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Abstract. Results from a nonlinear semigroup theory are applied to get ex-
istence and uniqueness for PDEs with hysteresis. The hysteresis nonlinearity
considered is of the generalized play operator type, but can be easily extended
to a generalized Prandtl-Ishlinskii operator of play type, both possibly discon-
tinuous.

1. Introduction. We show in this paper how nonlinear semigroup theory can be
used to solve some partial differential equations with hysteresis nonlinearities.

Hysteresis is a nonlinear phenomena, its mathematical studies started about
35 years ago by Russian scientists, see [9]. Hysteresis arise in plasticity, friction,
ferromagnetism, ferroelectricity, superconductivity, adsorption and desorption, ex-
amples can also be found in biology, chemistry and economics and its coupling to
PDEs is natural from a physical point of view.

We will introduce in Section 2 the generalized play operator as defined by
A.Visintin, classical play operator being a special example. A generalized Prandtl-
Ishlinskii operator is also defined in the sense of A.Visintin. We list some of the
basic properties, emphasizing especially the so-called Hilpert inequality, which is
the basic property needed for application of the nonlinear semigroup theory. For
an introduction to hysteresis operators and more details on its properties and ap-
plications, see also [2], [10], [17].

Nonlinear semigroup theory started in 1967 by Komura, when he announced
the theory of generation of nonlinear semigroup in a Hilbert space, was extended
to Banach space by Crandall and Liggett and it is a widely used tool for solving
nonlinear PDEs. Section 3 is devoted to a survey of basic relevant results from
a nonlinear semigroup theory, formulated generally in a Banach space. However,
some results which hold only in a Hilbert space are mentioned as well.

We illustrate the use of nonlinear semigroup theory for PDEs with hysteresis on
two examples. In both cases we couple the PDE with a generalized play operator,
although generalization to the generalized Prandtl-Ishlinskii operator of play type is
straightforward. Let us note that either generalized play operator or a generalized
Prandtl-Ishlinskii operator of play type defined by A.Visintin include discontinuous
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hysteresis operators of a relay type or Preisach type resp. and the combination of
such operators with a PDE is a very nontrivial problem.

In section 4 we reformulate the PDEs as Cauchy problems in L1 and prove the ex-
istence and uniqueness of solutions by applying the results of nonlinear semigroups
theory. The use of nonlinear semigroup theory in L1 in problems with hysteresis
was introduced by A. Visintin, [16], [17] and is motivated by results of Hilpert, [4].
Asymptotic results for Problem (1) and a Problem (2) (in one space dimension),
were obtained from the nonlinear semigroup theory in [7] and [8] resp.

R.Showalter [12] used a slightly different approach, he also applied the results of
a nonlinear semigroup theory in a Hilbert space getting much stronger results, but
this approach is limited to the coupling of the PDE with a classical play operator
(or Prandtl-Ishlinskii operators defined as superpositions of such classical play op-
erators ) whose simple structure allows us to get m-accretivity of the corresponding
operator in L2. We present a different formulation at the end of the last section.
We show that this formulation allows us to use results from nonlinear semigroup
theory in Hilbert spaces, to get a convergence of the solution of the corresponding
Cauchy problem as t →∞. This improves the results from [8] for the classical play
operator.

2. Hysteresis operators.

2.1. Generalized play operator. Let γl, γr : R → R be maximal monotone
(possibly multivalued) functions with

inf γr(u) ≤ sup γl(u) ∀u ∈ R. (1)

Now, given w0 ∈ R , we construct the hysteresis operator E(·, w0) as follows. Let u
be any continuous, piecewise linear function on R+ such that u is linear on [ti−1, ti]
for i = 1, 2, .... We then define w := E(u,w0) : R+ → R by

w(t) :

{
min{γl(u(0)),max{γr(u(0)), w0}} if t = 0,

min{γl(u(t)), max{γr(u(t)), w(ti−1)}} if t ∈ (ti−1, ti], i = 1, 2, ...

Note that w(0) = w0 only if γr(u(0)) ≤ w0 ≤ γl(u(0)). This operator is called a
generalized play, see Figure 1.

