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1. ANOTATION

Main results are published in two independent papers [1] and [2] appended to this

thesis. The common subject is the classification of irreducible sln-valued zero curvature

representations (ZCR), based on gauge transformation.

In the first paper we obtained the complete classification of irreducible sl3-valued ZCRs.

The second paper gives a complete list of normal forms of irreducible sln-valued zero

curvature representations with the characteristic element possessing a single Jordan cell.

2. INTRODUCTION

Historical information can be found in [P] and [W].

The very beginnig of the Soliton theory dates back to the year 1834 when John Scott

Russell observed solitary wave in shallow water in a boat channel. His experience is

described in the famous Report on waves of 1844. Korteweg and de Vries [K] gave

analytical description of observed phenomena by the well-known KdV equation in 1895.

Surprisingly, the big growth of soliton theory in twentieth century begun with numerical

experiments carried out by Fermi, Pasta and Ulam in 1954–55, on the Los Alamos MA-

NIAC computer ([F], the reprint of the original report). Zabusky and Kruskal [ZK] (1965)

subsequently studied the continuum limit of the Fermi-Pasta-Ulam lattice equations and

found that certain solutions could be described in terms of the Korteweg-de Vries equation.

They found that the solitary wave solutions had behavior similar to the superposition prin-

ciple, despite the fact that the waves themselves were highly nonlinear. They denoted such

waves solitons and described the basic behavior of them.

An important step in the solution of the KdV equation was provided by Gardner, Greene,

Kruskal and Miura [G] (1967). They solved KdV by the methods of Inverse Scattering

Transform (IST) and obtained so called n-soliton solutions. Later on, Lax [L] (1968) found

out pairs of linear operators, known as Lax pairs, for which the KdV equation is isospectral

integrability condition.

Ablowitz, Kaup, Newell and Segur [A] (1973) applied methods of IST to the wide

class of nonlinear partial differential equations. Zakharov and Shabat [ZS] (1979) found

out correspondence between integrability and existence of Zero curvature representation

(ZCR) possesing a non-removable (spectral) parameter. Calogero denoted this class of

nonlinear systems as S–integrable. The name of ZCR came from an observation that (2)

coincides with zero curvature condition on an appropriate connection to be flat. Zero

curvature representations are strongly related with Lax pairs. However, the notion of ZCR

is more general then the notion of Lax pair (at least in dimension 1 + 1).

When a ZCR with spectral parameter for a given equation is known, one may obtain

particular solutions of the equation (e.g., via Riemann–Hilbert problem or Bäcklund trans-

formation), infinite series of conservation laws. One of the possible methods for finding

ZCR for a given equation is so called prolongation procedure introduced by Wahlquist and

Estabrook [WE] in 1976. In 1983, Dodd and Fordy [DF] made the prolongation procedure

algorithmic for a wide class of equations. However, there still remained some cases for

wich this algorithm does not work well. Some substantial problems were dealt with by Mo-

lino [M], followed by Finley and McIver [FM]. In the nineties Marvan proposed a direct

procedure to compute ZCR for a given equation ([M1], [M2] and [M3]) which amounts to

solving of certain system of equations in total derivatives.

Nevertheless, existing computational procedures are insufficient for solving general

classification problems, unless in combination with methods based on different criteria of
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integrability. The most complete lists of integrable systems are obtained from the formal

symmetry approach ([MSS], [MSY] and [MS]).

In the eighties Vinogradov ([Vi1] and [Vi2]) begun to develop the geometric theory

of PDEs and introduced so called C-spectral sequence and category of diffieties. Diffiety

is a geometric object – an infinite dimensional submanifold of the jet space J∞ – which

completely describes the PDE and, in fact, is more general then PDE itself. Later on

Krasil’shchik and Vinogradov [KV] introduced the general concept of a covering (in

the category of diffieties) of which Wahlquist–Estabrook structures are a special case.

There is an effective tool for computing isomorphism classes of coverings after unique

representatives are found in each class.

