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1. Introduction

The aim of this work is to analyze variationality of systems of first-order partial dif-
ferential equations by methods of differential geometry. It is known that existence of a
Lagrangian for a system of PDE (of any order) is closely connected with the possibility
to represent the equations by means of a closed form, which generally is local and non-
unique (see e.g. [8], [9]). We prove that for a system of first-order PDE on a fibred manifold,
variationality is equivalent with the existence of a global and unique closed (n + 1)-form
(where n is the dimension of the base manifold), and provide an explicit construction of
such a form. As a consequence we obtain an explicit characterization of general systems of
variational first-order PDE and of their Lagrangians. Our results are a generalization of [4],
where quasilinear first-order PDE were studied. Also the method we use is completely dif-
ferent. Contrary to the above mentioned paper, where variationality properties are studied
by tools of the theory of formal integrability of PDE (as e.g. in [3]), the proof is long and
rather complicated, and the main result is local and obtained for a system of Cω equations,
we use a geometric setting, representing a system of differential equations by means of a
dynamical form over a fibred manifold, and obtain more complete results—for first-order
PDE in general and valid for the C∞ case—without tedious calculations and in a straight-
forward way based on the Poincaré Lemma. The setting and methods we use are similar
to those applied in our previous work [5], where we have discussed quasilinear PDE. Some
other closely related results can be found also in [6] and [10].

The paper is organized as follows. In Section 2 we introduce notations and recall necessary
concepts and results concerning the calculus of variations on fibred manifolds. The main
result, Theorem 2, is stated and proved in Section 3.

2. Basic definitions and known results

In what follows, all manifolds and mappings are smooth, and summation over repeated
indices is undestood. We consider a fibred manifold π : Y → X, dimX = n, dimY = m+n.
We denote J1 the 1-jet prolongation functor, π1 : J1Y → X, π1,0 : J1Y → Y . Let us recall
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Typeset by AMS-TEX

1



some basic definitions. A mapping γ : U → Y , where U ⊂ X is an open subset, is called
a section of π, if π ◦ γ = idU . A vector field ξ on Y is said to be π-vertical, if Tπ.ξ = 0.
Similarly, a vector field ξ on J1Y is called π1-vertical (resp. π1,0-vertical), if Tπ1.ξ = 0
(resp. Tπ1,0.ξ = 0). A q-form η on J1Y is called π1-horizontal (resp. π1,0-horizontal), if
iξη = 0 for every π1-vertical (resp. π1,0-vertical) vector field ξ on J1Y . We denote by h
the horizontalization of differential forms. h is defined to be an R-linear wedge-product
preserving mapping such that for a q-form η on Y hη is a q-form on J1Y , and

(2.1) hdxi = dxi, hdyσ = yσ
j dxj , hf = f ◦ π(1,0).

Its easy to see, that

(2.2) hdf = difdxi, where dif =
∂f

∂xi
+

∂f

∂yσ
yσ

i .

η is called contact, if J1γ∗ η = 0 for every section γ of π. A contact π1,0-horizontal q-
form η is called 1-contact, if for every π1-vertical vector field ξ on J1Y , the form iξη is
π1-horizontal; η is called k-contact, 2 ≤ k ≤ q, if iξη is (k−1)-contact. Recall that for every
π1,0-horizontal q-form on J1Y there is a unique decomposition η = η0 +η1 + · · ·+ηq, where
η0 is a π1-horizontal form, and ηi, 1 ≤ i ≤ q, is a i-contact form on J1Y ; we set hη = η0,
piη = ηi, and call it the horizontal and i-contact part of η, respectively. Consequently, every
q-form on Y can be uniquely decomposed as follows

(2.3) π∗
1,0η = hη + p1η + · · · + pqη.

We denote by (xi, yσ) (resp. (xi, yσ, yσ
j )) local fibred coordinates on Y (resp. the associ-

ated coordinates on J1Y ), and set

(2.4)
ω0 = dx1 ∧ dx2 · · · ∧ dxn, ωσ = dyσ − yσ

k dxk,

ωj = i∂/∂xj ω0, ωj1j2 = i∂/∂xj2 ωj1 , etc.

A 1-contact π1,0-horizontal (n + 1)-form E on J1Y is called a dynamical form. In fibred
coordinates, E = Eσ ωσ ∧ω0, where Eσ = Eσ(xi, yν , yν

k). A section γ of π is called a path of
E, if E ◦J1γ = 0, i.e., if the components γν of γ satisfy the following system of m first-order
PDE:

(2.5) Eσ

(
xi, γν ,

∂γν

∂xj

)
= 0, 1 ≤ σ ≤ m.