Figure 1.
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If γl, γr are moreover continuous, it was proved in Visintin [17], that for any con-
tinuous piecewise linear functions u1, u2 on R+, with the notation εi : E(ui, w

0
i ),

i = 1, 2, we have the following inequality:

max
[t1,t2]

|ε1 − ε2| ≤ max
{
|ε1(t1)− ε2(t2)|,mM

(
max
[t1,t2]

|u1 − u2|
)}

(2)

∀[t1, t2] ⊂ [0, T ], T ∈ R+,

where for any continuous function f : R → R and any constant M > 0, |f |M (h)
denotes its local modulus of continuity:

|f |M (h) := sup{|f(y1)− f(y2)| : y1, y2 ∈ [−M, M ], |y1 − y2| ≤ h} ∀h > 0, (3)

mM (h) := max{|γl|M (h), |γr|M (h)} ∀h,M > 0, (4)
and

M := max{|ui(t)| : t ∈ [0, T ], i = 1, 2}. (5)
Hence E(·, w0) has a unique continuous extension, denoted by E(·, w0) again, to

an operator
E : C(R+)× R→ C(R+). (6)

The inequality (2) holds also for this extended operator, which is then uniformly
continuous on bounded sets. If γl, γr are Lipschitz continuous, then E is also
Lipschitz continuous and operates and is bounded from W 1,p(0, T ) to W 1,p(0, T ),
for any p ∈ [+,∞].

The generalized play operator can be also equivalently defined as a solution
w ∈ W 1,1(0, T ) of a variational inclusion of the following type

dw

dt
∈ φ(u,w) a.e. in (0, T ) (7)

w(0) = w0, (8)

where

φ(u, w) =





{+∞} if w < inf γr(u)
R̃+ if w ∈ γr(u) \ γl(u)
{0} if sup γr(u) < w < inf γl(u)
R̃− if w ∈ γl(u) \ γr(u)
{−∞} if w > sup γl(u)
R̃ if w ∈ γl(u) ∩ γr(u)

(9)

Here R̃ := [−∞, +∞], R̃+ := [0, +∞], R̃− := [−∞, 0]. The generalized play
operator satisfies the Hilpert inequality [4]:

Theorem 2.1. Let (ui, w
0
i ) ∈ W 1,1(0, T ) × R (i = 1, 2) and h : [0, T ] → R be

a measurable function such that h ∈ H(u1 − u2) a.e. in (0, T ), H denotes the
Heaviside graph. Then

d

dt

[E(u1, w
0
1)− E(u2, w

0
2)

]
h ≥ d

dt

{
[E(u1, w

0
1)− E(u2, w

0
2)]

+
}

a.e. in (0, T ). (10)

Proof. For the simplicity of the proof set εi = E(ui, w
0
i ), ε̃ = ε1 − ε2. We have

d

dt
(ε̃) =

dε̃

dt
k a.e. in (0, T ), (11)
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where k is any measurable function such that k(t) ∈ H(ε̃(t)) in (0, T ). So it suffices
to show

dε̃

dt
(h− k) ≥ 0, a.e. in (0, T ). (12)

Let us consider the different possibilities which can occur at a generic t ∈ (0, T ).
1. If ε1 = ε2 we can take k = h.
2. If either ε1 > ε2 and u1 > u2 or ε1 < ε2 and u1 < u2 then k = h.
3. ε1 > ε2 and u1 ≤ u2 or ε1 < ε2 and u1 ≥ u2. Let us consider e.g. the first

case, the other one is analogous. It follows from the properties of the play operator
that (u1, ε1) 6∈ graph (γr), this means that, by construction of the play operator,

dε1
dt ≤ 0 and (u2, ε2) 6∈ graph (γl) so dε2

dt ≥ 0.
Therefore dε̃

dt ≤ 0. Moreover as ε̃ > 0, k = 1 ≥ h. The result follows.

2.2. Classical play operator. Special example of the generalized play operator
as defined in [17] is the classical play operator. It can be obtained from the general
definition as above with the choice of hysteresis boundary curves as

γl(u) = u + r, γr(u) = u− r, r ≥ 0 is a parameter , (13)

or can be defined equivalently as follows.
Let u(t) be a continuous input function on the time interval I = [0, T ] and

w0
r ∈ [−r, r] an initial state. We consider a variational inequality

G(t) ∈ [−r, r], t ∈ I (14)
(
Ġ(t)− u̇(t)

)
(φ− G(t)) ≥ 0 for a.e. t ∈ I, for all φ ∈ [−r, r] (15)

G(0) = w0
r (16)

for the unknown G(t). For an input u ∈ W 1,1(I) this problem admits a unique
solution Gr[u,w0

r ] ∈ W 1,1(I). The play operator Er with threshold r is defined by
the relation

Er[u,w0
r ] = u− Gr[u,w0

r ], (17)
see Figure 2.

