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A homogenization result for a parabolic equation with Preisach hysteresis
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Mathematical Institute of the Silesian University at Opava, Na Rybnı́čku 1, 746 01 Opava, Czech Republic
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In this paper we consider an initial boundary value parabolic problem

[cu+ P[u]]t − div(a·∇u) = f,

with Preisach hysteresis P . The functions c, a, and the density function ψ of the Preisach operator are allowed to depend
also on the space variable x. The equation is homogenized by considering a sequence of equations with spatially periodic
data cε, aε, andψε, where the spatial period ε converges to 0. Properties of hysteresis operators and the concept of two-scale
convergence are used to show the convergence of the corresponding solutions to the solution of the homogenized problem.

c© 2007 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim

1 Introduction

Let I = [0, T ] be a time interval and Ω ∈ Rn a bounded domain with Lipschitz boundary. We study the parabolic equation
[c(x)u+ P[u]]t − div(a(x)·∇u) = f, (1)

where P represents a hysteresis operator of Preisach type, characterized by a density function ψ. The functions c, a, and ψ
are spatially dependent.

A systematic mathematical investigation of Preisach operators, as an important example of hysteresis operators, started
relatively recently, see e.g. [1,7,8] or [13]. The model itself was introduced much earlier [14].

Eq. (1) describes unsaturated flow of a compressible fluid through a porous medium with hysteresis effect taken into
account, when gravitational effect is neglected. Referring to measurements carried out in [6], D. Flynn [3] recently proposed
a Preisach formulation to model soil-moisture hysteresis for particular soils. A porous medium can be represented as a large
system of micro-tubes, each of them behaving like a “nonlinear play” because of capilarity effects. The “play" representation
of the Preisach operator makes it possible to interpret the resulting Preisach hysteresis as a homogenized limit of spatially
distributed nonlinear plays. Since saturation takes place, the correct form of the term under time derivative ought to be
b(x, u) + P[u] with b bounded. By the “hysteresis-parabolic” maximum principle derived in [5], we restrict ourselves to a
subdomain, where b(x, u) can be approximated by a linear term c(x)u.

We assume that the data c, a and ψ are ε-periodic and consider a sequence uε of solutions of (1) for each ε > 0. The
field of mathematics which treats the asymptotic behavior of the sequence of solutions uε is known as homogenization. It is
used in modelling composite materials with periodic structure. If the space period is too small, t.m. the space microstructure
is too fine, we want to reduce the computational complexity by replacing the quickly changing coefficients by constant
ones, corresponding to the idealized homogeneous material, which on the macroscopic level has the same qualitative and
quantitative properties. The theory started in the seventies, see e.g. [4]. The main result of this paper is a homogenization
result for (1).

A parabolic homogenization problem with a space dependent Preisach hysteresis operator, defined as a weighted su-
perposition of relays was considered in [13] (Sect. XI.7) in a setting corresponding to (1) with c(x) = 1 and a(x) = 1.
The novelty with respect to [13] consists in an additional spatial homogenization of the coefficients, using the concept of
two-scale convergence. The variational formulation of the Preisach model enables us to simplify considerably the proofs,
which become straightforward and self-contained.

The paper is organized as follows. Sect. 1 is devoted to a survey of relevant results for Preisach hysteresis. For more
details as well as exposure to other hysteresis operators see e.g. [1,7,8] or [13]. In Sect. 2 we briefly introduce the problem,
give assumptions and state an existence and uniqueness result proved e.g. in [1]. In order to pass to the limit in the elliptic
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term we will use the concept of two-scale convergence, introduced by Nguetseng [11] and further extended by Allaire [2].
Basic definitions and properties are recalled in Sect. 3. Sect. 4 contains the main homogenization result for (1) and its proof.

