
This article was published in an Elsevier journal. The attached copy
is furnished to the author for non-commercial research and

education use, including for instruction at the author’s institution,
sharing with colleagues and providing to institution administration.

Other uses, including reproduction and distribution, or selling or
licensing copies, or posting to personal, institutional or third party

websites are prohibited.

In most cases authors are permitted to post their version of the
article (e.g. in Word or Tex form) to their personal website or
institutional repository. Authors requiring further information

regarding Elsevier’s archiving and manuscript policies are
encouraged to visit:

http://www.elsevier.com/copyright

http://www.elsevier.com/copyright


Author's personal copy

Physica B 403 (2008) 448–450

On a model with hysteresis arising in magnetohydrodynamics

Michela Eleuteria, Jana Kopfováb,�, Pavel Krejčı́a,1
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Abstract

We study the flow of a conducting fluid surrounded by a ferromagnetic solid, under the influence of the hysteretic response of the

surrounding medium. We assume that this influence can be represented by the Preisach model and show existence of a solution of the

resulting nonlinear system of PDEs in the convexity domain of the Preisach operator.
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1. Introduction

The flow of a conducting fluid surrounded by a
ferromagnetic solid is strongly influenced by the hysteretic
response of the surrounding medium Ref. [1], part G9. We
assume that this influence can be represented by the Preisach
model, and show that this assumption is in agreement with
thermodynamic principles. Similar problem was recently
considered in Ref. [2], where, however, the typical hysteresis
magnetization curve is approximated by two linear parts.

Magnetohydrodynamic (MHD) flows have been the
subject of an extensive study in the last 40 years (see for
instance Ref. [3]). Most of the results assume that no
ferromagnetic hysteresis takes place and the magnetic field
and the magnetic induction are linked by a linear relation.

In order to take into account the hysteretic effects in MHD,
we consider the following problem as a model for MHD flow
of a conducting fluid between two ferromagnetic plates

q
qt
ðuþWðuÞÞ þ v � rðuþWðuÞÞ � Du ¼ 0;

qv
qt
þ ðv � rÞv� Dvþ ðuþWðuÞÞruþrp ¼ 0;

div v ¼ 0;

8>>>><
>>>>:

(1)

in O� ð0;TÞ, coupled with initial conditions and homo-
geneous Dirichlet boundary conditions, with unknowns
u (represents the magnetic field), v (velocity of the fluid) and
p (pressure), where O is an open bounded set of R2 and W is
a Preisach hysteresis operator.

2. Derivation of the model

Let us consider a conducting fluid moving in an electro-
magnetic field with given velocity v ¼ ðv1; v2; v3Þ such that

div v ¼ 0. (2)

We recall the Ampère law (due to the low frequency

approximation the Maxwell term is neglected)

cr�H ¼ 4pj, (3)

the Faraday law

cr� E ¼ �
qB
qt

, (4)

the Ohm law (where the Hall effect is neglected)

j ¼ s Eþ
v

c
� B

� �
, (5)

the continuity equation

r � jþ
qr
qt
¼ 0, (6)

and the equation of motion

r
Dv

Dt
þrp ¼ j� Bþ ZDvþ

1

3
Zrdiv v; (7)
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here H is the magnetic field, j is the electric current, E is the
electric field, B is the magnetic induction, s is the electric
conductivity, r is the charge density, p is the pressure, Z is the
viscosity and c is the speed of light in vacuum; moreover D

Dt

denotes the material derivative.
We further simplify our setting by considering planar

waves. More precisely, let O be a domain in R2 and assume
that (using orthogonal Cartesian coordinates x; y; z) both B

and H are parallel to the z-axis and only depend on the
coordinates ðx; yÞ 2 O i.e.

B ¼ ð0; 0;Bðx; yÞÞ and H ¼ ð0; 0;Hðx; yÞÞ.

We assume that H and B are linked by a constitutive
relation with hysteresis, i.e.

B ¼ ðI þWÞðHÞ, (8)

where W is a scalar Preisach operator in the setting of
Refs. [4,5], and I is the identity operator. For more
information about modeling and analysis of Preisach-type
hysteresis, see [8–13]. As we are considering planar waves,
the electric field has the following form

E ¼ ðE1ðx; yÞ;E2ðx; yÞ; 0Þ.

This implies that

r � E ¼ 0; 0;
qE2

qx
�

qE1

qy

� �
,

r �H ¼
qH

qy
;�

qH

qx
; 0

� �
.