Using the Vinogradov theory, Marvan [M1] introduced a characteristic element of a

ZCR, which is a matrix that transforms by conjugation during gauge transformations of

the ZCR. Independently Sakovich [S] defined the characteristic element for evolution

equations, and developed the theory of so called cyclic bases.

In case of one PDE, the characteristic element together with the ZCR form a triple

of matrices. Whereas the characteristic element transforms by conjugation during gauge

transformation (see below) of the ZCR, one can transform the characteristic element to its

Jordan normal form. The remaining gauge freedom then can be used for further reduction

of one of the matrices constituing the ZCR. This method is used for classification of ZCRs

in this thesis.

3. PRELIMINARIES

3.1. Jet bundle. In this section we reproduce the definition of the Jet bundle from [B, Ch.

3. and Ch. 4.].

Let us have anm-dimensional locally trivial bundle π : E →M over an n-dimensional

manifold M . A section of the bundle π is a map s : M → E such that π ◦ s = idM . I.e.,

the map s takes a point x ∈ M to some point of the fiber Ex. In a particular case of the

trivial bundleM×N →M , sections are the mapsM → N . Let us assume that all bundles

under consideration are vector bundles, i.e., their fibers are vector spaces and the gluing

functions are linear transformations.

Let U ⊂ M be a neighborhood over which the bundle π becomes trivial, i.e., such

that π−1(U) ∼= U × Rm. If U is a coordinate neighborhood on the manifold M with

local coordinates x1, . . . , xn, then any point of the fiber is determined by its projection

to U and by its coordinates u1, . . . , um with respect to the chosen basis. The functions

x1, . . . , xn, u
1, . . . , um are coordinates in π−1(U) and are called adapted coordinates. I.e.,

any section is represented in adapted coordinates by a vector function f = (f1, . . . , fm) in

the variables x1, . . . , xn.

Two sections s1 and s2 of the bundle π will be called tangent with order k over the point

x0 ∈ M , if the vector functions u = f1(x), u = f2(x) corresponding to these sections

have the same partial derivatives up to order k at the point x0. This condition is equivalent

to the fact that the k-th order Taylor series of the sections coincide. The tangency condition

for k = 0 reduces to coincidence of f1(x0) and f2(x0), i.e., the graphs of the sections s1

and s2 must intersect the fiber Ex0 at the same point.

Tangency of sections with order k at a point x is an equivalence relation which will be

denoted by s1 ∼k,x s2. The set of equivalence classes of sections, i.e., the set of k-th order

Taylor series, will be denoted by Jkx and called the space of k-jets of the bundle π at the

point x. The point of this space (the equivalence class of a section s) will be denoted by

[s]kx. Thus, if s1 ∼k,x s2, then [s1]kx = [s2]kx. The space of k-jets of the bundle π is the
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union of Jkx over all points x ∈M :

Jk(π) =
⋃
x∈M

Jkx .

We define the projection πk : Jk(π) → M . Then for any point θ = [s]kx ∈ Jk(π) we

have πk(θ) = x, and π−1
k (x) = Jkx .

For the case k = 0 we have J0(π) =
⋃
x∈M Ex = E, i.e., the space J0(π) coincides

with the total space of the bundle π.

Let us define local coordinates on the space of k-jets of the bundle π. Let

x1, . . . , xn, u
1, . . . , um be an adapted coordinate system in the bundle π over a neighbor-

hood U of the point x ∈ M . Consider the set π−1
k ⊂ Jk(π). Let us complete local

coordinates x1, . . . , xn, u
1, . . . , um by the functions pjσ defined by the formula

pjσ([s]kx) =
∂|σ|sj

∂xi11 · · · ∂x
in
n

, j = 1, . . . ,m , |σ| ≤ k .