2 Hysteresis operators

2.1 The Play operator

Let r > 0 be a parameter, u(t) an absolutely continuous input function on the time interval I and w0
r ∈ [−r, r] an initial

state. We consider a variational inequality

G(t) ∈ [−r, r], t ∈ I , (2)
(
Ġ(t) − u̇(t)

)
(φ− G(t)) ≥ 0 for a.e. t ∈ I, for all φ ∈ [−r, r] , (3)

G(0) = w0
r , (4)

for the unknown G(t). For an input u ∈ W 1,1(I) this problem admits a unique solution Gr[u,w0
r ] ∈ W 1,1(I). The play

operator Er with threshold r is defined by the relation

Er[u,w0
r ] = u− Gr[u,w0

r ], (5)

see Fig. 1.

Fig. 1 The play operator

For piecewise monotone inputs, in each interval of monotonicity [t0, t1] of the input function u(t), the relation

Er[u,w0
r ](t) = max

{
u(t) − r,min{u(t) + r, Er[u,w0

r ](t0)
}

(6)

follows from (1) and is often used for an alternative definition of the play operator, see e.g. [13]. In the following we use the
“unperturbed” or “virgin” initial state defined by

w0
r = min {r,max{−r, u(0)}} . (7)

and write only Er[u].
We survey important properties of the play operator.

Theorem 1. (i) The play operator Er[u] is continuous inW 1,p(0, T ) for p ∈ [1,∞) and Lipschitz continuous for p = 1.
(ii) The play operator admits a Lipschitz continuous extension to C([0, T ]) and

|Er[u1](t) − Er[u2](t)| ≤ max
0≤s≤t

|u1(s) − u2(s)|,∀t ∈ I. (8)

(iii) The play operator is piecewise monotone in the following sense:

dEr[u]
dt

· du
dt

≥ 0 a.e. in I, for all u absolutely continuous. (9)
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2.2 The Preisach operator

The simplest example of a hysteresis nonlinearity is given by a switch or relay with hysteresis, hv,r : C([0, T ])×{−1, 1} →
BV (0, T ) with input u (magnetic field) and output hv,r(magnetization), see Fig. 2. The relay is characterized by two
parameters v ∈ R1 (interaction field) and r > 0 (critical field of coercivity) and is defined formally as follows: Let
R2

+ denote the set {(v, r) ∈ R2; r > 0}. For given parameters (v, r) ∈ R2
+, input u ∈ C([0, T ]), initial magnetization

θ ∈ {−1, 1} and any time t ∈ I , put

Xt := {τ ∈ (0, T ]; |u(τ) − v| = r}. (10)

We then define

hv,r(u, θ)(0) =





−1 if u(0) ≤ v + r ,

θ if v − r < u(0) < v + r ,

1 if u(0) ≥ v + r ,

(11)

and

hv,r(u, θ)(t) =





hv,r(u, θ)(0) if Xt = ∅ ,
−1 if Xt 	= ∅ and u(maxXt) = v − r ,

1 if Xt 	= ∅ and u(maxXt) = v + r,

(12)

see Fig. 2.

Fig. 2 The relay operator

It is often convenient to use the following representation of the relay by means of the system Er, r > 0 of play operators.

Lemma 2. (see e.g. Lemma 3.6 in [8] for more general initial states). Let u ∈ C([0, T ]) be given. For (v, r) ∈ R2
+, put

θ := −1 if v ≥ 0, θ = 1 if v < 0. Then for every t ∈ I and (v, r) ∈ R2
+, v 	= Er[u](t) we have

hv,r(u, θ)(t) =





−1 if v > Er[u](t)

1 if v < Er(u(t)).
(13)

The output of the Preisach model is formally defined as an average over all elementary switches with a given density
function ψ ∈ L1

loc(R
2
+) by the formula (see e.g. Krasnosel’skii and Pokrovskii [7])

P(t) :=
∫ ∞

0

∫ ∞

−∞
ψ(v, r)hv,r(u, θ)(t)dvdr, (14)

where the initial values of the relays are taken as −1 if v > 0 and +1 otherwise. To justify the integration in (14) we need
to assume that the antisymmetric part ψa(v, r) := 1

