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Abstract. A quasilinear hyperbolic equation with hysteresis is studied.
For the integral solution of this equation we derive an entropy condition
of the type introduced by Kružkov.

1. Introduction

In this paper we study a hyperbolic equation of first order of the form

ut + [φ(u)]x = 0, u(0) = u0 (1.1)

and the corresponding quasilinear hyperbolic equation with hysteresis

∂

∂t
(u + w) +

N∑
j=1

∂

∂xj
(bju) + cu = f, (1.2)

where w = F(u) represents hysteresis.
It is well known that even for φ and u0 smooth (1.1) exhibits singularities

in a finite time. To be able to continue the solution, one has to pass to
a generalized concept of weak solutions where discontinuities are allowed.
Weak solutions are in general not uniquely determined by the data, and
further physically motivated conditions have to be prescribed. The simplest
one is an entropy condition stating that the entropy of the system must
be decreasing, generalized by Olejnik [5]. A different condition was derived
by Kružkov [4] and there are many others. Inspired by Kružkov’s work,
Crandall [1] shows that the unique integral solution of (1.1), constructed by
the method of nonlinear semigroups, satisfies an entropy condition derived
by Kružkov. In the first section we give a brief overview of their results.

We consider Equation (1.2) coupled with a generalized play or Prandtl-
Ishlinskii operator of play type. It was expected (see [9]) that the integral
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solution of (1.2), for which existence was proved in [9] using the semigroup
approach, and which is unique by construction, fulfills a condition of the type
introduced by Kružkov. To derive such an entropy condition for the integral
solution of (1.2) with hysteresis was posed as an open problem in Visintin’s
book and we present a solution to this problem in the second section. The
method enables us to deal with continuous and discontinuous hysteresis as
well.

M. Peszyńska and R.E. Showalter, [6], study a special case of (1.2), namely

∂

∂t
(u + w) +

∂u

∂x
= 0. (1.3)

Equation (1.3) arises in applications in chemical and geological engineering as
a generic model for the transport and adsorption of a chemical concentration;
for a general study see, e.g., [7]. In [6] differentiable solutions of (1.3) are
obtained using the theory of m-accretive operators in L2 and switching the
variables x and t. The result is proved for a linear play operator and a
Prandtl-Ishlinskii operator of play type as well. So, like the results of Krejč́ı
[2], for the solutions to one-dimensional quasilinear wave equations with and
without hysteresis, the presence of hysteresis terms in the equation prevents
there the formation of shocks. These results hold for special initial conditions
which guarantee that the solution is initially inside the hysteresis loop and
for continuous and symmetric hysteresis boundary curves. To study the
presence of shocks in the equation (1.3) with discontinuous hysteresis or in
the more general case of (1.2) would be an interesting open problem. We
would like to initiate such research with a few comments in the conclusion.

2. Entropy conditions and uniqueness of solutions for a
hyperbolic equation of first order

We will study the equation

ut +
N∑
i

(φi(u))xi
= 0, for t > 0, x ∈ RN , (2.1)

where u = u(x, t), x ∈ RN and we denote by φ = (φ1, ..., φN ) : R → RN a
continuous function with φ(0) = 0.

Consider first the case N = 1. If φ is a smooth function, we can rewrite
(2.1) as

ut + φ
′
(u)ux = 0
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Characteristics are defined by the following equation: (for simplicity, the
projections of characteristics on the (x, t) plane are still called characteris-
tics)

dx

dt
= φ

′
(u).

If u(x, t) solves (2.1), then along a characteristic

d

dt
u(x(t), t) = ux

dx

dt
+ ut = uxφ

′
(u) + ut = 0,

so u is constant along characteristics and it follows that characteristics have
constant slope. In other words, the characteristics are straight lines with
parametric velocity φ

′
(u) along these lines.

Assume now for convenience that φ′′(u) > 0. If u(x, 0) = u0(x) and u0(x)
is decreasing, then there are points x1 < x2 with φ

′
(u0(x1)) > φ

′
(u0(x2)),

and the characteristics starting at (x1, 0) and (x2, 0) will intersect at a point
P for t > 0; see Figure 1.