By a first-order Lagrangian we mean a horizontal n-form λ on J1Y . In fibred coordinates,
λ = Lω0, where L = L(xi, yν , yν

k).
Let ρ be an n-form on Y . Then λ = hρ is a first-order Lagrangian (with the function L

polynomial of degree ≤ n in the first-order derivatives), and

(2.6) π∗
1,0ρ = L ω0 +

n∑
k=1

( 1
k!

)2 ∂kL

∂yσ1
j1

· · · ∂yσk
jk

ωσ1 ∧ · · · ∧ ωσk ∧ ωj1···jk

(see [7] and also [2]). We denote ρKλ = π∗
1,0ρ and call this n-form the Krupka form of λ. The

at most 1-contact part of ρKλ , i.e.,

(2.7) θλ = Lω0 +
∂L

∂yσ
j

ωσ ∧ ωj ,
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is called the Poincaré–Cartan form of λ. Note that Eλ = p1dρ is a dynamical form on J1Y ;
it is called the Euler–Lagrange form of λ, and the corresponding equations for paths of Eλ

are called the Euler–Lagrange equations. Obviously, Eλ = Eσ(L) ωσ ∧ ω0, where

(2.8) Eσ(L) =
∂L

∂yσ
− dj

∂L

∂yσ
j

,

and the Euler–Lagrange expressions Eσ, 1 ≤ σ ≤ m, are all polynomials of degree ≤ n in
the yν

j ’s.
A dynamical form E on J1Y is called variational, if for every point x ∈ J1Y there exists

a neighbourhood U and Lagrangian λ defined on U such, that E = Eλ. Thus, for variational
forms equations for paths (2.2) are the Euler–Lagrange equations. It is known (see [12]) that
if E = Eσωσ ∧ω0 is a variational dynamical form on J1Y , then to every point in J1Y there
exists a neighbourhood U such that λ = Lω0, where L is a function on U defined by

(2.9) L = yσ

∫ 1

0

Eσ(xi, uyν , uyν
j ) du,

is a Lagrangian for E, called Vainberg–Tonti Lagrangian.

3. Variational properties of systems of first-order PDE

Theorem 1 ([1],[8]). A dynamical form E on J1Y is variational if and only if in every
fibred chart its components Eσ satisfy the following conditions

(3.10)
∂Eσ

∂yν
− ∂Eν

∂yσ
+ dj

∂Eν

∂yσ
j

= 0,
∂Eσ

∂yν
i

+
∂Eν

∂yσ
i

= 0, 1 ≤ σ, ν ≤ m, 1 ≤ i ≤ n.

Proposition 1. Let E be a dynamical form on J1Y , E = Eσωσ ∧ ω0. If E is variational,
then the Eσ are polynomials of degree ≤ n in the yν

j ’s.

Proof. If E is a variational dynamical form on J1Y , then by the previous theorem its
components Eσ satisfy the second of the conditions (3.10). Differentiating Eσ and using
this property we get

∂n+1Eσ

∂yν1
i1

. . . ∂y
νk−1
ik−1

∂yνk
p ∂y

νk+1
ik+1

. . . ∂y
νl−1
il−1

∂yνl
p ∂y

νl+1
il+1

. . . ∂y
νn+1
in+1

= − ∂n+1Eνk

∂yν1
i1

. . . ∂y
νk−1
ik−1

∂yσ
p ∂y

νk+1
ik+1

. . . ∂y
νl−1
il−1

∂yνl
p ∂y

νl+1
il+1

. . . ∂y
νn+1
in+1

=
∂n+1Eνl

∂yν1
i1

. . . ∂y
νk−1
ik−1

∂yσ
p ∂y

νk+1
ik+1

. . . ∂y
νl−1
il−1

∂yνk
p ∂y

νl+1
il+1

. . . ∂y
νn+1
in+1

= − ∂n+1Eσ

∂yν1
i1

. . . ∂y
νk−1
ik−1

∂yνl
p ∂y

νk+1
ik+1

. . . ∂y
νl−1
il−1

∂yνk
p ∂y

νl+1
il+1

. . . ∂y
νn+1
in+1

,

since at least two of the indices i1, . . . , in+1 must take the same value, say, p.
On the other hand, it holds

∂n+1Eσ

∂yν1
i1

. . . ∂y
νk−1
ik−1

∂yνk
p ∂y

νk+1
ik+1

. . . ∂y
νl−1
il−1

∂yνl
p ∂y

νl+1
il+1

. . . ∂y
νn+1
in+1

=
∂n+1Eσ

∂yν1
i1

. . . ∂y
νk−1
ik−1

∂yνl
p ∂y

νk+1
ik+1

. . . ∂y
νl−1
il−1

∂yνk
p ∂y

νl+1
il+1

. . . ∂y
νn+1
in+1

,
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Hence, we conclude that

(3.11)
∂n+1Eσ

∂yν1
i1

. . . ∂y
νn+1
in+1

= 0.

