV E linear on the fibres (i.e., linear in the
variables Uk

I );
(3) a linear mapping L : R −→ Ṽ EV E , L(U)l = –

CC l
jW

j + Cl
◦, where –

CC l
j are func-

tions on ẼE and Cl
◦ are functions on Ṽ EV E linear on the fibres (i.e., linear in the

variables Uk
I ).

The following condition is supposed to hold: If U = (Uk) satisfies the linearized
equation Ṽ EV E , then so does U ′ = L(U).

The recursion operator defined by these data will be denoted as LK−1.

Once ᾱα is a ZCR, equations (21) determine a covering if and only if the
s-vectors A◦ = (Aj

◦), B◦ = (Bj
◦) satisfy

(Dy −
–
BB)A◦ = (Dx −

–
AA)B◦ (22)

on Ṽ EV E , see [8, Eq. (3.2)]. This is easily verified by cross differentiation.
Recursion operators are gauge invariant: If S is a function on E with values

in GL(s), then the data

–
AA′ = –

AAS = D̃DxSS−1 + S
–
AAS−1, A′

◦ = SA◦,
–
BB ′ = –

BBS = D̃DySS−1 + S
–
BBS−1, B′

◦ = SB◦, (23)
–
CC ′ = –

CCS−1, C ′
◦ = C◦

determine the same recursion operator as a mapping U �−→ U ′.
Coverings (21) with ᾱα = 0 are associated with conservation laws, since for

them Eq. (22) reads DyA◦ = DxB◦. Examples are provided by recursion oper-
ators that can be written in the traditional pseudodifferential form ([19])

U l′ =
r∑

i=0

Rli
k Di

xUk + Cl
jD

−1
x pj

kUk.

Upon the obvious identification DI
xUk = Uk

I and introduction of nonlocal vari-
ables W j = D−1

x pj
kUk, the Guthrie form of this operator is

W j
x = pjI

k Uk
I ,

W j
y = qjI

k Uk
I ,

U l′ = Cl
jW

j + RlI
k Uk

I ,

where pjI
k Uk

I dx + qjI
k Uk

I dy is a conservation law of the linearized equation V E
(typically a linearized conservation law of the equation E).
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Example 19 The Lenard recursion operator Dxx + 4u + 2uxD−1
x for the KdV

equation ut = uxxx + 6uux has the following Guthrie form:

Wx = U,

Wt = Uxx + 6uU, (24)

U ′ = Uxx + 4uU + 2uxW.

Indeed, if U satisfies the linearized equation V E , i.e.,

Ut = Uxxx + 6uUx + 6uxU, (25)

then so does U ′ (for the same u). Here ẼE = E and consequently Ṽ EV E = V E . The
conservation law U dx+(Uxx +6uU) dt is a linearization of the conservation law
u dx + (uxx + 3u2) dt of KdV.

A recursion operator is invertible if the morphism L of Definition 18 is a
covering. The recursion operator LK−1 is then simply a pair of linear coverings
K, L : R −→ Ṽ EV E . The inverse of the recursion operator LK−1 is the recursion
operator KL−1.

As an obvious consequence, invertible recursion operators built upon a cov-
ering ẼE possess inverses that are built upon the same covering ẼE . In practice
usually ẼE = E , but even then it may be useful to make a pullback to a nontrivial
covering. We shall return to this point later.

Concerning the Guthrie form of inverse recursion operators of systems E in-
tegrable in the sense of soliton theory, one observes that the ZCR ᾱα is usually
equal to the adjoint representation of the standard ZCR, while A◦ = 9A[U ],
B◦ = 9B [U ].

Proposition 20 Let α = A dx + B dy be a g-valued ZCR of equation E. Then
the trivial vector bundle g× V E −→ V E carries a covering structure determined
by the condition that an arbitrary element W of the Lie algebra g be subject to
equations

Wx = [A, W ] + 9A[U ],

Wy = [B, W ] + 9B [U ].
(26)

Proof By comparison with Eq. (21), in this case ᾱα is simply the adjoint rep-
resentation of α. Formulas (22) follow from the fact that A �−→ 9A[U ] is a
differentiation.