= φ (u (x )) <      = φ (u (x ))dx
dt

dx
dt 0 120

xx

u=u (x )

p

u=u (x )
0 0

2

2 1

1 x

t
’ ’

Figure 1. Characteristics intersect.

At the point P a continuous solution is overdetermined, since different
characteristics meet there and each carries a different value of u. It turns
out that the solution must be discontinuous. (We also can easily see that
when φ′′(u) > 0, u(x, t) is globally defined and continuous if and only if
u0(x) is nondecreasing and continuous.)

The above conclusion is independent of the smoothness properties of φ and
u0(x). No matter how smooth the initial data, the solution may still have
discontinuities. This is the most important feature of quasilinear hyperbolic
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equations and an essential difference from linear hyperbolic equations. It is
this phenomenon that leads to special difficulties.

For the reasons given above, we shall generalize the notion of solution for
equations of the form (2.1):

Definition 1. A bounded, measurable function u(x, t) is called a weak so-
lution of the problem (2.1) with the initial condition u(x, 0) = u0(x) with
bounded and measurable initial data u0(x), provided that∫ T

0

∫
RN

(uft +
N∑
i

φi(u)fxi)dxdt +
∫

RN

u0fdx = 0 (2.2)

holds for all f ∈ C1
0 ((0,∞) × RN ).

Note that if (2.2) holds for all f ∈ C1
0 ((0,∞) × RN ), and if u is in

C1((0, T ) × RN ), then u is a classical solution (this is easy to see, using
integration by parts).

In our effort to solve initial-value problems which are not solvable classi-
cally, we are led to extend the class of solutions. In doing this, we run the
risk of losing uniqueness. That this concern is well-founded follows from the
next example.

Example 1. (see [8]): Consider the equation

ut +
(u2

2
)
x

= 0

with the initial condition

u0(x) =

{
1 if x < 0
−1 if x > 0.

For each α ≥ 1, this problem has a solution uα defined by

uα(x, t) =


1 if 2x ≤ (1 − α)t
−α if (1 − α)t < 2x ≤ 0
α if 0 < 2x ≤ (α − 1)t
−1 if (α − 1)t < 2x.

Thus, our problem has a continuum of solutions (see Figure 2).

Equations of the above form arise in the physical sciences and so we must
have some mechanism to pick out the “physically relevant” solution. Thus,
we are led to impose an a priori condition on solutions which distinguishes
the “correct” one from the others.
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2x = (α-1)t2x = (1-α)t

u = -α u = α

u = -1u = 1

t

x

Figure 2. Continuum of solutions in Example 1.

In the case of the equation when N = 1

ut + [φ(u)]x = 0, with φ′′ > 0,

there is a unique solution which satisfies the “entropy” condition

u(x + a, t) − u(x, t)
a

≤ E

t
∀a > 0,∀t > 0, (2.3)

where E is independent of x, t and a.
This condition implies that if we fix t > 0 and let x increase from −∞ to

+∞, then we can only jump down, as we cross a discontinuity - hence the
reason for the word “entropy”.

If we return to the previous example, then we see that (2.3) is satisfied
only when α = 1.

So far we considered only the case φ′′(u) > 0. O.A. Olejnik [5] gives a
uniqueness condition for (2.1) in a special case when N = 1, namely

∂u

∂t
+

∂φ(u, x, t)
∂x

= 0, (2.4)

now called the E condition, without any restriction on φ ∈ C1 as follows.
We introduce the notation

u(x + 0, t) = u+(x, t)

u(x − 0, t) = u−(x, t)

l(u) =
φ(u+, x, t) − φ(u−, x, t)

u+ − u−
(u − u+) + φ(u+, x, t)).
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Consider the straight line w = l(u) in the u−w plane, which joins the points
(u+, φ(u+, x, t)) and (u−, φ(u−, x, t)). We shall say that the generalized so-
lution u(x, t) of (2.4) satisfies condition E if at all points of discontinuity of
u(x, t) (except possibly a finite number of them), the following condition is
satisfied: when u+ > u−, l(u) ≤ φ(u, x, t) for all u in [u−, u+], while when
u+ < u−, l(u) ≥ φ(u, x, t) for all u in [u+, u−].

