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Abstract. The paper gives an overview of results for partial differential equations with
hysteresis whose motivation comes from biology.

1. Introduction
In the biological literature, there are examples of processes whose state variables change due
to a change of parameters in such a way that when the parameters go back to the old values
the system does not follow its steps in reverse and thus a hysteresis loop is formed. Also many
biological problems involve a fold catastrophe regime which can be replaced by a model involving
hysteresis [8].

Although during the last decades there has been a steady growth in the mathematical study of
various hysteresis operators and applications, the mathematical treatment of biological problems
with hysteresis has been considered so far in few papers.

It is the purpose of the present paper to give an overview of such biological problems studied
from a mathematical point of view.

2. Model for bacterial growth
A model for bacterial growth patterns was the first biological model involving hysteresis which
was studied mathematically [5], [6], [7].

Similar to the classical experiment for Liesegang phenomena in chemical precipitation,
concentrical growth rings were observed in response to a diffusing front of histidine auxotrophic
salmonella typhimurium spreading from the center of a Petri dish to its boundary. Here the
bacteria are immobile, they are fixed on an agar gel containing all chemicals necessary for growth
except the missing amino acid. Therefore the spatial interaction is caused only by diffusion of
the nutrients and the buffer neutralized by acids produced as byproducts of the cell growth.

Let us note that in an attempt to better understand the mechanism for the formation of
concentric rings of growth, additional insight into the process was sought using the technique of
mathematical modelling, see e.g. [13]. To explain the periodic structure a mathematical model
with hysteresis was suggested in [5].

With the assumption that there exist thresholds for growth expressed in terms of the
concentration of chemicals, i.e., there is no growth until a certain threshold is reached and
the growth continues even as the system is falling below this threshold until a second threshold
is reached where the growth stops, the model was described mathematically in [6] by a system
of partial differential equations of the following type:
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∂B

∂t
= αV B, in Ω × (0, T ) (1)

∂H

∂t
= DH�H − βV B, in Ω × (0, T ) (2)

∂G

∂t
= DG�G− γV B, in Ω × (0, T ), (3)

where H describes the histidine concentration, G the concentration of the growth mediums
buffer and B the size of the bacterial population. V is a function describing the metabolic
activity of bacteria. It is assumed that the cell growth continues until the combination of H
and G reaches a threshold value at which cell growth stops, growth does not begin again until
a higher threshold is reached. This is modelled with a hysteresis operator of relay type.

Here α, β, γ,DH , DG are given positive constants, large compared to the positive diffusivity
constants DH , DG, and Ω is a bounded region in Rn with smooth boundary ∂Ω.

The system (1)-(3) was coupled with the following boundary and initial conditions:

∂H

∂ν
=
∂G

∂ν
= 0 on ∂Ω × (0, T ), (4)

B(x, 0) = B0(x), H(x, 0) = H0(x), G(x, 0) = G0(x) on Ω, (5)

where ν is the outward unit normal vector to the boundary.
In [6], [5] numerical results for this model were presented giving a very good correspondence

with biological experiments. The mathematical problem, however, was never solved. An attempt
has been made by A. Visintin, [11], where a simplified model

∂B

∂t
= αV (6)

∂H

∂t
= DH�H − βV (7)

∂G

∂t
= DG�G− γV (8)

was shown to have a solution by approximation, a priori estimates and a limit procedure. An
existence result for the system (1)-(3) was not proved until recently, [1]. Note that uniqueness,
because of the presence of the hysteresis operator of the type of completed relay in the source
term, is not expected, see [12].

The hysteresis relation can be described mathematically as follows: Let ψon, ψoff be functions
on R2 satisfying ψoff ≥ ψon on R2, ψoff will denote the threshold at which cell growth stops
and ψon denotes that at which cells begin to grow again. We will use the following notation

Γon = {(H,G);ψon(H,G) = 0}, (9)
Γoff = {(H,G);ψoff (H,G) = 0}, (10)
Mon = {(H,G);ψon(H,G) > 0}, (11)
Moff = {(H,G);ψoff (H,G) < 0}, (12)

Mon−off = {(H,G); 0 ≤ ψoff (H,G), ψon(H,G) ≤ 0}, (13)
M∗

on = Mon ∪ Γon, (14)
M∗

off = Moff ∪ (Γoff/Γon), (15)
M = {(H,G); 0 < ψoff (H,G), ψon(H, .G) < 0}. (16)
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Definition 2.1. For any (H,G) ∈ [C0([0, T ])]2 and any initial state ξ ∈ {0, 1} we define the
(single valued) function S = S(H,G, ξ) : [0, T ] → {0, 1} as follows:

S(0) =

⎧⎨
⎩

0 if (G(0), H(0)) ∈M∗
off

ξ if (H(0), G(0)) ∈M
1 if (H(0), G(0)) ∈M∗

on

for any t ∈ (0, T ], and setting Xt = {τ ∈ (0, T ], (H(t), G(t)) ∈ Γon or Γoff},

S(t) =

⎧⎨
⎩

S(0) if Xt = ∅
0 if Xt 	= ∅ and (H(maxXt), G(maxXt)) ∈ Γoff

1 if Xt 	= ∅ and (H(maxXt), G(maxXt)) ∈ Γon,

see Figure 1.

Γoff

Γon

H

G

Figure 1. The hysteresis operator

Notice the similarity with the definition of a classical relay operator, see e.g. [12] for more
details.

It can be shown that the operator S is not closed with respect to the strong topology of
[C0([0, T ])]2 for the input (H,G) and the weak star topology of BV (0, T ) for the output S.