We call the coordinates pjσ canonical (or special) coordinates associated to the adapted

coordinate system (xi, uj).
We define the projections

πt+1,t : J t+1(π)→ J t+1(π) , πt+1,t([s]
t+1
x ) = [s]tx ,

where t = 0, . . . , k. Since the equivalence class [s]t+1
x ∈ J t+1(π) determines the class

[s]tx ∈ J t(π) uniquely, the projections πt+1,t are well defined.

Let us consider the chain of projections

M
π←− E π1,0←− J1(π)←− · · · ←− Jk(π)

πk+1,k←− Jk+1(π)←− · · ·

For any point x ∈ M let us choose a sequence of points θl ∈ J l(π), l = 0, 1, . . . , k, . . . ,
such that the equalities πl+1,l(θl+1) = θl, π(θ0) = x are valid. Due to these equalities and

using the definition of the spaces J l(π) one can choose a local section s of the bundle π
such that θk = [s]lx for any l. Thus any point θl is determined by the partial derivatives up

to order l of the section s at the point x, while the whole sequence of points {θl} contains

information on all partial derivatives of the section s at x. Denote by J∞(π) the set of all

such sequences. Points of the space J∞(π) may be understood as infinite Taylor series of

these sections.

For any point θ∞ = {x, θk}k∈N ∈ J∞(π), let us set π∞,k(θ∞) = θk and π∞(θ∞) =
x. Then for all k ≥ l ≥ 0 we have the following equalities πk ◦ π∞,k = π∞ and

πk,l ◦ π∞,k = π∞,l are valid. In addition, if s is a section of the bundle π, then the map

j∞(s) : M → J∞(π) is defined by the equality j∞(s)(x) = {x, θk}k∈N. One has the

following identities: π∞,k ◦ j∞(s) = jk(s) and π∞ ◦ j∞(s) = idM .

Let Γ(π) denote the set of all sections of the bundle π. The section j∞(s) of the bundle

π∞ : J∞(π)→M is called the infinite jet of the section s ∈ Γ(π).
The set J∞(π) is endowed with a natural structure of a smooth manifold, however, it is

infinitedimensional. Local coordinates arising in J∞(π) over a neighborhood U ⊂M are

x1, . . . , xn together with all functions pjσ , where |σ| is of an arbitrary (but finite) value.

The bundle π∞ : J∞(π) → M is called the bundle of infinite jets, while the space

J∞(π) is called the manifold of infinite jets of the bundle π.

3.2. Cohomological Algebra. The following section is based on the lecture notes from the

VII., VIII., and IX. Italian summers schools in Santo Stefano del Sole held by G. Moreno,

Ch. di Pietro and L. Vitagliano.
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Let R be a commutative unitary ring. Let {Ai}i∈Z be a family of R–modules. The

direct sum A =
⊕

i∈ZAi is called a Z–graded module (or, simply, a graded module). Let

a ∈ Ai ⊂ A for some i ∈ Z. Then a is called a homogeneous element of degree i. If

a is a homogeneous element, then its degree will be denoted by |a|. Let A,B be graded

R–modules. An R–module morphism φ : A −→ B is called a graded homomorphism of

degree k if for any i ∈ Z we have φ(Ai) ⊂ Bi+k. Together with graded homomorphisms,

graded R–modules form a category which will be denoted byModZ
R to underline that the

gradings are elements in Z.

Let A be a graded R–module. Moreover, suppose that A is an associative R–algebra,

with internal multiplication∧. Let a ∈ Ai and b ∈ Aj be homogeneous elements. If for any

such a, b we have a ∧ b ∈ Ai+j , then A is called a graded R–algebra. Let A,B be graded

R–algebras. Then an algebra morphism φ : A −→ B is called a graded homomorphism

of degree k if it is a degree k graded homomorphism of R–modules. Together with graded

homomorphisms, graded R–algebras form a category which will be denoted by AlgZ
R (i.e.,

gradings are elements in Z).

Exactly, as in the nongraded cases, subalgebras and ideals of a given A ∈ AlgZ
R are

defined. If I ⊂ A is an ideal, then the quotient A/I is defined and it belongs to AlgZ
R.