Remark 21 (1) Let R be a recursion operator of an integrable system, let
id denote the identity map. The inverse recursion operator (R + λ id)−1 has a
Guthrie form that depends on λ, which may be related to the spectral parameter
of the standard ZCR of the system.

(2) Let us also note that the formulas (26) can serve as a starting point of a
method to find the inverse recursion operator of an integrable system without
finding the standard recursion operator first. One simply computes a morphism
R −→ V E , where R is the covering determined by (26), see [17] for an example
of the stationary Nizhnik–Veselov–Novikov equation. Remarkably enough, the
recursion operator obtained in loc. cit. turned out to be noninvertible for the
zero value of the spectral parameter λ.
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The symmetries generated by inverse recursion operators usually exhibit a
non-abelian nonlocality, e.g., of Riccati type as in [14, 15]. Moreover, upon in-
troduction of the corresponding pseudopotentials one can express the inverse
recursion operators in the traditional terms of inverse total derivatives D−1

x . In
the rest of this section we shall demonstrate that the above-mentioned nonlo-
calities are closely related to reduction of ZCR’s to triangular form.

Given a recursion operator

V E ← R −→ V E ,

the obvious pullback along a covering ẼE −→ E yields a recursion operator

Ṽ EV E ← R̃R −→ Ṽ EV E .

In this construction, ẼE −→ E can be, e.g., the trivializing covering of the ZCR ᾱα.
This was the case in the work on the KdV equation by Guthrie and Hickman [9];
by using formal power series in the spectral parameter λ, the authors were
able to describe large algebras of nonlocal symmetries resulting from iterated
application of the inverse recursion operator.

Alternatively, ẼE −→ E can be a covering such that the pullback of the ZCR ᾱα
on ẼE is strictly lower triangular (belongs to t(1)). The covering (21) is then
abelian by similar argument as in Proposition 5. It follows that the recursion
operator Ṽ EV E ← R̃R −→ Ṽ EV E can be expressed in terms of inverse total derivatives
D̃D−1

x . Summing up, we have the following

Construction 22 Step 1. Construct a covering E ′ with nonlocal variables hij ,
j > i, such that α′ = αPH is lower triangular, where P is a suitable permutation
matrix P and H is the matrix (12). Proposition 17 yields the corresponding
formulas.

Step 2. Let a′
ii, b′ii be the diagonal entries of the lower triangular matrices

APH , BPH , respectively. Then a′
ii dx + b′ii dy are conservation laws; if they are

nontrivial, then construct the abelian covering E ′′ over E ′ with the corresponding
potentials zi.

Step 3. Compute S = ZPH, where Z is the diagonal matrix diag(e−zi).

Obviously, α′′ = αS is then strictly lower triangular, and so is its adjoint
representation α′′ . Finally,

α′′ = ᾱαS̄S ,

where S̄S is the image of S in the adjoint representation of the group G.
If omitting Step 2, the recursion operator will be expressible in terms of in-

verses (Dx − a′
ii)

−1.

7 Examples

Example 23 Continuing Example 19, let us invert the Lenard operator. The
result is, of course, well known. Lou [15] obtained the inverse recursion operator
for the whole AKNS hierarchy.

19



Equations (24) and (25) imply U

Ux

W


x

=

 0 1 0
−4u 0 −2ux

1 0 0

U

Ux

W

+

 0
U ′

0

,

 U

Ux

W


t

=

 0 2u −2uxx

−2uxx − 8u2 2ux −2uxxx − 4uux

2u 0 −2ux

U

Ux

W

+

 U ′
x

U ′
xx + 2uU ′

U ′

,

which is the Guthrie form of the inverted operator KL−1 : U ′ �−→ U . It is clear
now that L : R −→ V E , formerly given by U ′ = Uxx +4uU +2uxW , constitutes
a three-dimensional covering with nonlocal variables U, Ux and W .

The associated sl3-valued ZCR

ᾱα =

 0 1 0
−4u 0 −2ux

1 0 0

dx +

 0 2u −2uxx

−2uxx − 8u2 2ux −2uxxx − 4uux

2u 0 −2ux

dy

is gauge equivalent to the adjoint representation of the standard sl2-valued ZCR

α =
(

0 u

−1 0

)
dx +

(
ux uxx + 2u

−2u −ux

)
dy

of the KdV equation, the corresponding gauge matrix being

S =

0 1 2u

1 0 0
0 0 −2

.