Then the operator S̃ : [C0([0, T ])]2 × [0, 1] → P(BV (0, T )) is defined as follows:

S̃(0) =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

{0} if (H(0), G(0)) ∈Moff

[0, ξ] if (H(0), G(0)) ∈ Γoff

{ξ} if (H(0), G(0)) ∈M
[ξ, 1] if (H(0), G(0)) ∈ Γon

{1} if (H(0), G(0)) ∈Mon

S̃(t) =

⎧⎨
⎩

{0} if (H(t), G(t)) ∈Moff

[0, 1] if (H(t), G(t)) ∈Mon−off

{1} if (H(t), G(t)) ∈Mon

⎧⎨
⎩

if (H(t), G(t)) 	= Γon,Γoff , then S̃ is constant in a neighbourhood of t
if (H(t), G(t)) ∈ Γoff , then S̃ is nonincreasing in a neighbourhood of t
if (H(t), G(t)) ∈ Γon, then S̃ is nondecreasing in a neighbourhood of t.

(17)

The hysteresis relation is assumed to hold pointwise in space V (x, t) = S̃(H(x, ·), G(x, ·))(t).
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For the existence proof, the relay type hysteresis operator is in [1] approximated by a sequence
of operators of play type which can be represented as differential inclusions:

∂V

∂t
+ ∂Iε(G,H;V ) 
 0, (18)

where Iε(G,H; ·) is the indicator function of the closed interval [f∗ε, f∗ε ], f∗ and f∗ are functions
on R2 such that f∗ = 1 on M∗

on and f∗ = 0 otherwise, f∗ = 0 on M∗
off and f∗ = 1 otherwise,

and {f∗ε} and {f∗ε } are sequences of C2(R2) functions approximating it, i.e. f∗ε(x) → f∗(x) and
f∗ε (x) → f∗(x) as ε → 0 for each x ∈ R2. It is well known that the differential inclusion (18) is
equivalent to the classical play operator.

Theorem 2.1. If the Assumptions (A1) - (A3)
(A1) B0, H0, G0 ∈ L∞(Ω)
(A2) B0 ≥ 0, H0 ≥ 0, G0 ≥ 0.
(A3) f∗(H0, G0) ≤ V0 ≤ f∗(H0, G0).
are satisfied, there exists at least one solution of the system (1) − (3) coupled with initial

conditions (5) and boundary conditions (4) and V a solution of (18).

The theorem is proved using the standard technique of Yosida approximation, deriving
uniform bounds and limit procedure.

3. Prey-predator systems with hysteresis
In [2] a system of nonlinear PDEs with diffusive as well as hysteresis effects is suggested to model
the evolution of populations. The model originates from a prey-predator model of the following
type:

σ = λ(u) in Ω × (0, T ) (19)
∂u

∂t
−�u = h(σ, u, v) in Ω × (0, T ) (20)

∂v

∂t
−�v = g(σ, u, v) in Ω × (0, T ). (21)

(22)

Here σ denotes the density of the quality of food for the prey, u and v are densities of the prey
and predator, respectively and Ω is a bounded region in Rn with smooth boundary ∂Ω.

The speed of change of the density of food when the density of the prey decreases is different
from the speed when the density of the prey increases, i.e. the state of the system depends on
the previous evolution of data. Also when a small diffusive effect for the food of the prey is
considered a more complicated model is obtained:

∂σ

∂t
− ∂λ(u)

∂t
− k�σ + ∂Iu,v(σ) 
 F (σ, u, v) in Ω × (0, T ) (23)

∂u

∂t
−�u = h(σ, u, v) in Ω × (0, T ) (24)

∂v

∂t
−�v = g(σ, u, v) in Ω × (0, T ), (25)

where Iu,v(·) denotes the indicator function of a closed interval [f∗(u, v), f∗(u, v)], f∗(u, v) and
f∗(u, v) are C2 functions, 0 ≤ f∗(u, v) ≤ f∗(u, v) ≤ 1, ∂Iu,v(·) is the subdifferential of Iu,v(·)

Let us note that if σ is the solution of the differential inclusion

∂σ

∂t
− ∂u

∂t
+ ∂Iu(σ) 
 0 in Ω × (0, T ), (26)
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Figure 2. Generalized stop operator

then σ is the output of the hysteresis operator of stop type, see Figure 2.
This fact was pointed in [12] and used in many papers for the analysis of nonlinear phenomena,

e.g. in real-time control problems, or solid-liquid phase transition where hysteresis effects are
taken into account. The paper [2] is devoted to a detailed analysis of the system (23) -(25).
Results for positivity, boundedness, existence and uniqueness of solutions of the prey-predator
model are obtained. Under appropriate assumptions, using the method of Yosida approximation
combined with the derivation of appropriate uniform bounds, the authors prove that there exists
at least one solution of the system. Uniqueness is obtained for n ≤ 3.

In [10] a more complicated system for population dynamics is analyzed, taking also convective
terms into account:

∂σ

∂t
−∇ · (∇σ + λ(σ)) + ∂IU (σ) 
 g(σ, U) in Ω × (0, T ) (27)

∂ui

∂t
−∇ · (∇ui + μi(ui)) = hi(σ, U) in Ω × (0, T ), (28)

where U = (u1, . . . , um).
Results for non-negativity, boundedness and existence of at least one solution of the

population model with hysteresis effect are obtained. The main tools are the method of Yosida
approximation, the energy method for parabolic systems and fixed point arguments.
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