LetA ∈ AlgZ
R. A differential calculus can be developed overA as in the caseA ∈ AlgR

keeping in mind the heuristic law: in any formula a sign (−1)|?||?|
′
must be added for any

pair of graded homogeneous objects ?, ?′which exchange their positions. As an example

let A ∈ AlgZ
R. A graded R–module morphism

X : A −→ A

is said a graded A–derivation of degree |X| ∈ Z if, for any pair of homogeneous elements

a, b ∈ A the graded Leibnitz rule is satisfied,

X(a ∧ b) = (−1)(|a|+|X|)|b|b ∧X(a) + (−1)|a||X|a ∧X(b).

Similarly, the graded commutator of a, b ∈ A is defined as

[a, b] = a ∧ b− (−1)|a||b|b ∧ a.

Let P =
⊕

i∈Z Pi be a graded R–module. A sequence of R–modules is a degree 1
graded endomorphism f of P . In practice a sequence is a chain of R–module morphisms

· · · −→ Pi−1 fi−1−→ Pi fi−→ Pi+1 fi+1−→ · · ·

and f =
⊕

i∈Z f
i. Let P,Q be graded R–modules and f : P −→ P and g : Q −→ Q

be sequences. A morphism of the sequences f and g is a graded morphism h : P −→ Q
compatible with the sequences, i.e., such that h ◦ f = g ◦ h. We will often consider degree

0 morphisms of sequences, i.e., h(Pi) ⊂ Qi for any i ∈ Z.

A sequence f : P −→ P is called short if it consists of only two arrows, i.e., f i = 0 for

any i 6= 0, 1. A sequence f : P −→ P is called exact in the i–th term (or in the term Pi), if

ker f i = im f i−1. A sequence is called exact if it is exact in each term, i.e., ker f = im f .

Let P be a graded R–module and δ : P −→ P a sequence. The pair (P, δ) is a complex

if δ ◦ δ = 0, i.e., δi ◦ δi−1 = 0 for any i. Then δ is called a differential.

Note that (P, δ) is a complex if ker δ ⊃ im δ, if ker δi ⊃ im δi−1 for any i. Elements

in ker δi are said i–cocycles and elements in im δi−1 are said i–coboundaries. We can take

the quotient

Hi(δ) ≡ ker δi/ im δi−1
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and it is called the i–th cohomology module (or cohomology in the term Pi). The graded

module

H(δ) =
⊕
i∈Z

Hi(δ) = ker δ/ im δ

is called the cohomology module. H(δ) is sometimes denoted by H(P) when this does

not give rise to confusion. Let p ∈ ker δ, i.e., p is a cocycle. Its cohomology class will be

denote by [p]δ (or simply [p] if this doesn’t give rise to any confusion).

Let (P, δ) and (Q, ε) be complexes. A morphism of complexes is nothing but a morphism

of the sequences δ : P −→ P and ε : Q −→ Q. Complexes of R–modules, together with

their morphisms form a category. Let h : P −→ Q be a degree k morphism of the

complexes (P, δ) and (Q, ε).
For any i, it is well defined the R–linear map

Hi(h) : Hi(δ) 3 [p]δ 7−→ [h(p)]ε ∈ Hi+k(ε).

The map

H(h) ≡
⊕
i∈Z

Hi(h) : H(δ) −→ H(ε)

is said to be induced by the complex morphism h and it is a degree k graded morphism of

R–modules.

Note that H is a covariant functor from the category of complexes of R–modules to the

category of graded R–modules.

