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Abstract. A uniqueness result for a parabolic partial differential equation with hysteresis
and convection is established. This equation is a part of a model system which describes the
magnetohydrodynamic (MHD) flow of a conducting fluid between two ferromagnetic plates.
The result of this paper complements the content of [6], where existence of the solution has
been proved under fairly general assumptions on the hysteresis operator and the uniqueness was
obtained only for a restricted class of hysteresis operators

1. Introduction
In this paper we deal with the following model equation

∂

∂t
(u +W[u]) + v · ∇(u +W[u])−4u = 0 in Ω× (0, T ) (1)

coupled with homogeneous Dirichlet boundary conditions, where Ω is an open bounded set of
R2, 4 is the Laplace operator, W is a Preisach hysteresis operator and v : Ω × (0, T ) → R2 is
known. This equation is a part of the following model system





∂b

∂t
+ v · ∇b−4u = 0 ,

∂v
∂t

+ (v · ∇)v −4v + b∇u +∇p = 0 ,

divv = 0 ,

b = u +W[u],

(2)

in which equation (1) is coupled with a momentum equation of Navier-Stokes kind for the velocity
field v. Here u is the non-zero component of the magnetic field after some suitable assumptions
on the geometry of the model, v is the velocity of the fluid and p the pressure. System (2),
which has been derived in detail in [9], represents a model for MHD flow of a conducting fluid
between two ferromagnetic plates.

Equation (1) has been studied in [6] (see also [4], Chapter 3 and [5]), where the existence of
the solution has been proved under fairly general assumptions on the hysteresis operator; the
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uniqueness was obtained only for a restricted class of hysteresis operators. Here we want to
extend this result by deriving a more general uniqueness result (and complementary to this the
existence) under some suitable restrictions on the initial data.

We follow a general idea used to prove existence and uniqueness for the complete system
(2) (contained in the paper [8]). We first deal with a time discrete scheme with a convexified
Preisach operator under the time derivative and a cut-off Preisach operator in the remaining
hysteresis term. The key point is to get enough regularity for the solution to (1) to be able to
apply a discrete version of the Moser iteration lemma, which will bring the desired uniqueness
result. We present here only the main points of the proof of our results; further details can be
found in [7].

2. Hysteresis operators
2.1. Some remarks concerning hysteresis operators
2.1.1. The play operator We briefly recall the definition and some properties of the play
operator, which is the simplest example of a continuous hysteresis operator. It is defined as
the mapping that with a given input function u ∈ W 1,1(0, T ), a parameter r > 0, and an initial
condition x0

r ∈ [−r, r], associates the solution ξr ∈ W 1,1(0, T ) of the variational inequality

(i) |u(t)− ξr(t)| ≤ r ∀t ∈ [0, T ],
(ii) (ξ̇r(t)) (u(t)− ξr(t)− y) ≥ 0 a. e. ∀ y ∈ [−r, r] ,
(iii) ξr(0) = u(0)− x0

r ,

(3)

see [10, 13], and we denote, for r > 0, Pr[x0
r, u] : [−r, r]×W 1,1(0, T ) → W 1,1(0, T ) : (x0

r, u) 7→ ξr.
It was shown in [3, Theorem 2.7.7] that the whole class of the so-called Preisach type hysteresis
operators (also called operators with return point memory in engineering literature) can be
represented by the one-parametric family of play operators {Pr; r > 0}. Following [10, Section
II.2], we introduce the configuration space as well as its subspaces

Λ :=
{

λ ∈ W 1,∞(0,∞);
∣∣∣∣
dλ(r)

dr

∣∣∣∣ ≤ 1 a.e.
}

,

ΛK := {λ ∈ Λ;λ(r) = 0 for r ≥ K}, Λ0 :=
⋃

K>0

ΛK . (4)

Elements λ ∈ Λ are called memory configurations. For a given λ ∈ Λ, it is convenient to define the
initial condition x0

r by the formula x0
r := Qr(u(0)−λ(r)), where Qr : R→ [−r, r] is the projection

Qr(x) := sign (x)min{r, |x|} = min{r,max{−r, x}}. Then λ is called the initial configuration of
the play system, and we define for r > 0 a mapping ℘r : Λ ×W 1,1(0, T ) → W 1,1(0, T ) by the
formula ℘r[λ, u] := Pr[x0

r , u].