�
In view of the above proposition and the second of the conditions (3.10) we set

(3.12)
Eσ = Aσ + B j1

σν1
yν1

j1
+ · · · + B j1···jn

σν1···νn
yν1

j1
· · · yνn

jn
,

B
j1···jp···jq···jk

σν1···νp···νq···νk = B
j1···jq···jp···jk

σν1···νq···νp···νk , B j1···jk
σν1···νp···νk

= −B j1···jk
νpν1···σ···νk

, 1 ≤ k ≤ n.

Taking into account (2.9), we can see immediately that the following proposition holds:

Proposition 2. The following conditions are equivalent:
(1) A Lagrangian λ = Lω0 on J1Y is a polynomial of degree r in yν

j , where 1 ≤ r ≤ n.
(2) The Euler–Lagrange expresssions Eσ(L) are polynomials of degree r in yν

j , where
1 ≤ r ≤ n.

(3) The form ρKλ is projectable onto Y .

Let us turn to analyze variationality of first-order PDE.

Theorem 2. Let E be a dynamical form on J1Y . The following conditions are equivalent:
(1) E is variational.
(2) There is a unique closed (n + 1)-form α on Y such that E = p1α.

Proof. First, suppose that E is variational. Then we have a family of local Vainberg–Tonti
Lagrangians (2.9) defined on open subsets of J1Y . Since the components Eσ of E take the
form (3.12) by Proposition 1, the corresponding Lagrangians are also polynomials in the
yν

k ’s. Accordingly, we obtain a family of local n-forms ρKλ (2.6), which are π1,0-projectable.
The forms dρKλ are closed and p1dρKλ = E. We have to show that the local forms dρKλ give
rise to global form α on Y , and that this form is unique.

Let α be a form on Y such that E = p1α. We have π∗
1,0α = E +F where F is an at least

2-contact form. Put

(3.13) F =
n∑

k=1

F j1···jk
σν1···νk

ωσ ∧ ων1 ∧ · · · ∧ ωνk ∧ ωj1···jk
,

where the components are completely antisymmetric in both the superscripts and the sub-
scripts. The condition dα = 0 then after a straightforward computation gives

(3.14) F j1···jk
σν1···νk

=
1

k!(k + 1)!
∂kEσ

∂yν1
i1

· · · ∂yνk
ik

,

and the identities (3.10). Then the form α in fibred coordinates is of the form

(3.15) α = Eσωσ ∧ ω0 +
n∑

k=1

1
k!(k + 1)!

(
∂kEσ

∂yν1
i1

· · · ∂yνk
ik

)
ωσ ∧ ων1 ∧ · · · ∧ ωνk ∧ ωj1···jk

.

Now, in the base (dxi, dyσ, dyσ
j ) we obtain after a straightforward computation

(3.16)
α = Aσdyσ ∧ ω0 +

1
2!

B j1
σν1

dyσ ∧ dyν1 ∧ ωj1 + . . .

+
1

(n + 1)!
B j1···jn

σν1···νn
dyσ ∧ dyν1 ∧ · · · ∧ dyνn ∧ ωj1···jn

.
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Since the form F is completely determined by the components of E, it is globally defined
and unique. Consequently, α is defined on Y , and is unique.

Conversely, suppose (2). Then π∗
1,0α = E + F , where F is at least 2-contact. Computing

d(E + F ) = 0 we get

(3.17) diF
i
σν + 1

2

(∂Eν

∂yσ
− ∂Eσ

∂yν

)
= 0, 2F k

σν − ∂Eσ

∂yν
k

= 0.

Decomposing the second of the equations (3.17) to the symmetric and antisymmetric part
in σ, ν we conclude

(3.18)
∂Eσ

∂yν
j

+
∂Eν

∂yσ
j

= 0, F k
σν =

1
4

(
∂Eσ

∂yν
k

− ∂Eν

∂yσ
k

)
.

Substituting F k
σν in the first of the equations (3.17) we get

(3.19)
∂Eσ

∂yν
− ∂Eν

∂yσ
+ dj

∂Eν

∂yσ
j

= 0.

�
Remark. By the above theorem, first-order variational dynamical forms are in one-to-one
correspondence with closed (n + 1)-forms on Y . A similar property are known to possess
variational ordinary differential equations of any order [11].

Corollary 1. A dynamical form E on J1Y is variational if and only if its components are
of the form (3.12), and the (n + 1)-form

(3.20)
α = Aσdyσ ∧ ω0 +

1
2!

B j1
σν1

dyσ ∧ dyν1 ∧ ωj1 + . . .

+
1

(n + 1)!
B j1···jn

σν1···νn
dyσ ∧ dyν1 ∧ · · · ∧ dyνn ∧ ωj1···jn

on Y is closed.