3.3. Diffieties. A diffiety is a (possibly, infinite dimensional) smooth manifoldX equipped

with a finite dimensional Fröbenius distribution C.
Let us assume an (n + m)-dimensional locally trivial bundle π : E → M over an

m-dimensional manifold M . Let x1, . . . , xm, u
1, . . . , un are coordinates in π−1(U) for

a neighborhood U over which the bundle π becomes trivial. Let J∞(π) be an infinite-

dimensional jet space with the local jet coordinates (xi, uj , u
j
I). Note that I = (i1 . . . iκ)

denotes a symmetric multiindex (instead of σ, used in section 3.1). We have distinguished

vector fields on J∞(π)

Di = ∂/∂xi +
∑
j,I

ujI,i ∂/∂u
j
I ,

which are called total derivatives.

Let us consider a finite system of finite-order PDE’s

(1) F l(xi, uj , . . . , ujI , . . . ) = 0,

l = 1, . . . , n, on unknowns uj and their derivatives ujI . We assume that system (1), along

with all its differential consequences DIF
l = 0, determines a submanifold E ⊆ J∞(π).

The total derivatives are tangent to E , hence they have a well-defined action on smooth

functions on E . The restricted fields Di = Di|E span the Cartan distribution C on E . Then

(E , C) is obviously a diffiety.

3.4. ZCR and the characteristic element. In this section we reproduce the definition of

the ZCR and the characteristic element by M. Marvan in [M4].

Let we have a system (1) of PDE’s with the corresponding diffiety E . On E , we have

the direct decomposition of the tangent bundle TE as C ⊕ V E , the Cartan distribution and

the vertical vector bundle with respect to the projection on π. Let C∞E denote the ring of

C∞ functions on E , let Λ1,0E = Ann C and Λ0,1E = AnnV E denote the C∞E-modules

of contact 1-forms and horizontal 1-forms, respectively. We have the induced splittings
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ΛrE =
⊕

p+q=r Λp,qE into r + 1 direct summands Λp,qE =
∧p Λ1,0E ∧

∧q Λ0,1E . The

exterior differential split into the sum d = d̄+ ` of the horizontal differential d̄ : Λp,qE →
Λp,q+1E and the vertical differential ` : Λp,qE → Λp+1,qE .

Coordinate formulas for the differentials d̄, ` are derived from their action on Λ0,0E =
C∞E , which is

d̄f =
∑
i

Dif dx
i,

`f =
∑
j,I

∂f

∂ujI
ωjI , ωjI = dujI −

∑
i

uji,I dx
i.

We denote by Λ̄E the graded exterior algebra of horizontal forms on E . Let us consider a

finite-dimensional real or complex Lie algebra g. The tensor product with Λ̄E =
⊕

q Λ̄qE
is a graded nonassociative algebra under the bracket [µ ⊗ A, ν ⊗ B] = (µ ∧ ν) ⊗ [A,B]
for A,B ∈ g and µ, ν ∈ Λ̄E . Then

[ρ, σ] = −(−1)rs[σ, ρ], d̄[ρ, σ] = [d̄ρ, σ] + (−1)r[ρ, d̄σ]

for ρ ∈ Λ̄rE ⊗ g, σ ∈ Λ̄sE ⊗ g. Due the Ado’s theorem we can assume that g is a matrix

algebra, i.e., that g is a subalgebra in some gln. Then Λ̄E ⊗ gln is a graded associative

algebra with respect to the multiplication (µ⊗A) · (ν ⊗B) = (µ ∧ ν)⊗ (A ·B) induced

by the ordinary matrix multiplication, while

[ρ, σ] = ρ · σ − (−1)rsσ · ρ, d̄(ρ · σ) = d̄ρ · σ + (−1)rρ · d̄σ

for ρ ∈ Λ̄rE ⊗ gln, σ ∈ Λ̄sE ⊗ gln. Elements of C∞E ⊗ g will be called g-matrices.

A g-valued zero-curvature representation (ZCR) forE is a horizontal 1-formα ∈ Λ̄1E⊗g
satisfying

(2) d̄α = 1
2 [α, α].