2.1.2. The Preisach operator We briefly recall here the definition and some properties of the
Preisach operator. In the Preisach half-plane

R2
+ = {(r, v) ∈ R2 : r > 0}, (5)

we assume that a function ψ ∈ L1
loc(R

2
+) (the Preisach density) is given with the following

property.

Assumption 2.1. There exists β1 ∈ L1
loc(0,∞), such that

0 ≤ ψ(r, v) ≤ β1(r) for a. e. (r, v) ∈ R2
+ .
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We put

b̃1(K) :=
∫ K

0
β1(r) dr for K > 0 g(r, v) :=

∫ v

0
ψ(r, z) dz for (r, v) ∈ R2

+, (6)

and define the Preisach operator as follows.

Definition 2.2. Consider ψ ∈ L1
loc(R2

+) satisfying Assumption 2.1 and g as in (6). Then the
Preisach operator W : Λ0 ×G+(0, T ) → G+(0, T ) generated by the function g is defined by

W[λ, u](t) :=
∫ ∞

0
g(r, ℘r[λ, u](t)) dr =

∫ ∞

0

∫ ℘r[λ,u](t)

0
ψ(r, z) dz dr (7)

for any given λ ∈ Λ0, u ∈ G+(0, T ) and t ∈ [0, T ], where Λ0 is introduced in (4) and G+(0, T )
is the space of right-continuous regulated functions.

As a counterpart of [10], Section II.3, Proposition 3.11, we have the following estimate.

Proposition 2.3. Let Assumption 2.1 be satisfied and let K > 0 be given. Then for every
λ1, λ2 ∈ ΛK and u, v ∈ G+(0, T ) such that ||u||[0,T ], ||v||[0,T ] ≤ K, we have

|W[λ1, u](t)−W[λ2, v](t)| ≤
∫ K

0
|λ1(r)− λ2(r)|β1(r) dr + b̃1(K) ||u− v||[0,t] ∀t ∈ [0, T ] .

We finally quote the following result (see [10, Proposition II.4.13]) which will be used in
Subsection 3.8 to establish the uniqueness of the solution to our model problem.

Proposition 2.4. Let W be a Preisach operator (7) satisfying Assumption 2.1. For given
u1, u2 ∈ W 1,1(0, T ) and λ1, λ2 ∈ Λ0 put ξi

r := ℘r[λi, ui], wi := W[λi, ui] =
∫∞
0 g(r, ξi

r) dr,
i = 1, 2. Then for a.e. t ∈ (0, T ) we have

(ẇ1(t)− ẇ2(t)) (u1(t)− u2(t)) ≥
∫ ∞

0
(ξ1

r (t)− ξ2
r (t))

∂

∂t
(g(r, ξ1

r (t))− g(r, ξ2
r (t))) dr. (8)

3. Convexification and cut-off
3.1. The convexity domain of the Preisach operator
Let R > 0 be fixed; set

DR := {(r, v) ∈ R2
+ : |v|+ r ≤ R}.

In addition to Assumption 2.1 we prescribe the following conditions.
Assumption 3.1.

(i)
∂ψ

∂v
∈ L∞loc(R2

+);
(ii) AR := inf{ψ(r, v); (r, v) ∈ DR} > 0.

Furthermore, denote

CR := sup
{∣∣∣∣

∂

∂v
ψ(r, v)

∣∣∣∣ ; (r, v) ∈ DR

}
.

Taking possibly a smaller R > 0, if necessary, we may assume that KR := 1
2 AR − R CR > 0.

We modify the density ψ outside DR by setting

ψR(r, v) =





ψ(r, v) (r, v) ∈ DR

ψ(r,−R + r) v < −R + r, r ≤ R
ψ(r,R− r) v > R− r, r ≤ R
ψ(R, 0) r > R.

