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1. Introduction

It is natural to consider materials whose properties are spatially inhomogeneous,
i.e. differ at different points.

In this paper we will consider spatially inhomogeneous Preisach hysteresis op-
erators and give a result on continuity of Preisach operators with respect to con-
vergence of density functions.

Hysteresis is a nonlinear phenomena. The basic feature of hysteresis behaviour
is a memory effect and irreversibility of the process. A systematic mathematical
investigation of hysteresis operators started relatively recently, see e.g. [1], [2], [7],
[8], although e.g. the Preisach model itself was introduced much earlier [9].

Our result will be critical for a homogenization argument for a parabolic equa-
tion with Preisach hysteresis, analogous to Proposition 2.12 in [6]. This will be
published elsewhere.

In [3] a corresponding convergence result is established for the Prandtl-Ishlinskii
hysteresis operator, whose nonlinearity is simpler than for the Preisach operator
considered here.

The paper is organized as follows. Section 1 is devoted to a description of
a simple hysteresis operator, the play, and its basic properties. The Preisach
operator is defined in Section 2 and we list also there its important properties.
The main result is the subject of Section 3.
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2. The Play operator

Let r > 0 be a parameter, u(t) a continuous input function on the time interval
I = [0, T ] and w0

r ∈ [−r, r] an initial state. We consider a variational inequality

G(t) ∈ [−r, r], t ∈ I (1)(
Ġ(t)− u̇(t)

)
(φ− G(t)) ≥ 0 for a.e. t ∈ I, for all φ ∈ [−r, r] (2)

G(0) = w0
r (3)

for the unknown G(t). For an input u ∈ W 1,1(I) this problem admits a unique
solution Gr[u,w0

r ] ∈ W 1,1(I). The play operator Er with threshold r is defined by
the relation

Er[u,w0
r ] = u− Gr[u,w0

r ], (4)

see Figure 1.
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Figure 1

For piecewise monotone inputs, in each interval of monotonicity [t0, t1] of the
input function u(t), the relation

Er[u,w0
r ](t) = max

{
u(t)− r,min{u(t) + r, Er[u,w0

r ](t0)}
}

(5)

follows from (1) and is often used for an alternative definition of the play operator,
see e.g. [8]. In the following we use the “unperturbed” or “virgin” initial state
defined by

w0
r = min {r,max{−r, u(0)}} . (6)

and write only Er[u].
The play operator has also a geometric “piston-in-cylinder” interpretation.

Consider a cylinder of length 2r with a piston moving inside. If the input u(t)
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denotes the position of the piston moving in the cylinder, then the position of the
cylinder yields the play operator.

We survey important properties of the play operator.
Theorem 1. (i) (see e.g. Proposition II.1.1 in [7]) The play operator Er[u] is
Lipschitz continuous in W 1,1(0, T ).

(ii) (see e.g. Proposition II.4.5 in [7]) The play operator admits a Lipschitz
continuous extension to C([0, T ]) and

|Er[u1](t)− Er[u2](t)| ≤ max
0≤s≤t

|u1(s)− u2(s)|,∀t ∈ I. (7)

(iii) (see e.g. Lemma 2.3.8 in [1]) The play operator is piecewise monotone in
the following sense:

dEr[u]
dt

· du

dt
≥ 0 a.e. in (0, T ). (8)

3. The Preisach operator

The simplest example of a hysteresis nonlinearity is given by a switch or relay
with hysteresis, hv,r : C([0, T ]) × {−1, 1} → BV (0, T ) with input u (magnetic
field) and output hv,r(magnetization), see Figure 2. The relay is characterized by
two parameters v ∈ R1 (interaction field) and r > 0 (critical field of coercivity) and
is defined formally as follows: Let R2

+ denote the set {(v, r) ∈ R2; r > 0}. For given
parameters (v, r) ∈ R2

+, input u ∈ C([0, T ]), initial magnetization ξ ∈ {−1, 1} and
any time t ∈ [0, T ], put

Xt := {τ ∈ (0, T ]; |u(τ)− v| = r}. (9)

We then define

hv,r[u, ξ](0) =



−1 if u(0) ≤ v + r

ξ if v − r < u(0) < v + r

1 if u(0) ≥ v + r

. (10)

and

hv,r[u, ξ](t) =




hv,r[u, ξ](0) if Xt = ∅
−1 if Xt 6= ∅ and u(max Xt) = v − r

1 if Xt 6= ∅ and u(max Xt) = v + r,

(11)

see Figure 2.
It is often convenient to use the following representation of the relay by means

of the system Er, r > 0 of play operators.