It is easy to see that if the function φ(u, x, t) is such that φuu �= 0, then
condition E is identical with (2.3), namely u+ < u− if φuu > 0, and u+ > u−
if φuu < 0.

We have the following

Theorem 1. (Olejnik [5]) A weak solution of (2.4) with u(x, 0) = u0(x),
which satisfies condition E, is unique.

A different approach to the question of existence of a unique solution of
(2.4), N ≥ 1, was given by Kružkov [4]. He defines a generalized solution of
(2.1) as follows:

Definition 2. A bounded measurable function u(x, t) is called a generalized
solution of (2.1) with u(x, 0) = u0(x) in QT = [0, T ] × RN if

1) for any constant k and any smooth function f(x, t) ≥ 0 the following
inequality holds:∫∫

QT

{
|u(x, t) − k|ft

+ [sign (u(x, t) − k)]
N∑

i=1

[φi(u(x, t), x, t) − φi(k, x, t)]fxi

}
dx dt ≥ 0; (2.5)

2) there exists a set E of measure zero on [0, T ] such that for t ∈ [0, T ]\E
the function u(x, t) is defined almost everywhere in RN , and for any ball

Kr = {|x| ≤ r} ⊂ RN , lim
t→0

t∈[0,T ]\E

∫
Kr

|u(x, t) − u0(x)|dx = 0.

Since the smooth function f ≥ 0 is arbitrary, it is obvious that inequality
(2.5) for k = ± sup |u(x, t)| implies (2.1). But Definition 2 also contains
a condition which characterizes the permissible discontinuities of solutions.
This condition is especially easy to visualize when the generalized solution is
a piecewise smooth function in some neighborhood of the point of disconti-
nuity; in this case, using integration by parts and the fact that f was chosen
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arbitrarily, we obtain from (2.5) that for any constant k, along the surface
of discontinuity we have

|u+ − k| cos(ν, t) + sign (u+ − k)[φ(u+, x, t) − φ(k, x, t)] cos (ν, x)

≤|u− − k| cos(ν, t) + sign (u− − k)[φ(u−, x, t) − φ(k, x, t)] cos (ν, x),
(2.6)

where ν is the normal vector to the surface of discontinuity at the point
(x, t) and u+, u− are the one-sided limits of the generalized solution at the
point (x, t) from the positive and negative side of the surface of discontinuity,
respectively. It can be shown that in the case N = 1 (2.6) is equivalent to
condition E introduced above (we just need to express cos(ν, t) and cos(ν, x)
by using (2.4) and choose k = u ∈ [u−, u+]).

Kružkov shows that there exists a unique generalized solution of (2.4) in
the sense of Definition 2.

Inspired by the results of Kružkov, Crandall in his paper [1] treats the
Cauchy problem for the equation

ut +
N∑

i=1

(φi(u))xi = 0, t > 0, x ∈ RN

from the point of view of semigroups of nonlinear transformations.
The following notation will be used whenever it is meaningful:

φ = (φ1, ..., φN ) : R → RN (2.7)

[φ(v)]x =
N∑

i=1

(φi(v(x)))xi
if v : RN → R (2.8)

fx = (fx1 , ...fxN ) if f : RN → R (2.9)

ab =
N∑

i=1

aibi if a, b ∈ RN . (2.10)

Given φi(v) with φi(0) = 0, i = 1, ..., N , he defines

Av =
N∑

i=1

(φi(v))xi
, v ∈ D(A)

as the closure of A0 given in the next definition.