(9)

International Workshop on Multi-Rate Processes and Hysteresis IOP Publishing
Journal of Physics: Conference Series 138 (2008) 012005 doi:10.1088/1742-6596/138/1/012005

3



3.2. Convexification
We define a new Preisach operator WR by the formula

WR[λ, u](t) =
∫ ∞

0

∫ ℘r[λ,u](t)

0
ψR(r, v) dv dr (10)

for λ ∈ Λ0 and u ∈ W 1,1(0, T ). It has the property that all increasing hysteresis branches are
convex and all decreasing branches are concave, see (25). This plays an important role in the
higher order energy inequalities.

3.3. Cut-off
We also introduce the cut-off density

ψ̃R(r, v) =
{

ψ(r, v) (r, v) ∈ DR

0 otherwise (11)

and the corresponding cut-off operator

W̃R[λ, u](t) =
∫ ∞

0

∫ ℘r[λ,u](t)

0
ψ̃R(r, v) dv dr. (12)

Remark 3.2. We remark that WR is convex but non globally bounded while W̃R is globally
bounded but non convex. In the hysteresis terms that will remain on the left hand side when
developing the estimates in Subsections 3.3 - 3.5, we need to use the discrete version ofWR as we
have to exploit the convexity of the loops and the corresponding second order energy inequality;
in the hysteresis terms that will be in the right-hand side, we use the discrete version of W̃R,
as we need instead to establish a global bound. This motivates the introduction of both the
operators (10) and (12).

4. The main result
Let us consider an open bounded domain Ω ⊂ R2 with Lipschitzian boundary, and set
ΩT := Ω× (0, T ). We set V := W 1,2

0 (Ω), and introduce the spaces of divergence free functions

H :=
{
u ∈ L∞(Ω;R2);

∫

Ω
u(x) · ∇φ(x) dx = 0 ∀φ ∈ V

}
H := L∞(0, T ;H).

We propose to solve the following problem.

Problem 4.1. Consider a Preisach operator W of the form (7), and let u0 ∈ L2(Ω), v0 ∈ H,
and λ : Ω → Λ be given initial data. For given v ∈ L2(0, T ;H) we search for a function u with
appropriate regularity, such that

u(x, 0) = u0(x) a.e. in Ω (13)

and for any φ ∈ V and for a. e. t ∈ (0, T ) we have
∫

Ω

∂

∂t
(u +W[λ, u])φdx−

∫

Ω
v · ∇φ (u +W[λ, u]) dx +

∫

Ω
∇u · ∇φdx = 0. (14)

The main result can be stated as follows.
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Theorem 4.2. Let W be the Preisach operator satisfying Assumptions 2.1 and 3.1, and let
R > 0 be fixed as in Subsection 3.2. Let K ∈ [0, R] and λ : Ω → ΛK be given. Let the data have
the regularity

u0 ∈ V, 4u0 ∈ L2(Ω), v ∈ H , vt ∈ H (15)

and set
α := max

{||u0||V , ||4u0||L2(Ω), ||v||H , ||vt||H
}

. (16)

Then there exists α1 > 0 such that if α ≤ α1, then Problem 4.1 has a unique solution u with the
regularity

u ∈ C0(Ω̄T ) ∇ut ∈ L2(ΩT ;R2) ut ∈ L∞(ΩT ). (17)

5. Proof of Theorem 4.2
5.1. The discrete problem

Let us fix some m ∈ N; then define the time step τ =
T

m
. We consider for k = 1, . . . , m and for

any φ ∈ V the following recurrent system
∫

Ω

uk − uk−1

τ
φ dx +

∫

Ω

wk − wk−1

τ
φ dx−

∫

Ω
[vk · ∇φ] bk−1 dx +

∫

Ω
∇uk · ∇φ dx = 0, (18)

where:

- vk is defined by vk(x) =
1
τ

∫ k τ

(k−1) τ
v(x, t) dt

- bk satisfies the equation

bk(x) = uk(x) + w̃k(x), a.e. in Ω, k = 0, . . . , m, (19)

with homogeneous Dirichlet boundary conditions, with

wk(x) =
∫ ∞

0
gR(r, ξk(x, r)) dr, w̃k(x) =

∫ ∞

0
g̃R(r, ξk(x, r)) dr, (20)

and
gR(r, v) =

∫ v

0
ψR(r, v′) dv′, g̃R(r, v) =

∫ v

0
ψ̃R(r, v′) dv′. (21)

Moreover ψR, ψ̃R are the functions introduced in (9), (11) respectively and the sequence ξk is
defined recursively by

ξ0(x, r) := P [λ(x, ·), u0(x)](r), ξk(x, r) := P [ξk−1(x, ·), uk(x)](r), (22)

with P : Λ× R→ Λ defined as

P [λ, v](r) := max{v − r,min{v + r, λ(r)}}. (23)

The solution to (18) can be constructed by induction over k, using the Browder-Minty fixed
point theorem and the monotonicity of the mappings g(r, ·) and P [λ, ·] (a similar argument has
been employed in [8], Section 4.2).
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5.2. A discrete first order energy inequality
We recall here a discrete counterpart of the first order energy inequality presented in [10], Section
II.4, which is proved in detail in [8].

Setting ξr
k(x) := ξk(x, r) where ξk(x, r) has been introduced in (22), assuming ψ is an arbitrary

function satisfying Assumption 2.1, the discrete version of the first order energy inequality can
be stated as follows.

(wk − wk−1) uk − (Ek − Ek−1) ≥
∫ ∞

0

∫ ξr
k

ξr
k−1

r ψ(r, v) dv dr = |Sk − Sk−1|, (24)

where
Ek(x) =

∫ ∞

0
G(r, ξr

k(x)) dr, Sk(x) =
∫ ∞

0
r g(r, ξr

k(x)) dr ,

with G given by G(r, v) := v g(r, v)− ∫ v
0 g(r, z) dz =

∫ v
0 z ψ(r, z) dz, are the discrete versions of

the Preisach potential energy E and dissipation operator S, introduced in [10], Section II.4.

5.3. A discrete second order energy inequality
Let p ≥ 2 be arbitrary and set Fk = Uk |Uk|p−2, where Uk := uk−uk−1

τ in agreement with the
notations we will introduce later in (27). We recall here a discrete version of the second order
energy inequality which can be stated as follows: For every k = 2, . . . , n, n ∈ {1, . . . , m} and
a. e. x ∈ Ω

(Wk −Wk−1) Fk ≥ 1
p

(WkFk −Wk−1Fk−1) . (25)

A detailed proof can be found in Section 6.2 of [8]; the time continuous case with p = 2 is treated
in [10, Sections II.3 and II.4].

5.4. First a priori estimate
In the estimates below, we denote for simplicity with C every constant independent of α and τ ;
the value of C may vary from line to line. We choose φ = uk in (18). This yields

∫

Ω

uk − uk−1

τ
uk dx +

∫

Ω

wk − wk−1

τ
uk dx +

∫

Ω
|∇uk|2 dx ≤

∫

Ω
(vk · ∇uk) bk−1 dx

(15)

≤ α2

∫

Ω
|bk−1|2 dx +

1
2

∫

Ω
|∇uk|2 dx ≤ α2

∫

Ω
(|uk−1|2 + 1) dx +

1
2

∫

Ω
|∇uk|2 dx;

in the last inequality we used the pointwise estimate |w̃k−1(x)| ≤ C, which follows from the
definition of the Preisach operator. Therefore, using (24) and summing for k = 1, . . . , n, for
every n ∈ {1, . . . , m} we obtain

∫

Ω
|un|2 dx + τ

n∑

k=1

∫

Ω
|∇uk|2 dx ≤ C

∫

Ω
|u0|2dx +

∫

Ω
E0 dx +

n∑

k=1

∫

Ω
|uk|2 dx + α2.