Using formulas (23) we get the following alternative formula for the same oper-
ator:P

Q

R


x

=

0 −2u 0
1 0 u

0 −2 0

P

Q

R

 +

U ′

0
0

,

P

Q

R


t

=

2ux −2uxx − 4u2 0
2u 0 uxx + 2u2

0 −4u −2ux

P

Q

R

 +

U ′
xx + 4uU ′

U ′
x

−2U ′

,

U = Q.

The covering here is the covering (26) with sl2 parametrized as(
Q P

R −Q

)
.

To express the inverted recursion operator in terms of D−1
x , we need to make

the ZCR ᾱα strictly lower triangular. According to Construction 22, as the first
step we construct a covering E ′ −→ E with the quadratic pseudopotential h = h11

defined by Eq. (14), i.e.,

hx = −h2 − u,

ht = −2uh2 + 2uxh− uxx − 2u2.
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Then using the gauge matrix

H =
(

1 h

0 1

)
we get the lower triangular ZCR

α′ = αH =
(
−h 0
−1 h

)
dx +

(
ux − 2uh 0
−2u −ux + 2uh

)
dy

with−h, h on the diagonal. As the second step, we construct the abelian covering
E ′′ −→ E ′ with the potential z satisfying

zx = −h, zy = ux − 2uh.

The gauge matrix

Z =
(

e−z 0
0 ez

)
then leads to the strictly lower triangular ZCR

α′′ = αZH =
(

0 0
−e2z 0

)
dx +

(
0 0

−2e2zu 0

)
dy.

The full gauge matrix and its adjoint representation are

S =
(

e−z he−z

0 ez

)
, S̄S =

e−2z −2he−2z −h2e−2z

0 1 h

0 0 e2z

.

Acting by S̄S on our operator, we getP

Q

R


x

=

 0 0 0
e2z 0 0
0 −2e2z 0

P

Q

R

 +

e−2zU ′

0
0

,

P

Q

R


t

=

 0 0 0
2ue2z 0 0

0 −4ue2z 0

P

Q

R



+

e−2zU ′
xx − 2e−2zhU ′

x + (2h2 + 4u)e−2zU ′

U ′
x − 2hU ′

−2e2zU ′

,

U = Q− he−2zR.

In the x-part, we get P = D−1
x (e−2zU ′), Q = D−1

x (e2zP ), R = D−1
x (e−2zQ),

hence

U = D−1
x e2zD−1

x e−2zU ′ − he−2zD−1
x e−2zD−1

x e2zD−1
x e−2zU ′.
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Example 24 Let us consider the Tzitzéica equation [23]

uxy = eu − e−2u,

also known from the Zhiber–Shabat list [27]. Its ZCR

α =

−ux 0 λ

λ ux 0
0 λ 0

dx +

 0 e−2u/λ 0
0 0 eu/λ

eu/λ 0 0

dy (27)

as well as the Bäcklund transformation were essentially found by Tzitzéica him-
self.

One could invert the known recursion operator [21], but it is easier to com-
pute the inverse recursion operator directly by the procedure outlined in Re-
mark 21(2). Namely, we consider the eight-dimensional covering (26), where–
AA,

–
BB, A◦ and B◦ are found from the formula (27) to be

–
AA =



0 −λ 0 0 0 0 λ 0
0 −2ux −λ 0 0 0 0 λ

−2λ 0 −ux 0 −λ 0 0 0
λ 0 0 2ux −λ 0 0 0
0 λ 0 0 0 −λ 0 0
0 0 λ −λ 0 ux 0 0
0 0 0 λ 0 0 ux −λ