Definition 3. A0 is the operator in L1(RN ) defined by v ∈ D(A0) and
w ∈ A0(v) if v, w ∈ L1(RN ), φ(v) ∈ L1(RN ) and∫

RN

[sign (v(x) − k)]{(φ(v(x)) − φ(k))fx(x) + w(x)f(x)}dx ≥ 0 (2.11)
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for every k ∈ R, and every f ∈ C∞
0 (RN ) such that f ≥ 0.

Lemma 2. (Crandall, [1]) Let φ ∈ C1 and A0 be as given by Definition 3.
If v ∈ C1

0 (RN ), then v ∈ D(A0) and A0v = {[φ(v)]x}.
The lemma shows that A extends A0 from C1

0 (RN ). Crandall then shows
that A, the closure of A0, is an m-accretive operator, thus generates a semi-
group of contractions S(t), and S(t)u0 is the (unique) integral solution of
(2.4). Then he shows that this solution constructed by the method of semi-
groups satisfies indeed the entropy condition introduced by Kružkov:

Theorem 3. (Crandall) Let S be the semigroup of contractions generated
by A. Let v ∈ D(A) and t ≥ 0. If also v ∈ L∞(RN ), then∫ T

0

∫
RN

{|S(t)v(x) − k|ft

+ [sign(S(t)v(x) − k)][φ(S(t)v(x)) − φ(k)]fx}dx dt ≥ 0,

for every f(x, t) ∈ C∞
0 ((0, T ) × RN ) such that f ≥ 0 and every k ∈ R and

T > 0.

Proof. Let v ∈ L1(RN ) ∩ L∞(RN ) and uε(t) satisfy

ε−1(uε(t) − uε(t − ε)) + A0uε(t) = 0 t ≥ 0

uε(t) = v t < 0.

Let uε(x, t) = uε(t)(x). By the definition of A0:∫
RN

{sign (uε(x, t) − k)(φ(uε(x, t)) − φ(k))fx(x, t)

+ ε−1[sign (uε(x, t) − k)](uε(x, t − ε) − uε(x, t))f(x, t)}dx ≥ 0 (2.12)

for every k ∈ R and nonnegative f ∈ C∞
0 ((0, T ) × RN ).

Let hε(x, t) = [sign (uε(x, t)−k)](uε(x, t)−k) = |uε(x, t)−k|. Notice that

(uε(x, t − ε) − uε(x, t))[sign (uε(x, t) − k)]

= (uε(x, t − ε) − k)[sign(uε(x, t) − k)] − (uε(x, t) − k)[sign(uε(x, t) − k)]

≤ hε(x, t − ε) − hε(x, t). (2.13)

Using (2.13) and integrating (2.12) over 0 ≤ t ≤ T yields∫ T

0

∫
RN

{[sign (uε(x, t) − k)](φ(uε(x, t)) − φ(k))fx(x, t)

+ε−1(hε(x, t − ε) − hε(x, t))f(x, t)}dxdt ≥ 0.

(2.14)
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Now

ε−1

∫ T

0

∫
RN

{(hε(x, t − ε) − hε(x, t))f(x, t)}dxdt

= ε−1

(∫ ε

0

∫
RN

hε(x, t − ε)f(x, t)dxdt −
∫ T

T−ε

∫
RN

hε(x, t)f(x, t)dxdt

)
+

∫ T−ε

0

∫
RN

hε(x, t)(ε−1)(f(x, t + ε) − f(x, t))dxdt.

The first and the second integrals vanish for ε small enough since f is in
C∞

0 ((0, T )×RN ). The convergence uε(x, t) → S(t)v(x) in L1(RN ), uniformly
in t as ε → 0, implies that the third term tends to∫ T

0

∫
RN

|S(t)v(x) − k|ft(x, t)dx dt

as ε ↓ 0. So the theorem follows by letting ε ↓ 0 in (2.14). �

3. Quasilinear hyperbolic equation with hysteresis

Let bj and c be given smooth functions, Ω an open subset of Rn of Lipschitz
class, T > 0, Q = Ω × [0, T ]. In this section we consider the equation

∂

∂t
(u + w) +

N∑
j=1

∂

∂xj
(bju) + cu = f in Q (3.1)

and couple it with the hysteresis relation

w(x, t) = [E(u(x, .), w0(x))] (t) in [0, T ], a.e. in Ω.