u

εW=    (u)r

2r

Figure 2.
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2.3. Generalized Prandtl-Ishlinskii operator of play-type. To define the
generalized Prandtl-Ishlinskii operator of play-type, let us assume that we are given
a measure space (P,A, µ), where µ is a finite Borel measure. For µ-almost any
ρ ∈ P, let (γρl, γρr) be a pair of functions R → R, satisfying (1), and for each
ρ ∈ P let w0

ρ ∈ R, be a given initial value. Let Eρ(·, w0
ρ) be the corresponding

generalized play operator corresponding to the couple (γρl, γρr). Then the operator
defined as

Ẽµ

(
ũ, {w0

ρ}ρ∈P

)
=

∫

P
Eρ

(
ũ, w0

ρ

)
dµ(ρ)

is a generalized Prandtl-Ishlinskii operator of play-type. Intuitively, this operator
is a weighted superposition of generalized plays with boundary curves γρl, γρr.

Let us denote by M(P) the set of measurable functions P → R. If the families
of curves γρl, γρr for any ρ in P are equicontinuous, then by the estimate (2), also
Ẽµ is strongly continuous from C(R+)×M(P) to C(R+).

The generalized Prandtl-Ishlinskii operator satisfies also the Hilpert inequality:

Theorem 2.2. Let (ui, {w0
iρ}ρ∈P) ∈ W 1,1(0, T )×M(P) (i = 1, 2) and h : [0, T ] →

R be a measurable function such that h ∈ H(u1 − u2) a.e. in (0, T ), H denotes the
Heaviside graph. Then

d

dt

[
Ẽ

(
u1, {w0

1ρ}ρ∈P

)
− Ẽ

(
u2, {w0

2ρ}ρ∈P

)]
h ≥

d

dt

{
[Ẽ

(
u1, {w0

1ρ}ρ∈P

)
− Ẽ

(
u2, {w0

2ρ}ρ∈P

)
]
+
}

a.e. in (0, T ).

The proof is a straightforward consequence of Theorem 2.1 and the definition of
generalized Prandtl-Ishlinskii operator.

The hysteresis relation will be assumed to hold pointwise in space:

w(x, t) = [E(u(x, .), w0(x))](t) in [0, T ], a.e. in Ω. (18)

3. Nonlinear semigroup theory. In this section we recall some standard results
of the nonlinear semigroup theory. For more details and for the proofs of the results
of this section, see e.g. citeBarbu.

Definition 3.1. Let B be a (real) Banach space, A (possibly nonlinear and multi-
valued) operator A : D(A) ⊂ B → B is accretive if

∀ui ∈ D(A), ∀vi ∈ A(ui)(i = 1, 2),∀λ > 0,

||u1 − u2||B ≤ ||u1 − u2 + λ(v1 − v2)||B .

It is equivalent to requiring that (I + λA)−1 is a contraction on Rg(I + λA),
∀λ > 0.

Definition 3.2. If in addition Rg(I + λA) = B for some λ > 0, then A is called
m-accretive.

For A m-accretive let us consider the approximate problem

uh
k − uh

k−1

h
+ A(uh

k) 3 fh
k , k = 1, 2, ..., (19)

uh
0 = u0

(the derivative in the evolution equation is approximated by a backward-difference
quotient of step size h > 0 and f by a step function fh

k ).
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Let us define the step function

uh
k(t) = uh

k for kh ≤ t < (k + 1)h. (20)

The m-accretivity of A implies that the scheme (19) is uniquely solved recursively
and the famous Crandall-Ligget Theorem holds:

Theorem 3.1. (Crandall-Liggett) [3]: If A is m-accretive, f ∈ L1(0, T,B) and
u0 ∈ D(A) and fh → f in L1(0, T, B), then uh → u(·) uniformly as h → 0 and
u(·) ∈ C(0, T, B).

Theorem 3.2. If A is m-accretive, f ∈ L1(0, T, B) and u0 ∈ D(A), then the
Cauchy problem

du

dt
+ A(u(t)) 3 f (21)

u(0) = u0 (22)

has one (and only one) integral solutionu. In the case f = 0, u = S(t)u0, where
S(t) is a nonlinear semigroup of contractions generated by the operator A. If f has
bounded variation in [0, T ] and u0 ∈ D(A), then the integral solution is Lipschitz
continuous.

Definition 3.3. u is an integral solution of (21) (in the sense of Benilan) if
(i) u : [0, T ] → B is continuous
(ii) u(t) ∈ ¯D(A) for any t ∈ [0, T ],
(iii) u(0) = u0 and

||u(t2 − v)||2B ≤ ||u(t1 − v)||2B+

2
∫ t2

t1

lim
λ→0

||u(τ − v + λ(f(τ)− z))||2B − ||u(τ − v)||2B
2λ

dτ.