Using a discrete Gronwall argument it follows that

max
n=1,...,m

∫

Ω
|un|2 dx + τ

m∑

k=1

∫

Ω
|∇uk|2 dx ≤ C α2. (26)
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5.5. Estimate of the initial condition
In equation (18) corresponding to k = 1 we choose φ := u1−u0

τ . Due to the monotonicity and
local Lipschitz continuity of the functions g(r, ·) and P [λ, ·](r), we have the pointwise inequality

(
u1 − u0

τ

) (
w1 − w0

τ

)
≥ 0 ∀x ∈ Ω.

Using this and the assumptions on the function v, we deduce
∫

Ω

∣∣∣∣
u1 − u0

τ

∣∣∣∣
2

dx + τ

∫

Ω

∣∣∣∣∇
(

u1 − u0

τ

)∣∣∣∣
2

dx ≤
∫

Ω
|4u0|2 dx + C

∫

Ω
|∇b0|2 dx ≤ C α2.

5.6. Second a priori estimate
We set for brevity

Uk :=
uk − uk−1

τ
, Bk :=

bk − bk−1

τ
Wk :=

wk − wk−1

τ
. (27)

We take the time increments in (18) and then test by Uk. We get
∫

Ω
(Uk − Uk−1) Uk dx +

∫

Ω
(Wk −Wk−1) Uk dx

− τ

∫

Ω
(Vk · ∇Uk) bk−1 − τ

∫

Ω
(vk−1 · ∇Uk)Bk−1 dx + τ

∫

Ω
|∇Uk|2 dx = 0.

Using (25) for p = 2, we have, for k ≥ 2

1
2

∫

Ω
[(Uk + Wk)Uk − (Uk−1 + Wk−1)Uk−1] dx +

τ

2

∫

Ω
|∇Uk|2 dx ≤ C τ

∫

Ω
(|Uk−1|2 + |uk−1|2) dx,

where we used also Assumption (15). At this point we sum up for k = 1, ..., n, n ∈ {1, ...,m},
we use the estimate on the initial condition and apply a discrete version of the Gronwall lemma,
to get

max
n=1,...,m

∫

Ω
|Un|2dx + τ

m∑

k=1

∫

Ω
|∇Uk|2 dx ≤ C α2. (28)

5.7. Third a priori estimate
In this subsection will establish a further a priori estimate for ∇uk; we will use Theorem 6.1
from Section 6.1. Set, for any φ ∈ V

F (φ) = −
∫

Ω
(Uk + Wk)φ dx +

∫

Ω
[vk · ∇φ] bk−1 dx.

Now take any q > 2 and φ ∈ W 1,q′
0 (Ω). Using the Sobolev embeddings and the fact that

bk−1 ∈ Lp(Ω), for every p ≥ 2 (this can be seen using the fact that uk ∈ Lp(Ω) from (26) and
w̃k ∈ Lp(Ω) directly by the definition of w̃k), we have the following estimate

|F (φ)| ≤
∫

Ω

(
|Uk|(1 + max

j=1,...,k
|uj |) |φ|+ |vk| |bk−1| |∇φ|

)
dx ≤ CF α2 ||φ||W 1,q′ (Ω),

with a constant CF dependent on q. This is equivalent to

||F ||W−1,q(Ω) ≤ CF α2.

Thus, as we proved that F ∈ W−1,q(Ω), we can use Theorem 6.1 from Section 6.1 to obtain the
following estimate

||∇uk||Lq(Ω) ≤ C α2. (29)
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5.8. An L∞−bound for the solution: applying the Moser iteration technique
We apply the Gagliardo-Nirenberg inequality (see e.g. [1]) to deduce

||Uk−1||L4(Ω) ≤ C. (30)

Set Mk := Vk bk−1 + vk−1 Bk−1. Due to the assumptions on the function v, we have that

τ
n∑

k=1

∫

Ω
|Mk|q dx ≤ C, (31)

with q > 2. We take the time increments in (18) and test by Uk |Uk|p−2 for any p ≥ 2. Using
the monotonicity of the functions g and P (see (6) and (23)), we get