Here E is a multivalued functional. Its values depend not only on the current
value of u(., t) at t > 0, but on the past history u(., s), 0 < s < t. We consider
at first E to be a generalized play operator. Let

γr, γl be maximal monotone (possibly multivalued) functions,

and inf γr(u) ≤ sup γl(u), ∀u ∈ R. (3.2)

Now, given w0 ∈ R, we construct the hysteresis operator E(·, w0) as fol-
lows. Let u be any continuous, piecewise linear function on R+ such that u
is linear on [ti−1, ti] for i = 1, 2, .... We then define w := E(u, w0) : R+ → R
by

w(t) :=

{
min{γl(u(0)), max{γr(u(0)), w0}} if t = 0,

min{γl(u(t)), max{γr(u(t)), w(ti−1)}} if t ∈ (ti−1, ti], i = 1, 2, ...
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Note that w(0) = w0 only if γr(u(0)) ≤ w0 ≤ γl(u(0)). The hysteresis relation
is assumed to hold pointwise in space :

w(x, t) = [E(u(x, .), w0(x))](t) in [0, T ], a.e. in Ω. (3.3)

As proved in Visintin [9], Section III.2, E(·, w0) has a unique continuous
extension, denoted by E(·, w0) again, to an operator

E : C(R+) × R → C(R+). (3.4)

This operator is called a generalized play; see Figure 3.

w

u

γ (u)
l rγ (u)

Figure 3. The generalized play.

The system (3.1) is formally equivalent to
∂u
∂t + ξ +

∑N
j=1

∂
∂xj

(bju) + cu = f in Q
∂w
∂t − ξ = 0 in Q

ξ ∈ φ(u, w) in Q,

(3.5)

where

φ(u, w) =



+∞ if w < inf γr(u)
R̃+ if w ∈ γr(u)\γl(u)
{0} if sup γr(u) < w < inf γl(u)
R̃− if w ∈ γl(u)\γr(u)
−∞ if w > sup γl(u)
R̃ if w ∈ γl(u) ∩ γr(u)

(3.6)

and R̃ := [−∞, +∞], R̃+ := [0,∞], R̃− := [−∞, 0].
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To simplify the discussion, we assume that{
bj ∈ C1(Ω)

}
j=1,...,N

,
N∑

j=1

bjνj = 0 a.e. on ∂Ω

and c ∈ L∞(Ω), where −→ν denotes a field normal to ∂Ω.
By introducing the following operators

D(A) : = {U := (u, w) ∈ R2 : inf γr(u) ≤ w ≤ sup γl(u)},
A(U) : = {(ξ,−ξ) : ξ ∈ φ(U) ∩ R} ∀U ∈ D(A),

B(u) : =
N∑

j=1

∂

∂xj
(bju) + cu, R(U) := (B(u), 0)

and by setting U := (u, w), U0 := (u0, w0), F := (f, 0) the Cauchy problem
for the system (3.5) can be written in the form

∂U

∂t
+ A(U) + R(U) � F in Q (3.7)

U(0) = U0.

This approach can be easily extended to the case in which E is replaced by
a generalized Prandtl-Ishlinskii operator of play type, which is defined as a
weighted superposition of generalized plays with boundary curves γρl, γρr,
ρ ∈ P; here P denotes an index set. For the precise definition see, e.g.,
Visintin [9].

Then we have the following theorem [9]:

Theorem 4. Let Ω be an open subset of RN (N ≥ 1) of Lipschitz class. Let
L1(Ω; R2) be endowed with the norm

‖U‖L1(Ω;R2) :=
∫

Ω
(|u(x)| + |w(x)|) dx ∀U := (u, w) ∈ L1(Ω; R2).