In the case B is a Hilbert space, stronger results can be obtained.

Theorem 3.3. Accretivity of A in a Hilbert space B is equivalent to requiring that

〈v1 − v2, u1 − u2〉B ≥ 0 ∀u1, u2 ∈ D(A), ∀v1 ∈ A(u1), v2 ∈ A(u2). (23)

Theorem 3.4. If B is a Hilbert space, A an m-accretive operator, f ∈ W 1,1(0, T, B)
and u0 ∈ D(A), then there exists a unique solution u ∈ W 1,∞(0, T, B) of the Cauchy
problem (21)-(22) with u(t) ∈ D(A).

Theorem 3.5. [14] Let A be an m-accretive operator in Hilbert space B and let
S(t) be the semigroup generated by A. If A is such that F := A−10 6= ∅, for
every [x, y] ∈ A, x /∈ F , (y, x− Px) > 0, where P denotes the projection on F and
(I + A)−1 is a compact operator, then for every x ∈ D(A), S(t)x converges strongly
as t →∞ to a fixed point of S(t).

4. Problems with hysteresis. In this section we transform some partial differ-
ential equations with hysteresis into systems of differential inclusions. We assume
in the whole section that Ω is a bounded subset of RN , Q = Ω × [0, T ] and the
hysteresis relation is assumed to hold pointwise in space (18).

Problem (1):
∂

∂t
(u + w)−4u = f in Ω× (0, T ) = Q, (24)
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where the hysteresis relation w = E(u,w0) represents a generalized play,
As pointed out by Visintin [17], the equation (24) is formally equivalent to

∂u

∂t
+ ξ −4u = f in Q

∂w

∂t
− ξ = 0 in Q (25)

ξ ∈ φ(u,w) in Q,

where φ was defined in (9). We can write the Cauchy problem for (25) coupled
with homogeneous Dirichlet boundary conditions as

∂U

∂t
+ A1U 3 F in Q (26)

U(0) = U0 in Ω (27)

where U =
(

u
w

)
, F =

(
f
0

)
,

A1

(
u
w

)
= A1U =

{(
ξ −4u
−ξ

)
, ξ ∈ φ(U) ∩ R

}

and

D(A1) =
{

U =
(

u
w

)
; inf γr(u) ≤ w ≤ sup γl(u) a.e. on Ω, U ∈ L1(Ω,R2),

u ∈ W 1,1
0 (Ω),−4u ∈ L1(Ω)

}
(28)

Problem (2):

∂

∂t
(u + w) +

∂u

∂x
= f in (0, L)× (0, T ) = Q, (29)

where the hysteresis relation w = E(u,w0) represents a generalized play,
The problem can be reformulated similarly as Problem (1) as follows:

∂u

∂t
+ ξ +

∂u

∂x
= f in Q

∂w

∂t
− ξ = 0 in Q (30)

ξ ∈ φ(u,w) in Q,

where φ was defined in (9). We can write the Cauchy problem for (30) as

∂U

∂t
+ A2U 3 F in Q (31)

U(0) = U0 in Ω (32)

where U =
(

u
w

)
, F =

(
f
0

)
,

A2

(
u
w

)
= A2U =

{(
ξ
−ξ

)
+ RU, ξ ∈ φ(U) ∩ R

}
, B(u) : =

∂u

∂x

R(U) : = (B(u), 0) (33)
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and

D(A2) =
{

U =
(

u
w

)
; inf γr(u) ≤ w ≤ sup γl(u) a.e. on Ω,

U ∈ L1(Ω,R2), Bu ∈ L1(Ω), u(0) = 0
}

. (34)

We have the following theorem, see [17], p.234 :

Theorem 4.1. Assume that γl, γr are maximal monotone, satisfy (1), and are
affinely bounded, that is, there exist constants C1, C2 > 0, such that ∀v ∈ R, ∀z ∈
γh(v)

‖z‖ ≤ C1‖v‖+ C2 (h = l, r) (35)

Then the operators A1, A2 resp. defined above are m- and T-accretive in L1(Ω,R2).
If f ∈ L1(Ω × (0, T )), the Cauchy problems (26)-(27) and (31)-(32) have one and
only one integral solution U : [0, T ] → L1(Ω,R2), which depend continuously on the
data u0, w0, f . Moreover, if f ∈ BV (0, T ; L1(Ω)) and −4u0 ∈ L1(Ω), then U is
Lipschitz continuous.