2 (ψ(v, r) − ψ(−v, r)) of ψ satisfies ψa ∈ L1(R2
+) and we consider the

integral in the sense of principal value. Using Lemma 2 on the representation of the relay by a system of plays the output of
the Preisach operator can be expressed as

P(t) = C +
∫ ∞

0
g(Er[u](t), r)dr, (15)
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where

g(v, r) =
∫ v

0
ψ(z, r)dz, (16)

C is a constant and Er[u](t) denotes the play operator.
In the sequel we will use the following assumptions :
(P1) There exists β ∈ L1

loc(0,∞), β ≥ 0 a.e. such that

0 ≤ ψ(z, r) ≤ β(r) for a.e. (z, r) ∈ R2
+. (17)

For R > 0 put b(R) :=
∫ R

0 β(r)dr.
(P2)

∂ψ

∂z
∈ L∞

loc(R
2
+). (18)

The next theorem shows conditions under which the Preisach operator is Lipschitz continuous on C0([0, T ]). Proof of
the extended version of this theorem (for more general initial inputs) can be found in [8].

Theorem 3. Let the Assumption (P1) be satisfied and let R > 0 be given. Then for every u, v ∈ C([0, T ]) such that
‖u‖C0([0,T ]), ‖v‖C0([0,T ]) ≤ R the Preisach operator (15) maps C0([0, T ]) → C0([0, T ]) and satisfies

‖P[u] − P[v]‖C0([0,T ]) ≤ b1(R)‖u− v‖C0([0,T ]). (19)

Lemma 4. Let the Assumptions (P1) and (P2) be satisfied. Then for u ∈ W 1,1(0, T ), r > 0 and t ∈ I , we have
P ∈ W 1,1(0, T ) and for a.e. t ∈ I

Ṗ[u](t) =
∫ ∞

0
Ėr[u](t)ψ(Er[u](t), r)dr. (20)

It follows from the previous lemma and from the definition of the play operator that the Preisach operator is piecewise
monotone. We have

Theorem 5. The Preisach operator is under the Assumptions (P1) and (P2) piecewise monotone, this means that for
u ∈ W 1,1(0, T )

Ṗ[u](t)u̇(t) ≥ 0 a.e. (21)

2.3 Spatially dependent Preisach operators

We will consider the spatially dependent constitutive relation described by the Preisach operator with a spatially dependent
density function ψ(x, z, r) ∈ L1

loc(Ω ×R2
+).

Theorem 6. Let ψn be a sequence of space dependent density functions in L∞(Ω × R2
+), satisfying the Assumption

(P1) for a.e. x ∈ Ω. Assume that ψn converge to ψ in L∞(Ω × R2
+) weakly star. Let Pn,P be the Preisach operators

corresponding to ψn, ψ respectively. Let un be a sequence in L2(Ω, C(I)) and ‖un − u‖L2(Ω,C(I)) → 0 as n → ∞.
Then Pn[un](., t) converge to P[u](., t) for every t ∈ I in L∞(Ω) weakly star.

Proof of this Theorem can be found in [9].

3 The heat equation with hysteresis

3.1 Statement of the problem

We set Q := Ω × [0, T ]. We will consider the diffusion equation with hysteresis in the form

[c(x)u+ P[u]]t − div(a(x)·∇u) = f in Q, (22)

with homogeneous Dirichlet boundary conditions

u(x, t) = 0 on ∂Ω × I (23)
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and with an initial condition

u(x, 0) = u0(x) for x ∈ Ω. (24)

Here P denotes a Preisach operator which we had defined and studied in the previous section.
The data are assumed to satisfy the following requirements:

(A1) c ∈ L∞(Ω) and there exist constants cm, cM > 0 such that

0 < cm ≤ c(x) ≤ cM for a.e. x ∈ Ω. (25)