Lemma 2. (See e.g. Lemma II.3.6 in Krejč́ı for more general initial states). Let
u ∈ C([0, T ]) be given. For (v, r) ∈ R2

+, put ξ := −1 if v ≥ 0, ξ = 1 if v < 0.
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Then for every t ∈ [0, T ] and (v, r) ∈ R2
+, v 6= Er[u](t) we have

hv,r[u, ξ](t) =

{
−1 if v ≥ Er[u](t)
1 if v ≤ Er[u](t).

(12)

The output of the Preisach model is formally defined as an average over all
elementary switches with a given density function ψ ∈ L1

loc(R
2
+) by the formula

(see e.g. Krasnosel’skii and Pokrovskii [2] )

P[u](t) :=
∫ ∞

0

∫ ∞

−∞
ψ(v, r)hv,r[u, ξ](t)dvdr, (13)

where the initial values of the relays are taken as −1 if v > 0 and +1 otherwise.
Using Lemma 2 on the representation of the relay by a system of plays the output
of the Preisach operator can be expressed as

P[u](t) = C +
∫ ∞

0

g(Er[u](t), r)dr, (14)

where

g(v, r) =
∫ v

0

ψ(z, r)dz, (15)

C is a constant and Er[u](t) denotes the play operator.

Remark 1. Notice that the integral in (14) is meaningful if u ∈ C([0, T ]) since
Er[u](t) = 0 for r sufficiently large and g(0, r) = 0 for all r > 0.

In the sequel we will use the following assumptions :
(P1) There exists β ∈ L1

loc(0,∞), β ≥ 0 a.e. such that

0 ≤ ψ(z, r) ≤ β(r) for a.e. (z, r) ∈ R2
+. (16)

For R > 0 put b(R) :=
∫ R

0
β(r)dr.
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(P2)
∂ψ

∂z
∈ L∞loc(R

2
+). (17)

The next theorem shows conditions under which the Preisach operator is Lips-
chitz continuous on C0([0, T ]). Proof of the extended version of this theorem (for
more general initial inputs) can be found in [7], Proposition II.3.11.

Theorem 3. Let the Assumption (P1) be satisfied and let R > 0 be given. Then
for every u, v ∈ C([0, T ]) such that ‖u‖C0([0,T ]), ‖v‖C0([0,T ]) ≤ R the Preisach
operator (14) satisfies

‖P[u]− P[v]‖C0([0,T ]) ≤ b(R)‖u− v‖C0([0,T ]). (18)

Lemma 4. (Lemma II.4.1 in [7]) Let the Assumptions (P1) and (P2) be satisfied.
Then for u ∈ W 1,1(0, T ), r > 0 and t ∈ [0, T ], we have P ∈ W 1,1(0, T ) and for
a.e. t ∈ [0, T ]

Ṗ[u](t) =
∫ ∞

0

Ėr[u](t)ψ(Er[u](t), r)dr. (19)

It follows from the previous lemma and from the definition of the play operator
that the Preisach operator is piecewise monotone. We have

Theorem 5. The Preisach operator is under the Assumptions (P1) and (P2)
piecewise monotone, this means that for u ∈ W 1,1(0, T )

Ṗ[u](t)u̇(t) ≥ 0 a.e. (20)

We listed only some properties of the hysteresis operators which will be useful
for our purposes. For a full exposition of hysteresis operators and their properties
we recommend [1], [2], [7], [8]. In each of these an interested reader can find a
different approach.