Define the operator R as

R(U) := (Bu, 0) ∀U ∈ D(R) := {U ∈ L1(Ω; R2) : Bu ∈ L1(Ω)},

A is defined for{
γl, γr maximal monotone (possibly multivalued) functions:
R → P (R̃), such that inf γr(u) ≤ sup γl(u) ∀u ∈ R .
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Also assume that γl, γr are affinely bounded; that is, there exist constants
C1, C2 > 0, such that ∀v ∈ R,∀z ∈ γh(v),

|z| ≤ C1|v| + C2 (h = l, r).

Take any U0 := (u0, w0) ∈ L1(Ω; R2), such that U0 ∈ D(A) almost every-
where in Ω, and any f ∈ L1(Ω× (0, T )). Then the Cauchy problem (3.7) has
one and only one integral solution U : [0, T ] → L1(Ω, R2), which depends
continuously on the data u0, w0, f . Moreover, if f ∈ BV (0, T ; L1(Ω)) and
Ru0 ∈ L1(Ω), then U is Lipschitz continuous.

A similar statement is true for a generalized Prandtl-Ishlinskii operator
of play type. It was conjectured (see [9]), that the integral solution from
Theorem 4 fulfils a condition of the type introduced by Kružkov. The next
Theorem establishes this in a precise form.

Theorem 5. Let the assumptions of Theorem 4 hold and let F = (f, 0) =
(0, 0). Assume also that the hysteresis operator is symmetric around w = u.
Let A0U = A(U) + R(U) on D(A0), and let S(t) = (S1(t), S2(t)) be the
corresponding semigroup of contractions.

Let v ∈ D(A) and t ≥ 0. Then if v = (v1, v2) ∈ L∞(Ω) × L∞(Ω),∫ T

0

∫
Ω
|S1(t)v1(x) − k|ψt(x, t)dxdt +

∫ T

0

∫
Ω
|S2(t)v2(x) − k|ψt(x, t)dx dt

+
∫ T

0

∫
Ω

{ N∑
j=1

bj |S1(t)v1(x) − k| ∂

∂xj
ψ(x, t) − c|S1(t)v1(x) − k|ψ(x, t)

− [sign(S1(t)v1(x) − k)]k
( N∑

j=1

∂

∂xj
bj + c

)
ψ(x, t)

}
dx dt ≥ 0

for every ψ(x, t) ∈ C∞
0 ((0, T ) × Ω) such that ψ ≥ 0 and every k ∈ R.

Remark 1. The hysteresis operator can be also discontinuous, e.g., the
relay operator, as long as the boundary curves γl, γr satisfy the symmetry
relation given above.

Proof. Let v ∈ D(A0) ∩ L∞(Ω, R2) and uε(t), wε(t) satisfy
uε(t)−uε(t−ε)

ε + ξ +
∑N

j=1
∂

∂xj
(bjuε(t)) + cuε(t) = 0

wε(t)−wε(t−ε)
ε − ξ = 0

}
for t ≥ 0, (3.8)(

uε(t)
wε(t)

)
= v for t < 0. (3.9)
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If k ∈ R is any constant, then we have

−
( N∑

j=1

∂

∂xj
bjk + ck

)
= −k

( N∑
j=1

∂

∂xj
bj + c

)
. (3.10)

We get from the second equation in (3.8) that

ξ =
wε(t) − wε(t − ε)

ε
,

which we can put into the first equation in (3.8). Adding the resulting
equation to (3.10) gives us

uε(t) − uε(t − ε)
ε

+
wε(t) − wε(t − ε)

ε
+

N∑
j=1

∂

∂xj
[bj(uε(t) − k)]

+ [c(uε(t) − k)] + k
( N∑

j=1

∂

∂xj
bj + c

)
= 0.

Let uε(x, t) = uε(t)(x) and wε(x, t) = wε(t)(x). Multiply the last equation
by [sign(uε(x, t) − k)] to get

[sign(uε(x, t) − k)]
[uε(x, t − ε) − uε(x, t)

ε
+

wε(x, t − ε) − wε(x, t)
ε

]
− [sign(uε(x, t) − k)]

[ N∑
j=1

∂

∂xj
[bj(uε(x, t) − k)] + [c(uε(x, t) − k)]

+ k
( N∑

j=1

∂

∂xj
bj + c

)]
= 0.