On the other hand

v� B ¼ ðv2 B;�v1 B; 0Þ

and therefore the Ohm law gives

j ¼ s E1 þ
1

c
v2B

� �
;s E2 �

1

c
v1B

� �
; 0

� �
. (9)

Combining Eq. (3) with Eq. (9) and neglecting from now
on for simplicity the constants c, 4p, Z and s, we obtain

qH

qy
¼ E1 þ v2B (10)

and

�
qH

qx
¼ E2 � v1B. (11)

The Faraday law instead has the following form after our
simplifications

qB

qt
þ

qE2

qx
�

qE1

qy
¼ 0. (12)

Differentiating Eq. (10) in the y variable and Eq. (11) in the
x variable yields

q2H

qy2
¼

qE1

qy
þ

q
qy
ðv2 BÞ,

�
q2H
qx2
¼

qE2

qx
�

q
qx
ðv1 BÞ. ð13Þ

Now using Eqs. (12) and (13) we deduce

qB

qt
þ �

q2H

qx2
þ

q
qx
ðv1 BÞ �

q2H

qy2
þ

q
qy
ðv2 BÞ

� �
¼ 0

which is equivalent to

qB

qt
þ div ðvBÞ � DH ¼ 0, (14)

where we take v ¼ vðx; y; tÞ.
We assume r to be constant (r ¼ 1). From the Ampère

law,

j ¼
qH

qy
;�

qH

qx
; 0

� �

so

j� B ¼ �
qH

qx
B;�

qH

qy
B; 0

� �
¼ �BrH.

Then, if we express the material derivative in terms of the
partial derivative, Eq. (7) becomes

qv
qt
þ ðv � rÞv� Dvþ BrH þrp ¼ 0. (15)

Writing the abstract problem obtained by coupling (14), (2)
and (15) we have

qB

qt
þ v � rB� DH ¼ 0;

qv
qt
þ ðv � rÞ v� Dvþ BrH þrp ¼ 0;

div v ¼ 0

8>>>><
>>>>:

(16)

and this, together with Eq. (8) gives nothing but Eq. (1),
with H ¼ u and B ¼ ðI þWÞðuÞ.

3. Main result

Assume that O � R2 is a Lipschitz domain and set
OT :¼O� ð0;TÞ. For simplicity put V :¼H1

0ðOÞ and

~V:¼ v 2 L2ðO;R2Þ;

Z
O
v � rjdx ¼ 0;8j 2 V

� 	
,

V:¼ ~V \H1
0ðO;R

2Þ.

We want to solve the following problem.

Problem 1. Consider given initial data u0, v0; we search for

functions ðu; vÞ with u 2 L2ðO;C0ð½0;T �ÞÞ \ L2ð0;T ;V Þ,
WðuÞ 2 L2ðO;C0ð½0;T �ÞÞ \ L4ðOT Þ, v 2 L2ð0;T ;VÞ such

that

q
qt
ðuþWðuÞÞ 2 L2ðOT Þ;

qv
qt
2 L2ð0;T ;L2ðO;R2ÞÞ,

uðx; 0Þ ¼ u0ðxÞ; vðx; 0Þ ¼ v0ðxÞ

and for any z 2 V , any z 2 V and for a.e. t 2 ð0;TÞ we haveZ
O

q
qt
ðuþWðuÞÞz dx�

Z
O
½v � rz�ðuþWðuÞÞdx

þ

Z
O
ru � rzdx ¼ 0, ð17Þ
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Z
O

qv
qt
� zdxþ

Z
O
ðv � rÞv � z dxþ

Z
O
ðrv;rzÞdx

þ

Z
O
ðuþWðuÞÞ ru � zdx ¼ 0. ð18Þ

Interpretation. If the functions u, WðuÞ, v are smooth
enough, we may integrate by parts in Eqs. (17) and (18).
We see that the function

q:¼
qv
qt
þ ðv � rÞv� Dvþ ðuþWðuÞÞru

is orthogonal to every function z 2 V, hence (see Ref. [6]),
there exists p such that q ¼ �rp. Formally system (17) and
(18) thus reduces to Eq. (1) with homogeneous boundary
conditions for both u and v.

The main result of the paper can be stated as follows.

Theorem 2. Consider given data

u0 2 V ; v0 2 V; Du0 2 L2ðOÞ; Dv0 2 L2ðO;R2Þ

and set

Cd :¼maxfku0kV ; kv0kV; kDu0kL2ðOÞ; kDv0kL2ðO;R2Þg. (19)

Then there exists a constant C� such that if CdpC�, then

Problem 1 admits at least one solution ðu; vÞ with additional

regularity

u 2W 1;1ð0;T ;L2ðOÞÞ \H1ð0;T ;V Þ,

v 2W 1;1ð0;T ;L2ðO;R2ÞÞ \H1ð0;T ;VÞ.

We prove this theorem (see Ref. [7] for more details)
using standard methods of time discretization, derivation
of a priori estimates and passage to the limit; we strongly
use the properties of the Preisach hysteresis operator,

namely the discrete versions of the first- and second-order
energy inequalities.
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