(A2) The operator

Au = −div(a·∇u) = −
n∑

i,j=1

∂

∂xi

(
aij(x)

∂u

∂xj

)
(26)

is elliptic, i.e.

n∑
i,j=1

aij(x)ξiξj ≥ α|ξ|2 for all ξ ∈ Rn and for a.e. x ∈ Ω, and aij ∈ L∞(Ω) . (27)

(A3)f ∈ L2(I, L2(Ω)).
(A4) u0 ∈ H1

0 (Ω).
(A5) P[u] is a Preisach operator with density function ψ(x, z, r) which satisfies the assumption (P1) for a.e. x ∈ Ω.

3.2 Existence result for the parabolic equation with Preisach hysteresis

Theorem 7. Let the assumptions (A1)-(A5) hold. Then there exists a unique weak solution of the system (22)-(24)
satisfying u ∈ Z := L∞(0, T ;H1

0 (Ω))
⋂
H1(0, T ;L2(Ω)), w ∈ L2(Ω;C[0, T ]), (24) holds for a.e. x ∈ Ω and such that

∫ T

0

∫

Ω
[c(x)u(x, t) + P[u]]φ(x, t)tdxdt

+
∫ T

0

∫

Ω
a(x)∇u(x, t) · ∇φ(x, t)dxdt =

∫ T

0

∫

Ω
f(x, t)φ(x, t)dxdt (28)

holds for all φ ∈ L2(0, T ;H1
0 (Ω)) ∩H1(0, T ;L2(Ω)). The solution u satisfies the estimate

max
t∈(0,T )

∫

Ω
(‖∇u‖2 + ‖u‖2)dx+

∫ T

0

∫

Ω
‖ut‖2

dxdt ≤ c, (29)

where the constant c depends on the domain Ω, the norm of f in L2(I, L2(Ω)) and u0 in H1
0 (Ω) and also on the constants

cm, cM , and α.

Detailed proof of the existence part of this Theorem can be found in [13] or alternatively in [1], where also uniqueness
result for the Preisach operator is given.

4 Two-scale convergence

Let Y = [0, 1]n be the closed unit cube. We use the subscript # to denote the space of Y-periodic functions. In particular,
H1

#(Y ) is the space of all functions in H1
loc(R

n) which are Y−periodic. For more details see e.g. [12].
Let us consider a sequence of functions uε(x) inLp(Ω) (by εwe denote for simplicity arbitrary, but prescribed sequence of

positive numbers converging to 0). The classical definition of two-scale convergence was first introduced by Nguetseng [11]
and then expanded by Allaire [2].

Definition 1. A sequence of functions uε in Lp(Ω) is said to two-scale converge to a limit u0(x, y) belonging to
Lp(Ω×Y ) if for any function ψ(x, y) inC∞

0 [Ω;C∞
# (Y )] (a space of compactly supported infinitely differentiable functions

with Y-periodic values in C∞(Rn)) we have

lim
ε→0

∫

Ω
uε(x)ψ

(
x,
x

ε

)
dx =

∫

Ω

∫

Y

u0(x, y)ψ(x, y)dydx. (30)
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Remark 1. Notice that although uε is a sequence of functions of n variables, the two-scale limit is a function of 2n
variables. It enables to describe the periodic behavior of uε better.

Two-scale strong convergence is defined analogously:

Definition 2. We say that a sequence uε ⊂ Lp(Ω) converges two-scale strongly to u0 if uε two-scale converges to this
limit and moreover limε→0 ‖uε‖Lp(Ω) = ‖u0‖Ω×Y .

The two-scale convergence as the usual weak convergence makes bounded sets in L2(Ω) relatively sequentially compact
as stated in the next Theorem.

Theorem 8. From each bounded sequence uε in L2(Ω) we can extract a subsequence two-scale converging to a limit
function u0(x, y) ∈ L2(Ω × Y ). Moreover, uε converges weakly in L2(Ω) to u(x) =

∫
Y
u0(x, y)dy.