As before, let hε(x, t) = (uε(x, t) − k)[sign (uε(x, t) − k)] = |uε(x, t) − k|.
Recall that

(uε(x, t − ε) − uε(x, t))[sign (uε(x, t) − k)] (3.11)

= (uε(x, t − ε) − k)[sign (uε(x, t) − k)] − (uε(x, t) − k)[sign (uε(x, t) − k)]

≤ hε(x, t − ε) − hε(x, t).

Also

(wε(x, t − ε) − wε(x, t))[sign (uε(x, t) − k)] (3.12)

≤ (wε(x, t − ε) − wε(x, t))[sign (wε(x, t) − k)].
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This last inequality is true because of the following: The only way it could fail
would be if either: sign(uε(x, t)−k) = 1, sign(wε(x, t)−k) = −1, and wε(x, t−
ε) − wε(x, t) > 0, so uε(x, t) > k, wε(x, t) < k and wε(x, t − ε) > wε(x, t) or
sign(uε(x, t)−k) = −1, sign(wε(x, t)−k) = 1, and wε(x, t− ε)−wε(x, t) < 0,
so uε(x, t) < k, wε(x, t) > k, and wε(x, t − ε) < wε(x, t).

It can be easily seen from Figures 4a and 4b that these situations are
not possible because of the properties of the hysteresis operator; thus (3.12)
must be true.

w

u

w

ukk

k k

(a) (b)

Figure 4. Possible situations in the proof of (3.12).

If we introduce the notation gε(x, t) = (wε(x, t)− k)[sign (wε(x, t)− k)] =
|wε(x, t) − k|, then, similarly, we get

(wε(x, t − ε) − wε(x, t))[sign (uε(x, t) − k)] (3.13)

≤ (wε(x, t − ε) − wε(x, t))[sign (wε(x, t) − k)]

= (wε(x, t − ε) − k)[sign (wε(x, t) − k)] − (wε(x, t) − k)[sign (wε(x, t) − k)]

≤ gε(x, t − ε) − gε(x, t).

Therefore,[(hε(x, t − ε) − hε(x, t))
ε

+
(gε(x, t − ε) − gε(x, t))

ε

]
− [sign(uε(x, t) − k)]

[ N∑
j=1

∂

∂xj
[bj(uε(x, t) − k)] + [c(uε(x, t) − k)]
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+ k
( N∑

j=1

∂

∂xj
bj + c

)]
≥ 0.

Now we can multiply by any ψ ≥ 0, ψ(x, t) ∈ C∞
0 ((0, T )×Ω), and integrate

over [0, T ] × Ω to get the following inequality:

0 ≤ ε−1

∫ T

0

∫
Ω
{[hε(x, t − ε) − hε(x, t)] ψ(x, t)} dxdt

+ ε−1

∫ T

0

∫
Ω
{[gε(x, t − ε) − gε(x, t)] ψ(x, t)} dxdt

−
∫ T

0

∫
Ω

{ N∑
j=1

∂

∂xj
bj(|uε(x, t) − k|)ψ(x, t) + c|uε(x, t) − k|ψ(x, t)

+ [ sign (uε(x, t) − k)]k
( N∑

j=1

∂

∂xj
bj + c

)
ψ(x, t)

}
dx dt. (3.14)

Now

ε−1

∫ T

0

∫
Ω
{[hε(x, t − ε) − hε(x, t)] ψ(x, t)} dxdt

= ε−1

(∫ ε

0

∫
Ω
{hε(x, t − ε)ψ(x, t)} dxdt −

∫ T

T−ε

∫
Ω
{hε(x, t)f(x, t)}dxdt

)
+

∫ T−ε

0

∫
Ω

{
hε(x, t)ε−1(ψ(x, t + ε) − ψ(x, t))

}
dxdt.