1
p

max
k=1,...,n

∫

Ω
|Uk|p dx + τ (p− 1)

n∑

k=1

∫

Ω
|∇Uk|2 |Uk|p−2 dx

≤ 1
p

∫

Ω
|U0|p dx + C τ (p− 1)

n∑

k=1

∫

Ω
|Mk| |∇(Uk |Uk|p−2)| dx

≤ 1
p
Cp + C τ

(p− 1)
2

∫

Ω
|∇Uk|2 |Uk|p−2 dx + C τ (p− 1)

∫

Ω
|Mk|2 |Uk|p−2 dx. (32)

Using (31) with q = 4, we deduce

max
k=1,...,n

∫

Ω
|Uk|p dx + τ

n∑

k=1

∫

Ω
|∇Uk|2 |Uk|p−2 dx ≤ C

(
1 + τ

n∑

k=1

∫

Ω
|Uk|2p−4

)
.

At this point it is easy to prove the following implication

τ
n∑

k=1

∫

Ω
|Uk|2p−2 dx ≤ C ⇒ τ

n∑

k=1

∫

Ω
|Uk|2p dx ≤ C,

which yields, together with (30), that (31) holds with q > 4. Now we come back to (32) and set

Z(k)
p := Uk |Uk|

p
2
−1 so that |Z(k)

p |2 = |Uk|p and |∇Z(k)
p |2 = |∇Uk|2 |Uk|p−2 p2

4
. (33)

This in the notation (33) implies

max
k=1,...,n

∫

Ω
|Z(k)

p |2 dx + τ
n∑

k=1

∫

Ω
|∇Z(k)

p |2 dx ≤ Cp + C τ p2
n∑

k=1

∫

Ω

[
|Mk|2 |Z(k)

p |2 p−2
p

]
dx.

A combined use of the Gagliardo-Nirenberg, Hölder and generalized Young inequalities yield
(here we need (31) with q > 4)

(
τ

n∑

k=1

∫

Ω
|Z(k)

p |4 dx

)1/2

≤ C

(
Cp + C τ p3

n∑

k=1

||Z(k)
p ||2

L2q′ (Ω)

)
. (34)

We choose

p = (1 + κ)j q κ =
2
q′
− 1 Xj := τ

j∑

k=1

∫

Ω
|Uk|2q (1+κ)j

dx. (35)
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We have
(

τ

n∑

k=1

∫

Ω

∣∣∣Z(k)
p

∣∣∣
4

dx

)1/2

=: X
1/2
j τ

n∑

k=1

∣∣∣
∣∣∣Z(k)

p

∣∣∣
∣∣∣
2

L2q′ (Ω)
=: X

1/q′
j−1 .

From (34) we therefore deduce

X
1/2
j ≤ C max

{
C(1+κ)j

, (1 + κ)j X
1/q′
j−1

}
.

This inequality is the first step from which we can start the application of the Moser iteration
technique (see Lemma 5.6 of Chapter II of [12]). We have

X
1

2q(1+κ)j

j ≤ C
1

(1+κ)j max{C, (1 + κ)
j

q(1+κ)j X
1

2q (1+κ)j−1

j−1 }.

We set

Yj := X
1

2q (1+κ)j

j δj :=
j

q (1 + κ)j
,

from which we deduce (after have taken the logarithm of both members of the inequality)

max{log C, log Yj} ≤ 1
(1 + κ)j

log C + δj log(1 + κ) + max{log C, log Yj−1}.

We set for brevity aj := max{log C, log Yj}, getting

aj ≤ 1
(1 + κ)j

log C + δj log(1 + κ) + aj−1 ≤ a0 + log C

j∑

`=1

1
(1 + κ)`

+ log(1 + κ)
j∑

`=1

δ`.