The last result deals with the case when we have additional bounds on sequences of derivatives.

Theorem 9. Let uε be a bounded sequence inH1(Ω) that converges weakly to a limit u(x) inH1(Ω). Then uε two-scale
converges to u(x), and there exists a function u1(x, y) in L2[Ω;H1

#(Y )] such that, up to a subsequence, ∇uε two-scale
converges to ∇xu(x) + ∇yu1(x, y).

For proofs of the above theorems as well as for a very nice overview of results about two-scale convergence we refer
to [10].

5 Homogenization

Let ε be a sequence of positive numbers which tend to zero. For each ε we consider the so called periodic problem - the
problem of the form (22)-(24) with ε-periodic data in the constitutive relations, namely

(cε(x)uε + Pε[uε])t − div(aε(x)·∇uε) = f ε in Q, (31)

uε(x, t) = 0 on ∂Ω × I , (32)

uε(x, 0) = u0(x) for x ∈ Ω. (33)

The coefficients and operators denoted by superscript ε have the special form

cε(x) = c
(x
ε

)
, (34)

aε
ij(x) = aij

(x
ε

)
, (35)

Pε[u](x, t) =
∫ ∞

0

∫ Er[u](x,t)

0
ψε(x, z, r)dzdr , (36)

and ψε(x, z, r) = ψ
(x
ε
, z, r

)
. (37)

We will need the following assumptions:
(Aε1) c ∈ L∞

# (Y ) and there exist a constants cm, cM > 0 such that

0 < cm ≤ c(y) ≤ cM for a.e. y ∈ Y. (38)

(Aε2) aij ∈ L∞
# (Y ),

n∑
i,j=1

aijξiξj ≥ α|ξ|2 holds for all ξ ∈ Rn and for a.e. y ∈ Y. (39)

(Aε3) f ε ∈ L2(I, L2(Ω)) and f ε converge to f� weakly in L2(I, L2(Ω)).
(Aε4) u0 ∈ H1

0 (Ω).
(Aε5) P[u] is a Preisach operator with density function ψ(y, z, r) satisfying the assumption (P1) for a.e. y ∈ Y , ψ(y, z, r)
is Y -periodic in y.

It follows from Theorem 7 that under the above assumptions the problem (31)-(33) has a unique solution uε for each
ε > 0.
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Notice that since the data are periodic, they will oscillate very rapidly for small values of ε.
We will show that as ε tends to zero, the solutions uε of the periodic problem (31)-(33) converge to a function u� - the

solution of the so-called homogenized problem, which not any longer involves rapidly oscillating functions.
The homogenized problem consists of the equation

(c�u� + P�[u�])t − div(a�·∇u�) = f� in Q, (40)

u�(x, t) = 0 on ∂Ω × I , (41)

u�(x, 0) = u0(x) for x ∈ Ω. (42)

where the homogenized coefficient c� is the weak limit of cε defined by

c� =
∫

Y

c(y)dy, (43)

the limit hysteresis operator

P�[u](x, t) =
∫ ∞

0

∫ Er[u](x,.)

0
ψ�(z, r)dzdr (44)

is determined by the function ψ�(z, r) being also the weak limit of ψε(y, z, r) i.e.

ψ�(z, r) =
∫

Y

ψ(y, z, r)dy. (45)

The matrix of coefficients is defined by

a� =
∫

Y

(a+ a · ∇yχ)dy, i.e. a�
ij =

∫

Y

(
aij +

n∑
k=1

aik
∂χj

∂yk

)
dy, (46)

where the auxiliary functions χk are the unique weak solutions of the following elliptic, so-called cell problem, see e.g. [4]:
Find χ = (χ1, ..., χn) ∈ H1

#(Y )n
such that

−divy(a · ∇yχ+ a) = 0, i.e. −
n∑

i=1

∂

∂yi

(
n∑

k=1

aik
∂χj

∂yk
+ aij

)
= 0, (47)

∫

Y

χjdy = 0. (48)

Note that, in general, the matrix of coefficients a� differs from the weak limit of aε.
The main homogenization result of the paper reads as follows:

Theorem 10. Let the Assumptions (Aε1)-(Aε5) be satisfied. Then as ε → 0, the solutions uε of the periodic problem
(31)–(33) converge weakly star in L∞(0, T ;H1

0 (Ω))
⋂
H1(0, T ;L2(Ω)) to the solution u� of the homogenized problem

(40)–(42) defined by (43)–(46).