4. Spatially dependent Preisach operators

We will consider the spatially dependent constitutive relation described by the
Preisach operator with a spatially dependent density function ψ(x, z, r) ∈ L1

loc(Ω×
R2

+), Ω ⊂ Rn is considered to be a bounded domain with Lipschitz boundary.
For a given input u(x, t) : Ω × I → R we define the output of the spatially

dependent Preisach operator as follows:

P[u](x, t) = C +
∫ ∞

0

g(Er[u(x, .)](t), r)dr, (21)

where
g(x, v, r) =

∫ v

0

ψ(x, z, r)dr. (22)
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Theorem 6. Let ψn ∈ Lp(Ω, L1
loc(R

2
+)), p ≥ 1, be a sequence of space dependent

density functions satisfying the Assumption (P1) for a.e. x ∈ Ω. Assume that
ψn converge to ψ in Lp(Ω, L1

loc(R
2
+)). Let Pn,P be the Preisach operators cor-

responding to ψn, ψ respectively. Let un be a sequence in Lp(Ω, C(I)) such that
un(x, .) ∈ C(I) for a.e. x ∈ Ω and ‖un − u‖C(I) → 0 as n →∞.

Then Pn[un](., t) converge to P[u](., t) for every t ∈ I in Lp(Ω).

Proof. We have for a.e. x ∈ Ω and every t ∈ I∫ ∞

0

∫ Er[un](t)

0

ψn(x, z, r)dzdr −
∫ ∞

0

∫ Er[u](t)

0

ψ(x, z, r)dzdr = (23)

=
∫ ∞

0

∫ Er [un](t)

0

ψn(x, z, r)dzdr −
∫ ∞

0

∫ Er [u](t)

0

ψn(x, z, r)dzdr+ (24)

+
∫ ∞

0

∫ Er [u](t)

0

[ψn(x, z, r)− ψ(x, z, r)]dzdr = (25)

∫ ∞

0

∫ Er[un](t)

Er[u](t)

ψn(x, z, r)dzdr +
∫ ∞

0

∫ Er[u](t)

0

[ψn(x, z, r)− ψ(x, z, r)]dzdr. (26)

The first integral on the right hand side of the last expresion can be estimated
using the Assumption (P1) as follows∫ ∞

0

∫ Er[un](t)

Er[u](t)

ψn(x, z, r)dzdr ≤
∫ ∞

0

∫ Er[un](t)

Er[u](t)

β(r)dzdr = (27)

=
∫ ∞

0

β(r)[Er[un](t)− Er[u](t)]dr ≤
∫ R

0

β(r)|Er[un](t)− Er[u](t)|dr, (28)

for some R > 0, see Remark 1.
The later term can be futher estimated using the Lipschitz continuity of the

play operator in C([0, T ]) (Theorem 1 (ii)) as follows:

∫ R

0

β(r)|Er[un](t)− Er[u](t)|dr ≤ ‖un − u‖C0([0,T ])b(R), (29)

where b(R) is defined in (P1).
The estimates above imply that for every t ∈ I

‖Pn[un](t)− P[u](t)‖Lp(Ω) ≤ b(R)‖un − u‖Lp(Ω,C0([0,T ]))+ (30)

+

∥∥∥∥∥
∫ ∞

0

∫ Er[u](t)

0

[ψn(x, z, r)− ψ(x, z, r)]dzdr

∥∥∥∥∥
Lp(Ω)

. (31)

The first term on the right hand side of the last inequality converges by assump-
tions to 0. To estimate the second term, again by Remark 1 Er[u](t) = 0 for
r sufficiently large, and if u(x, .) ∈ C([0, T ]) for a.e. x ∈ Ω by Theorem 1 (ii)
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Er[u](x, .) ∈ C([0, T ]), so the integral over r is through a finite interval, and con-
verges to zero because of the assumption on the convergence of ψn. The statement
follows.

Remark 2. It follows from the proof of the previous theorem that the convergence
ψn to ψ in Lp(Ω, L1

loc(R
2
+)) can be easily replaced by the convergence in L∞(Ω×

R2
+)) weakly star, as is typically the case we get in homogenization arguments,

getting the weak star convergence of the Preisach operators in L∞(Ω).
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[7] P. Krejč́ı, Hysteresis, Convexity and Dissipation in Hyperbolic Equations, Vol. 8, Gakuto
Int. Series Math. Sci. Appl., Gakkötosho, Tokyo 1996.

[8] A. Visintin, Differential Models of Hysteresis, Springer-Verlag, Berlin 1995.
[9] P. Weiss, J. de Freufenreich, Arch. Sci.Phys. Nat. 42 (1916), 449.

Jana Kopfová
e-mail: jana.kopfova@math.slu.cz

(Received: December 28, 2004; revised: July 27, 2006)