Corollary 2. A system of C∞ first-order partial differential equations is variational if and
only if for some r, 1 ≤ r ≤ n, it is of the form

(3.21) B j1···jr
σν1···νr

∂yν1

∂xj1
· · · ∂yνr

∂xjr
+ . . . + B j1j2

σν1ν2

∂yν1

∂xj1

∂yν2

∂xj2
+ B j1

σν1

∂yν1

∂xj1
+ Aσ = 0,

where

(3.22) B
j1···jp···jq···jk

σν1···νp···νq···νk = B
j1···jq···jp···jk

σν1···νq···νp···νk , B j1···jk
σν1···νp···νk

= −B j1···jk
νpν1···σ···νk

, 1 ≤ k ≤ r,

and the (n + 1)-form

(3.23)
α = Aσdyσ ∧ ω0 +

1
2!

B j1
σν1

dyσ ∧ dyν1 ∧ ωj1 + . . .

+
1

(r + 1)!
B j1···jr

σν1···νr
dyσ ∧ dyν1 ∧ · · · ∧ dyνr ∧ ωj1···jr

on Y is closed. In this case, α is the exterior derivative of the Krupka form (2.3) associated
with the corresponding Vainberg–Tonti Lagrangian L (which is a polynomial of degree r in
the variables yν

j ).
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cussions on the subject of this work and her kind help. I acknowledge the financial support
from the Grant GAČR 201/00/0724.
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6. A.Haková and O. Krupková, Variational first-order partial differential equations, submitted.
7. D. Krupka, A map associated to the Lepagean forms of the calculus of variations in fibered manifolds,

Czechoslovak Math. J. 27 (1977) 114–118.

8. D. Krupka, On the local structure of the Euler-Lagrange mapping of the calculus of variations, in: Proc.
Conf. on Diff. Geom. and Its Appl. 1980, O. Kowalski, ed. (Universita Karlova, Prague, 1981) 181–188.

9. D. Krupka, Lepagean forms in higher order variational theory, in: Modern Developments in Analytical
Mechanics I: Geometrical Dynamics, Proc. IUTAM-ISIMM Symposium, Torino, Italy 1982, S. Benenti,

M. Francaviglia and A. Lichnerowicz, eds. (Accad. delle Scienze di Torino, Torino, 1983) 197–238.

10. D. Krupka, Variational principles for energy-momentum tensors, Reports on Math. Phys. 49 (2002).
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PARTIAL DIFFERENTIAL EQUATIONS
(Práce SVOČ 2002)

Abstrakt

Ćılem práce je analyzovat variačnost systémů parciálńıch diferenciálńıch rovnic 1. řádu
na hladkých varietách metodami diferenciálńı geometrie. Je známo, že variačnost systému
parciálńıch diferenciálńıch rovnic (libovolného řádu) úzce souviśı s existenćı jistých uzavře-
ných diferenciálńıch forem, které obecně nejsou určeny jednoznačně. Zároveň netriviálńı
topologická stuktura podkladové variety vede i k nutnosti zkoumat definičńı obory těchto
uzavřených forem, tj. k otázce globálńı existence.

Pro př́ıpad obyčejných diferenciálńıch rovnic libovolného řádu na fibrovaných prostorech
bylo dokázá-no, že variačnost je ekvivalentńı s existenćı jisté uzavřené formy, a že tato
forma je globálńı a jediná. Hlavńım výsledkem předložené práce je d̊ukaz, že analogické
tvrzeńı plat́ı i pro parciálńı diferenciálńı rovnice 1. řádu. Výsledkem je rovněž explicitńı
konstrukce této diferenciálńı formy. Jako d̊usledek pak źıskáváme explicitńı charakteristiku
všech systémů PDR 1. řádu, které jsou variačńı a jejich Lagrangián̊u.

Vztah práce k dř́ıvějš́ım praćım SVOČ a k práci diplomové

Práce navazuje na práci “Alžběta Haková: Vztah mezi variačnost́ı a uzavřenost́ı pro
(n + 1)-formy 1. řádu”, prezentovanou v rámci SVOČ v r. 2001 (práce źıskala 3. cenu
v celostátńım kole), v ńıž byl studován stejný problém pro speciálńı př́ıpad kvazilineárńıch
rovnic. Výsledek předložené práce představuje zobecněńı na libovolný systém PDR 1. řádu.

Tento výsledek byl prezentován formou posteru na mezinárodńı zimńı škole “Geometry
and Physics” v Srńı v lednu 2002 a představuje část práce A. Haková, O. Krupková: Vari-
ational first-order partial differential equations”, která byla nab́ıdnuta do recenzńıho ř́ızeńı
v mezinárodńım matematickém časopise.

Předložená práce SVOČ neńı praćı diplomovou.
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