If α =
∑
iAi dx

i, Ai ∈ g, then eq. (2) becomes DjAi −DiAj + [Ai, Aj ] = 0, for pairs

{i, j} such that i 6= j.
Given a ZCR α, we consider operators

∂̄α = d̄− adα : Λ̄qE ⊗ g→ Λ̄q+1E ⊗ g,

where adα ρ = [α, ρ] for any ρ ∈ Λ̄E ⊗ g. We have ∂̄α ◦ ∂̄α = 0 as a consequence of (2),

which gives the horizontal gauge complex (or 0-th linear gauge complex [M1])

0→ Λ̄0E ⊗ g
∂̄α−→ Λ̄1E ⊗ g

∂̄α−→ Λ̄2E ⊗ g→ · · · → Λ̄mE ⊗ g→ 0.

The groups

H̄q
α(Λ̄E ⊗ g) =

ker
(
Λ̄qE ⊗ g

∂̄α−→ Λ̄q+1E ⊗ g
)

im
(
Λ̄q−1E ⊗ g

∂̄α−→ Λ̄qE ⊗ g
)

are called the horizontal gauge cohomology groups with respect to the ZCR α.

If α =
∑
iAi dx

i, Ai ∈ g, then for an arbitrary g-matrix C ∈ C∞E ⊗ g we have

(3) ∂̄αC =
∑
i

D̂iC dx
i, D̂iC = DiC − [Ai, C].

Operators D̂i commute whenever α is a ZCR. We define recursively D̂Ii = D̂I ◦ D̂i.
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Likewise, for p = 1 the corresponding modules Λ1,q ⊗ g form the so-called first linear

gauge complex

0→ Λ1,0E ⊗ g
∂̄α−→ Λ1,1E ⊗ g→ · · · → Λ1,mE ⊗ g→ 0.

The groups

H1,q
α (ΛE ⊗ g) =

ker
(
Λ1,qE ⊗ g

∂̄α−→ Λ1,q+1E ⊗ g
)

im
(
Λ1,q−1E ⊗ g

∂̄α−→ Λ1,qE ⊗ g
)

are computable in principle. We refer to [M1] or [Ve] for details of the isomorphism

H1,q
α (ΛE ⊗ g) ∼=

ker(g⊗ P̂m−q → g⊗ P̂m−q−1)

im(g⊗ P̂m−q+1 → g⊗ P̂m−q)
.

Here the starting point is the “compatibility complex” P0 → P1 → P2 → · · · , where Pi
are modules of sections of appropriate vector bundles over E (see [Ve]). We only remark

here that dimP0 = h = the number of unknowns, dimP1 = n = the number of equations

in system (1), and the first arrow P0 → P1 can be identified with the operator of universal

linearization, while each of the subsequent arrows expresses the integrability conditions

for the previous one. Always Pj = 0 for all j > m, while for non-overdetermined systems

we have even Pj = 0 for all j > 1. The dual complex · · · → P̂2 → P̂1 → P̂0 is composed

of formally adjoint operators between dual modules P̂ := Hom(P, Λ̄mE). Finally,

· · · → g⊗ P̂2 → g⊗ P̂1 → g⊗ P̂0

is obtained by replacing each operator Di with its covariant counterpart D̂i = Di − adAi .
The element `(α) ∈ Λ1,1E ⊗ g is a cocycle by (2); the corresponding 1-st cohomology

class ch(α) = [`(α)] ∈ H1,1
α (E , g) will be called the characteristic class of the ZCR α.

The characteristic element χα we introduced in [M1] is the image of ch(α) under the above

isomorphism

H1,1
α (ΛE ⊗ g) ∼=

ker(g⊗ P̂m−1 → g⊗ P̂m−2)

im(g⊗ P̂m → g⊗ P̂m−1)
.

In [M1, Prop. 4.2] we proved that if H2,0
α = 0 and ch(α) = 0, then α = d̄θ · θ−1 for

an appropriate G-matrix θ, where G is connected and simply connected matrix Lie group

associated with g. Such α’s are called trivial.