The first and the second integrals vanish for ε small enough, since ψ is in
C∞

0 ((0, T )×Ω). The convergence uε(x, t) → S1(t)v1(x) in L1(Ω), uniformly
in t as ε → 0, implies that the third term tends to∫ T

0

∫
Ω
|S1(t)v1(x) − k|ft(x, t)dxdt as ε ↓ 0.

By a similar argument, using the convergence wε(x, t) → S2(t)v2(x) in L1(Ω),
we have that∫ T−ε

0

∫
Ω

{
gε(x, t)ε−1(ψ(x, t + ε) − ψ(x, t))

}
dxdt tends to

∫ T

0

∫
Ω
|S2(t)v2(x) − k|ψt(x, t)dxdt as ε ↓ 0.
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If we now let ε ↓ 0 in (3.14), we get∫ T

0

∫
Ω
|S1(t)v1(x) − k|ψt(x, t)dxdt +

∫ T

0

∫
Ω
|S2(t)v2(x) − k|ψt(x, t)dxdt

+
∫ T

0

∫
Ω

{ N∑
j=1

bj |S1(t)v1(x) − k| ∂

∂xj
ψ(x, t) − c|S1(t)v1(x) − k|ψ(x, t)

− [sign(S1(t)v1(x) − k)]k
( N∑

j=1

∂

∂xj
bj + c

)
ψ(x, t)

}
dxdt ≥ 0,

which is the claim of our theorem. �

4. Conclusions

Peszyńska and Showalter in [6] showed the existence of a unique differen-
tiable solution of (1.3). In that special case the presence of hysteresis in the
equation prevents the formation of shocks if the initial conditions are chosen
inside the hysteresis loop. Consider (1.3) with a generalized play operator,
pictured in Figure 1, with increasing hysteresis boundary curves γl and γr,
γr ≤ γl. Then from (1.3) and the definition of the generalized play operator
we have

∂u

∂t
+ γ′

r(u)
∂u

∂t
+

∂u

∂x
= 0, if w = γr(u) and u is increasing in t (4.1)

∂u

∂t
+ γ′

l(u)
∂u

∂t
+

∂u

∂x
= 0, if w = γl(u) and u is decreasing in t (4.2)

∂u

∂t
+

∂u

∂x
= 0, if γr(u) ≤ w ≤ γl(u). (4.3)

Consider just the first equation (4.1). It is equivalent to the equation
∂u

∂t
+

1
1 + γ′

r(u)
∂u

∂x
= 0, if w = γr(u) and u is increasing in t. (4.4)

A simple computation gives us
∂u

∂t
= − f ′(u)u′

0

1 + u′
0f

′′(u)t
, (4.5)

where we denoted f ′(u) = 1
1+γ′

r(u) , which is greater than zero, because γr is
increasing by assumption. If we also assume that γr is a convex function,

f ′′(u) = − γ′′
r (u)

[1 + γ′
r(u)]2

< 0. (4.6)
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We see that discontinuities for (4.1) can occur for the choice of an initial
condition u′

0(x) ≥ 0. But in this case ∂u
∂t < 0 and following (4.1) the solution

moves inside the hysteresis region and is governed by the third equation
(4.3). Analogously for γl, shocks can happen for u0

′ ≤ 0, but in this case
the solution is increasing and moves again inside the hysteresis region. The
precise statement is in [6].

In the case of N ≥ 2, discontinuous hysteresis, and other choices of initial
data, we established a criteria, which selects a unique integral solution of
(1.2) and satisfies a kind of condition introduced by Kružkov. In this way
it is an answer to an open problem stated in Visintin’s book. However it
would be interesting to establish if shocks can happen in any of those cases.
On the other hand, as it is easy to see, shocks appear even when N = 1
in a continuous case, when the initial conditions are chosen to lie on the
hysteresis curves. The argument of Peszyńska and Showalter does not work
for, e.g., discontinuous hysteresis, so other techniques have to be applied.
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