As long as
∑∞

`=1 δ` < ∞ and
∑∞

`=1
1

(1+κ)` < ∞ for κ > 0 (the fact that q > 2 assures that q′ < 2
and therefore that κ > 0) we finally obtain aj ≤ C, for all j, with constant C independent of j.
This implies that (

τ
n∑

k=1

∫

Ω
|Uk|2p dx

) 1
2p

≤ C, (36)

and after letting p →∞ we obtain the bound

sup
k=1,...,n

||Uk||L∞(Ω) ≤ C, n ∈ {1, . . . , m}. (37)

5.9. Passage to the limit
For each fixed time step τ , we associate with the sequence {uk} constructed above their piecewise
linear and piecewise constant time interpolates according to the following scheme:

ū
(τ)
+ (x, t) = uk(x), w̄

(τ)
+ (x, t) = wk(x),

ū
(τ)
− (x, t) = uk−1(x), w̄

(τ)
− (x, t) = w̃k−1(x),

}
(38)

û(τ)(x, t) = uk−1(x) + t−(k−1)τ
τ (uk(x)− uk−1(x))

ŵ(τ)(x, t) = wk−1(x) + t−(k−1)τ
τ (wk(x)− wk−1(x))

b̄(τ)(x, t) = ū
(τ)
− (x, t) + w̄

(τ)
− (x, t)





(39)
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for x ∈ Ω and t ∈ [(k − 1)τ, kτ) , k = 1, 2, . . . , m, continuously extended to t = T . We have

w̄
(τ)
+ = WR[λ, ū

(τ)
+ ], w̄

(τ)
− = W̃R[λ, ū

(τ)
− ]. (40)

As a consequence of the estimates (26) and (28), we see that there exists a function u ∈
L∞(0, T ; L2(Ω)) ∩ L2(0, T ;W 1,2(Ω)), such that ut ∈ L∞(0, T ; L2(Ω)) ∩ L2(0, T ;W 1,2(Ω)), and,
along a subsequence as τ → 0,

û(τ) → u weakly star in L∞(0, T ;L2(Ω)) ∩ L2(0, T ; W 1,2(Ω)),

û
(τ)
t → ut weakly star in L∞(0, T ;L2(Ω)) ∩ L2(0, T ; W 1,2(Ω)).



 (41)

On the other hand, from (29) we deduce, for any p > 2 (and thus for any p > 1)

sup ess
t∈(0,T )

||∇ū
(τ)
+ ||Lp(Ω;R2) ≤ α2 C∗

F , (42)

with a constant C∗
F > 0 independent of τ . The space {z ∈ L1(Ω × (0, T ));∇z ∈

L∞(0, T ; Lp(Ω;R2)), zt ∈ L∞(0, T ; L2(Ω))} is compactly embedded in C0(Ω̄ × [0, T ]). Hence,
there exists a constant Cu such that

|û(τ)(x, t)| ≤ α2 Cu ∀ (x, t) ∈ Ω̄× [0, T ]. (43)

Hence, we have, passing again to a subsequence, if necessary,

∇û(τ) → ∇u strongly in L2(ΩT ;R2),

û(τ) → u uniformly in C0(Ω̄T ).



 (44)

The passage to the limit in the hysteresis terms can be obtained as in [8], using Proposition
2.3 from Section 3 and the theory of right-continuous regulated functions G+(0, T ) (which are
functions u : [0, T ] → R which admit the left limit u(t−) at each point t ∈ (0, T ] and the right
limit u(t+) exists and coincides with u(t) at each point t ∈ [0, T )). At the end we are able to
deduce that

ŵ(τ) → w := WR[λ, u] strongly in L2(Ω; G+(0, T )). (45)

At this point, the convergences (41), (44), (45) enable us to pass to the limit as τ → 0 and
obtain (we set w̃ := W̃R[λ, u])

∫

Ω
((ut + wt) φ− (u + w̃)v · ∇φ +∇u · ∇φ) dx = 0. (46)

The L∞ bound (43) is preserved in the limit. Hence, choosing α sufficiently small, we obtain

|u(x, t)| ≤ R, a. e. in ΩT .

Since K ≤ R, it follows e. g. from [10, Lemma II.2.4] that the integration domain in (10) and
(12) is contained in DR, hence the truncations in (9) and (11) never become active, and we have

w = w̃ = W[λ, u] .