Proof. : We outline the proof of the accretivity of the operator A2. Consider the
generalized play operator. Let γrn := n[I − (I + 1

nγr)−1], γln := n[I − (I +
1
nγl)−1] ∀n ∈ N, be Yosida approximations of γl and γr respectively and define
the corresponding An and φn as in (33), (9).

We claim that for any n ∈ N and for any F1, F2 ∈ L2(Ω,R2
1), setting Ui :=

(I + aAn)−1(Fi) (i = 1, 2),

‖(U1 − U2)+‖L1(Ω,R2
1)
≤ ‖(F1 − F2)+‖L1(Ω,R2

1)
. (36)

Then the analogous inequality holds for the negative parts, whence

‖(U1 − U2)‖L1(Ω,R2
1)
≤ ‖(F1 − F2)‖L1(Ω,R2

1)
. (37)

In order to prove (36), first let us take any δ > 0, set

Hδ(ū) =





0 if ū < 0,
ū
δ if 0 ≤ ū ≤ δ,
1 if ū > δ,

∀ū ∈ R,

and denote by H the Heaviside graph. In this argument we omit the (fixed) index
n.

Let us set Ũ = (ũ, ṽ) := U1 − U2, ξ̃ := ξ1 − ξ2. For any measurable function h1

such that h1 ∈ H(ṽ) a.e. in Ω, we have

‖(F1 − F2)+‖L1(Ω,R2
1)

=
∫

[(ũ + aξ̃ + aBũ)+ + (ṽ − aξ̃)+] dx

≥
∫

Ω

[(ũ + aξ̃ + aBũ)Hδ(ũ) + (ṽ − aξ̃)h1] dx

≥
∫

Ω

{ũHδ(ũ) + ṽh1 + aξ̃[Hδ(ũ)− h1]}dx

+ a

∫

Ω

BũHδ(ũ) dx. (38)



NONLINEAR SEMIGROUP METHODS IN PROBLEMS WITH HYSTERESIS 9

Note that

Hδ(ũ) → h0 =
{

0 if ũ ≤ 0
1 if ũ > 0 a.e. in Ω.

Hence ∫

Ω

[ũHδ(ũ) + ṽh1] dx →
∫

Ω

(ũ+ + ṽ+) dx = ‖Ũ+‖L1(Ω,R2
1)

,

∫

Ω

ξ̃[Hδ(ũ)− h1] dx →
∫

Ω

ξ̃(h0 − h1) dx.

Here keeping in mind that γrn and γln are single valued, the last term is nonnega-
tive, because of the properties of the generalized play operator which are formulated
in the Hilpert inequality, see (10) and the last term on the right hand side of (38)
is nonnegative as well as can be easily checked.

Let us consider Problems (1) and (2) coupled with a classical play operator. In
this case, because of the properties of the classical play operator it can be shown
that the operator A1 or A2 resp. are m-accretive in a Hilbert space L2(Ω)×L2(Ω)
and then Theorem 3.4 can be applied getting much stronger results. To show
accretivity e.g. for A1 we need to show (23) which in our case takes the form:∫

Ω

(ξ1 − ξ2)(u1 − u2)−4(u1 − u2)(u1 − u2)− (ξ1 − ξ2)(w1 − w2)dx ≥ 0, (39)

which is equivalent to∫

Ω

(ξ1 − ξ2)(u1 − u2 − w1 + w2) + [∇(u1 − u2)]
2
dx ≥ 0. (40)

Using the definition of the classical play operator, it follows that the first term is
nonnegative, and the result follows.

Applying the above result, together with Theorem 3.5, we get the following
Theorem:

Theorem 4.2. The operators A1 and A2 (when the hysteresis relation is the clas-
sical play operator) are m-accretive in L2(Ω)× L2(Ω), therefore the corresponding
Problems (24) and (29) have for u0 ∈ D(A1) or D(A2) (resp.) a unique solution
u ∈ W 1,∞(0, T, L2(Ω). If f = 0 this solution converges strongly as t →∞ to 0.
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388.

[5] N. Kenmochi and A. Visintin, Asymptotic stability for parabolic variational inequalities with
hysteresis, in “Models of Hysteresis,”, A. Visintin, ed., Longman, Harlow, (1993), 59–70.

[6] N. Kenmochi and A. Visintin, Asymptotic stability for nonlinear PDEs with hysteresis, Eur.
J. Applied Math., 5 (1994), 39–56.
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