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Abstract

We show that a new integrable two-component system of KdV type
studied by Karasu (Kalkanlı) et al. (arXiv: nlin.SI/0203036) is bi-
hamiltonian, and its recursion operator, which has a highly unusual
structure of nonlocal terms, can be written as a ratio of two compat-
ible Hamiltonian operators. Using this, we prove that the system in
question possesses an infinite hierarchy of local commuting generalized
symmetries and conserved quantities in involution, and the evolution
systems corresponding to these symmetries are bihamiltonian as well.

Using the Panilevé test, Karasu (Kalkanlı) [1] and Sakovich [2] found a
new integrable evolution system of KdV type,

ut = 4uxxx − vxxx − 12uux + vux + 2uvx,
vt = 9uxxx − 2vxxx − 12vux − 6uvx + 4vvx,

(1)

and a zero curvature representation for it [2]. Notice that this system is,
up to a linear transformation of u and v, equivalent to the system (16)
from the Foursov’s [3] list of two-component evolution systems of KdV type
possessing (homogeneous) symmetries of order k, 4 ≤ k ≤ 9.

Karasu (Kalkanlı), Karasu and Sakovich [4] found that (1) has a recur-
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sion operator of the form

R =
(

R11 R12

R21 R22

)
,

R11 = 3D2
x − 6u − 3uxD−1

x ,
R12 =

[−2D5
x + (2u + 3v) D3

x + (8vx − 4ux) D2
x

+
(
7vxx − 6uxx + 4u2 − 6uv

)
Dx − 2uxxx + 2vxxx + 6uux − 3vux

− 4uvx +uxD−1
x ◦ vx

] ◦ (
3D3

x − 4vDx − 2vx

)−1
,

R21 = 6D2
x + 6u − 9v − 3vxD−1

x ,
R22 =

[−3D5
x + (12v − 18u) D3

x + (18vx − 27ux)D2
x + (14vxx − 21uxx

+ 12u2 +12uv − 9v2
)
Dx − 6uxxx + 4vxxx + 12uux + 6vux + 6uvx

− 9vvx +vxD
−1
x ◦ vx

] ◦ (
3D3

x − 4vDx − 2vx

)−1
.

Here Dx is the operator of total x-derivative: Dx = ∂/∂x + ux∂/∂u +
vx∂/∂v +

∑∞
j=2(ujx∂/∂u(j−1)x + vjx∂/∂v(j−1)x), where ukx = ∂ku/∂xk,

vkx = ∂kv/∂xk, see e.g. [5] for further details. Let also δ/δu = ∂/∂u +∑∞
j=1(−Dx)j∂/∂ujx, δ/δv = ∂/∂v +

∑∞
j=1(−Dx)j∂/∂vjx, u = (u, v)T , and

δ/δu = (δ/δu, δ/δv)T , cf. e.g. [5]. Here and below the superscript T denotes
the matrix transposition. Recall that a function that depends on x, t, u, v
and a finite number of ujx and vkx is said to be local, see e.g. [6, 5].

Because of the nonstandard structure of nonlocal terms in R the known
‘direct’ methods (see e.g. [7, 8, 9] and references therein) for proving the
locality of symmetries generated by R are not applicable, so the question
of whether (1) has an infinite hierarchy of local commuting symmetries re-
mained open for a while. It was also unknown whether (1) is a bihamiltonian
system.

We have [4] R = M ◦N−1, where M and N are some (non-Hamiltonian)
differential operators of order five and three. Inspired by this fact, we under-
took a search of Hamiltonian operators of order three and five for (1), and it
turned out that such operators do exist and the system (1) is bihamiltonian.
Namely, the following assertion holds.

Proposition 1 The system (1) is bihamiltonian:

ut = P1δH0/δu = P0δH1/δu, (2)

where H0 = −3u+v/2, H1 = 2u2−uv+v2/9, and P0 and P1 are compatible
Hamiltonian operators of the form

P0 =
(

D3
x − 2uDx − ux 0

0 −9D3
x + 12vDx + 6vx

)
,P1 =

(
P11 P12

P21 P22

)
, (3)
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where P11 = D5
x−4uD3

x−6uxD2
x+4(u2−uxx)Dx−uxxx+4uux−uxD−1

x ◦ux,
P12 = 2D5

x − (2u + 3v)D3
x + 4(ux − 2vx)D2

x + (6uxx − 7vxx − 4u2 + 6uv)Dx +
2uxxx−2vxxx−6uux +3vux +4uvx−uxD−1

x ◦vx, P21 = 2D5
x−(2u+3v)D3

x−
(10ux+vx)D2

x+(−4u2+6uv−8uxx)Dx−2uxxx−2uux+3vux+2uvx−vxD
−1
x ◦

ux, P22 = 3D5
x +(18u−12v)D3

x +(27ux−12vx)D2
x +(21uxx−14vxx−12u2−

12uv + 9v2)Dx + 6uxxx − 4vxxx − 12uux − 6vux − 6uvx + 9vvx − vxD−1
x ◦ vx.