Moreover, from (37) we deduce the following regularity for u

||ut||L∞(ΩT ) ≤ C. (47)

This concludes the existence part for Theorem 4.2.
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5.10. Uniqueness
Suppose now by contradiction that Problem 4.1 admits two solutions u1 and u2. We write (14)
first for u1 then for u2; then we choose φ = u1 − u2. We set, for i = 1, 2

wi = WR(ui) :=
∫ ∞

0
gR(r, ℘r[λ, ui]) dr ξi

r := ℘r[λ, ui],

with gR(r, v) :=
∫ v
0 ψR(r, z) dz (ψR being introduced in (11)), for (r, v) ∈ R2

+ and we deduce

∫

Ω

∂

∂t
(u1 − u2 + w1 − w2) (u1 − u2) dx−

∫

Ω
[v · ∇(u1 − u2)] (b1(u1)− b2(u2)) dx

+
∫

Ω
|∇(u1 − u2)|2 dx = 0 (48)

In order to deal with the hysteresis term under the ime derivative, we have to use Proposition
2.4 from Section 3 and the estimate (47); we notice that in (8) we can replace the integral

∫∞
0

with
∫ R
0 as it vanishes for r > R. The key point is the following identity

(ξ1
r − ξ2

r )
∂

∂t
(gR(r, ξ1

r )− gR(r, ξ2
r )) =

1
2

∂

∂t

[
ψR(r, ξ1

r ) |ξ1
r − ξ2

r |2
]

− 1
2

∂ψR

∂v

∂ξ1
r

∂t
|ξ1

r − ξ2
r |2 +

∂

∂t
ξ2
r (ξ1

r − ξ2
r ) (ψR(r, ξ1

r )− ψR(r, ξ2
r )), (49)

which gives, using estimate (47)

∂

∂t
(w1 − w2) (u1 − u2) ≥ 1

2
∂

∂t

∫ R

0
ψR(r, ξ1

r ) |ξ1
r − ξ2

r |2 dr − 3
2

C

∫ R

0
|ξ1

r − ξ2
r |2 dr.

Integrating in time, for τ ∈ (0, t), for any t ∈ (0, T ) we deduce (due to the causality of the
hysteresis operator, the terms evaluated at t = 0 vanish)

∫ t

0

∂

∂t
(w1 − w2) (u1 − u2) ds (50)

≥ C̃1 |w1(t)− w2(t)|2 + C̃2

∫ R

0
|ξ1

r (t)− ξ2
r (t)|2 dr − 2 C̃2

∫ t

0

∫ R

0
|ξ1

r (s)− ξ2
r (s)|2 dr ds,

where AR has been introduced in Assumption 3.1.
We now deal with the remaining terms of (48).

∫

Ω
[v · ∇(u1 − u2)] (b1(u1)− b2(u2)) dx ≤ 1

4

∫

Ω
|∇(u1 − u2)|2 dx + C

∫

Ω
|u1 − u2|2 dx.

Therefore summing up we deduce in particular

1
2

d

dt

∫

Ω
|u1 − u2|2 dx +

∫

Ω

∂

∂t
(w1 − w2)(u1 − u2) dx +

∫

Ω
|∇(u1 − u2)|2 dx ≤ C

∫

Ω
(|u1 − u2|2dx.

Integrating in time and using (50) we deduce (we once more use the causality of the hysteresis
operator and the fact that the two solutions are supposed to have the same initial data) the
uniqueness of the solution in a standard way by the application of the Gronwall lemma. This
finishes the proof of Theorem 4.2. ¤
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6. Appendix
6.1. Maximal regularity theorem
Theorem 6.1. Let Ω be a bounded Lipschitz domain of Rn; for a given 1 < q < ∞, let
F ∈ (W 1,q′

0 (Ω))∗ = W−1,q(Ω) and let z be the solution of the Poisson equation −4z = F
associated with homogeneous Dirichlet boundary conditions. Then we have the following estimate
for ∇z

||∇z||Lq(Ω) ≤ C(q) ||F ||W−1,q

with a constant C(q) only dependent on q.
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