P r o o f. As mentioned earlier, it follows from Theorem 7 and the Assumptions (Aε1)-(Aε5) that the periodic problem
for each ε > 0 and also the homogenized problem admit unique solutions. It follows from classical arguments, see e.g. [4]
that since the sequence cε is bounded in L∞(Ω), cε → c� weakly star in L∞(Ω) and similarly ψε → ψ� weakly star in
L∞(Ω ×R2

+).
The estimate (29) together with the fact that the sequence f ε weakly converges and therefore is bounded in L2(I, L2),

implies that the sequence of solutions uε is bounded in Z. This implies that there exists u∗ ∈ Z and u1 ∈ L∞(0, T ;H1
0 (Ω))

such that possibly after selecting a subsequence
uε → u∗ weakly star in Z,
∇uε(x, t) → ∇u∗(x, t) + ∇yu1(x, y, t) two-scale in L∞(0, T ;L2(Ω))n

, in L∞ the convergence is weak-star only.
The compact imbedding Z ↪→ L2(Ω;C([0, T ])) yields that uε → u∗ strongly in L2(Ω;C([0, T ])) and Pε[uε] → P[u∗]

for every t ∈ (0, T ) in L∞(Ω) by Theorem 6.
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We have to prove that u∗ solves the problem (40). We choose in (31) a sequence of test functions vε(x, t) = ψε(x)φ(t) =
[v0(x) + εv1(x, x

ε )]φ(t), where v0 ∈ H1
0 (Ω), v1 ∈ C∞

0 (Ω̄;H1
#(Y )) and φ ∈ C∞

0 (0, T ). Clearly vε converges strongly to
v0(x) and its gradient ∇vε strongly two-scale converges to ∇v0 + ∇yv1(x, y). We obtain

∫ T

0

∫

Ω
− (cε(x)uε+ Pε[uε])ψεφt

+ aε(x)·∇uε
[
∇v0(x) + ∇yv1

(
x,
x

ε

)
+ ε∇xv1

(
x,
x

ε

)]
dxdt

=
∫ T

0

∫

Ω
f εvεdxdt (49)

We can now pass to the limit as ε → 0 since each term contains a product of at most one weakly or two-scale converging
sequence and obtain, using similar arguments as in the proof of Theorem 14 in [10]:

∫ T

0

∫

Ω

{
− (c�u∗+P�[u∗]) v0φt +

∫

Y

a(y)·(∇u∗ + ∇yu1)[∇v0(x) + ∇yv1]dy
}
dxdt

=
∫ T

0

∫

Ω
f�v0dxdt. (50)

Choosing different v0 and φ(t) with v1 = 0 we get

(c�u∗ + P�[u∗])t − divx

[∫

Y

a(y)(∇u∗(x) + ∇yu1(x, y))dy
]

= f� (51)

and choosing different v1 and φ(t) with v0 = 0

−divy[a(y)(∇u∗(x) + ∇yu1(x, y))] = 0. (52)

Comparing the last equation with (47), we conclude that u1(x, y) must have the form

u1(x, y) = χ(y)∇u∗(x), (53)

and using (53) in (51) we get the limit equation

(c�u∗ + P�[u∗])t − divx(a� · ∇u∗) = f�. (54)

It follows that u∗ is the solution of the homogenized problem (40), and since such a solution is unique, the whole sequence
uε converges.
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