Moreover, we have R = 3P1 ◦ P−1
0 , and hence R is hereditary.

Now we are ready to prove that (1) has infinitely many local commuting
symmetries.

Proposition 2 Define the quantities Qj and Hj recursively by the formula
Qj = P1δHj/δu = P0δHj+1/δu, j = 0, 1, 2, . . ., where H0, H1, P0 and P1

are given in Proposition 1. Then Hj, j = 2, 3, . . ., are local functions that
can be chosen to be independent of x and t, and Qj are local commuting
generalized symmetries for (1) for all j = 1, 2, . . ..

Moreover, the evolution systems utj = Qj are bihamiltonian with respect
to P1 and P0 by construction, and Hj =

∫
Hjdx are in involution with re-

spect to the Poisson brackets associated with P0 and P1 for all j = 0, 1, 2 . . .,
so Hj are common conserved quantities for all evolution systems utk = Qk,
k = 0, 1, 2, . . ..

Proof. Let us use induction on j. Assume that for Qj = P1δHj/δu there
exist a local function Hj+1 such that Qj = P0δHj+1/δu and ∂Hj+1/∂x =
∂Hj+1/∂t = 0, and let us show that then Qj+1 = P1δHj+1/δu is local too
and there exists a local function Hj+2 such that Qj+1 = P0δHj+2/δu and
∂Hj+2/∂x = ∂Hj+2/∂t = 0.

Since Hj is independent of x, we have

ux
δHj

δu
+ vx

δHj

δv
= Dx

(
Hj −

∞∑
j=1

j−1∑
k=0

{
u(j−k)x(−Dx)k

(
∂H

∂ujx

)

+ v(j−k)x(−Dx)k
(

∂H

∂vjx

)})
.

As Hj is local, the sum is actually finite, so D−1
x (uxδHj/δu + vxδHj/δv) is

a local expression, and thus Qj+1 = P1δHj/δu is local too.
Next, as Qj+1 = P1δHj+1/δu, Qj = P0δHj+1/δu, and R = 3P1 ◦P−1

0 ,
we can (formally) write Qj+1 = (1/3)RQj , cf. e.g. Section 7.3 of [5]. As
R is a recursion operator for (1), its Lie derivative along Q0 vanishes:
LQ0(R) = 0. By Proposition 1 R is hereditary, so we have [10] LQj+1(R) =
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(1/3)j+1LRj+1Q0
(R) = 0, whence LQj+1(P0) = 3LQj+1(R

−1 ◦P1) = 3R−1 ◦
LQj+1(P1) = 3R−1 ◦ LP1δHj+1/δu(P1) = 0, cf. e.g. [11, 12].

In turn, LQj+1(P0) = 0 implies that there exists a local function Hj+2

such that Qj+1 = P0δHj+2/δu. The proof of this fact goes along the same
lines as it was done in [13] for the second Hamiltonian structure of the KdV
equation. Finally, as the coefficients of P0 and P1 are independent of x and
t, it is immediate that we always can choose Hj+2 so that it is independent
of x and t.

The induction on j starting from j = 0 and the use of Theorem 7.24 of
Olver [5] complete the proof. �

In order to handle properly the nonlocal terms, for any local H such that
∂H/∂x = 0 we shall set, in agreement with the above (see e.g. [17]–[20] for
more details on dealing with nonlocalities),

D−1
x

(
ux

δHj

δu
+ vx

δHj

δv

)
= Hj −

∞∑
j=1

j−1∑
k=0

{
u(j−k)x(−Dx)k

(
∂H

∂ujx

)

+ v(j−k)x(−Dx)k
(

∂H

∂vjx

)}
.

Then, for instance, the first commuting flow for (1) is

ut1 = 2u5x − (5/9)v5x − 20uuxxx + (50/9)uvxxx + (40/9)vuxxx

− (10/9)vvxxx − 50uxuxx + (125/9)uxvxx + (40/3)vxuxx − (10/3)vxvxx

− (40/3)vuux + (20/9)vuvx + 40u2ux − (80/9)u2vx + (5/9)v2ux,
vt1 = 5u5x − (4/3)v5x − 40uuxxx + 10uvxxx + (10/3)vuxxx − (5/9)vvxxx

− 120uxuxx + 30uxvxx + (80/3)vxuxx − (55/9)vxvxx + (160/3)vuux

− 20vuvx + (40/3)u2vx − (40/3)v2ux + (35/9)v2vx.

By Proposition 2 this system is bihamiltonian, and indeed we can write
it as

ut1 = P1δH1/δu = P0δH2/δu,

where

H2 =
7

162
v3 − 8

3
u3 − 5

9
v2u +

20
9

u2v − u2
x +

5
9
vxux − 2

27
v2
x.
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