λ 0 0 0 2λ 0 0 −ux


,

–
BB =



0 0 −eu/λ e−2u/λ 0 0 0 0
−e−2uλ 0 0 0 e−2u/λ 0 0 0

0 −eu/λ 0 0 0 e−2u/λ 0 0
0 0 0 0 0 −eu/λ eu/λ 0
0 0 0 −e−2u/λ 0 0 0 eu/λ

−eu/λ 0 0 0 −2eu/λ 0 0 0
2eu/λ 0 0 0 eu/λ 0 0 0

0 eu/λ 0 0 0 0 −e−2u/λ 0


,

A◦ =



−Ux

0
0
0

Ux

0
0
0


, B◦ =



0
−2e−2uU/λ

0
0
0

euU/λ

euU/λ

0


; and W =



W11

W12

W13

W21

W22

W23

W31

W32


is a column of pseudopotentials W11, W12, W13, W21, W22, W23, W31, W32. One
easily finds that W11 −W22 is a symmetry of the Tzitzéica equation if so is U .
Thus, we have obtained the ‘inverse’ recursion operator of the Tzitzéica equation
in the Guthrie form.
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Let us express it in terms of D−1
x . As the first step we introduce pseudopo-

tentials p, q, r satisfying

px = λp2 − 2pux − λq, py =
eu

λ
pq − 1

e2uλ
,

qx = λpq − qux − λ, qy =
eu

λ
(q2 − p),

rx = −λpr + λq + λr2 + uxr, ry =
eu

λ
(−pr2 + qr − 1).

to make the ZCR (27) lower triangular by providing a solution to equations (16).
Indeed, acting on α by the gauge matrix

H =

1 p q

0 1 r

0 0 1


we get

αH =

−ux + λp 0 0
λ ux − λp + λr 0
0 λ −λr

dx

+


euq/λ 0 0
eur/λ −eupr/λ 0

eu/λ −eup/λ
eu(pr − q)

λ

dy.

In the second step we remove the diagonal. To this end we introduce pseudopo-
tentials s, t by

sx = −ux + λp, sy =
eu

λ
q,

tx = ux − λp + λr, ty = −eu

λ
pr.

Acting on αH by the gauge matrix

Z =

e−s 0 0
0 e−t 0
0 0 es+t


we finally get

αZH =

 0 0 0
λes−t 0 0

0 λes+2t 0

dx

+

 0 0 0
eu+s−tr/λ 0 0
eu+2s+t/λ −eu+s+2tp/λ 0

dy.
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Denoting S = ZH, we compute the adjoint representation S̄S to be

S̄S =



e−2s−t −e−2s−tr e−2s−tp e−2s−t(pr − 2q) −e−2s−t(pr + q)
0 e−s+t 0 −e−s+tp e−s+tp

0 0 e−s−2t −e−s−2tr −2e−s−2tr

0 0 0 1 0
0 0 0 0 1
0 0 0 0 0
0 0 0 0 0
0 0 0 0 0

e−2s−tp(pr − q) −e−2s−tqr e−2s−tq(pr − q)
−e−s+tp2 e−s+tq −e−s+tpq

e−s−2t(pr − q) −r2e−s−2t e−s−2t(pr − q)r
p 0 q

−p r −pr

es−t 0 es−tr

0 es+2t −es+2tp

0 0 e2s+t


.

Acting by S̄S on the above recursion operator we get

–
AAS̄S =



0 0 0 0 0 0 0 0
−λes+2t 0 0 0 0 0 0 0

λes−t 0 0 0 0 0 0 0
0 −λes−t 0 0 0 0 0 0
0 λes−t −λes+2t 0 0 0 0 0
0 0 0 λes−t−λes−t 0 0 0
0 0 0 λes+2t2λes+2t 0 0 0
0 0 0 0 0 λes+2t −λes−t 0


and

S̄SA◦ =



e−2s−t(−2pr + q)Ux

2e−s+tpUx

−e−s−2trUx

−Ux

Ux

0
0
0


(we omit the matrices –

BB S̄S and B◦).
Thus, the inverse recursion operator for the Tzitzéica equation in terms of

D−1 is

V = W21 −W22 − 2e−s+tpW23 + e−s−2trW31 + e−2s−t(2pr − q)W32,
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where

W11 = D−1[e−2s−t(−2pr + q)Ux],

W12 = D−1[2e−s+tpUx − es+2tλW11],

W13 = D−1[−e−s−2trUx + es−tλW11],

W22 = D−1[Ux + es−tλW12 − es+2tλW13],

W21 = D−1[−Ux − es−tλW12],

W31 = D−1[es+2tλ(W21 + 2W22)],

W23 = D−1[−es−tλ(−W21 + W22)],

W32 = D−1[λ(es+2tW23 − es−tW31)].
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