Assuming system (1) non-overdetermined, P2 is zero. ThenH1,1
α (ΛE ⊗ g) vanishes for

m > 2 and every ZCR is trivial, while form = 2 we have an isomorphismH1,1
α (ΛE⊗g) ∼=

ker(g ⊗ P̂1 → g ⊗ P̂0) and characteristic elements are n-tuples of g-matrices χl defined

on E and satisfying

(4)
∑
l,J

(−1)|J|D̂J

(
∂F l

∂ukJ
χl

)
= 0, D̂i = Di − adAi .

We also have an explicit formula for the characteristic element for α, first written by

Sakovich [S] for evolution equations: if g-matrices CJl satisfy

d̄α− 1
2 [α, α] =

∑
l,J

DJF
l · CJl ,

then

(5) χl =
∑
J

(−D̂)JC
J
l

∣∣
E .
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For a matrix function S : E → G, we have the conjugation AdS : Λ̄qE ⊗ g→ Λ̄qE ⊗ g
defined by γ 7→ S · γ · S−1. For any ZCR α, the form

αS = d̄S · S−1 + S · α · S−1

is another ZCR; we call it gauge equivalent to α. One easily checks that

(6) ∂̄αS ◦AdS = AdS ◦ ∂̄α,

so that AdS is a morphism of the horizontal gauge complexes. Since AdS is invertible

(with inverse AdS−1 ), we have

(7) H̄q
α(Λ̄E ⊗ g) ∼= H̄q

αS
(Λ̄E ⊗ g).

Similarly to (7), we have the isomorphism H1,q
α (ΛE ⊗ g) ∼= H1,q

αS
(ΛE ⊗ g) induced by the

conjugation AdS . Hence, gauge equivalent ZCR’s have conjugate characteristic elements.

The converse is not true in general.

We call a g-valued ZCR α irreducible if neither of the gauge equivalent forms αS falls

into a proper subalgebra of g. Otherwise α is called reducible.

Since we can assume that g is the subalgebra in gln, it is convenient to suppose that

g is sln, the algebra of traceless n × n matrices. Indeed, every gln-valued matrix can be

decomposed to an sln-valued matrix and a trace (a multiple of the unity matrix, i.e., a

coservation law).

4. APPENDICES

4.1. Normal forms of irreducible sl3-valued zero curvature representations. In the

paper [1] we gave the complete list of normal forms of irreducible sl3-valued ZCRs.

The main idea for finding the normal form is based on the fact, that the characteristic

element transforms by conjugation during gauge transformations of the ZCR. Without loss

of generality, we assume that the chracteristic element is in the Jordan normal form. In

the case of sl3 we have five different Jordan normal forms (up to conjugation) denoted

by J1, . . . , J5. For each of them we compute the correspondings stabilizer subgroups

(with respect to conjugation) of the group SL3, denoted by W1, . . . ,W5. Since gauge

transformation is a group action, we compute the action of the stabilizer subgroups on the

matrix A in the ZCR (A,B).
Certain Jordan normal forms (resp. stabilizer subgroups) are invariant with respect to

action by permutation matrices possibly composed with the automorphismA 7→ −A>. We

use this observation for reduction of the number of normal forms.

We proved that if the matrix A in the ZCR (A,B) falls to a proper subalgebra of sl3,

then the ZCR is either reducible or the matrix A is gauge equivalent to zero.

We obtained eight normal forms such that they do not lie in the proper subalgebra of sl3.

4.2. On normal forms of irreducible sln-valued zero curvature representations. The

second paper [2] gives a complete list of normal forms of irreducible sln-valued zero

curvature representations with the characteristic element possessing a single Jordan cell.

Here the mentioned Jordan normal for is denoted by J and the corresponding stabilizer

subgroup by HJ . We can use for reducing the number of normal forms conjugation with

a permutation matrix P , composed with the automorphism A 7→ −A>. It is used notation

A∗ := −P ·A> · P−1. We defined a relation ∼ as follows. The ZCR (A,B) is equivalent

with a ZCR (C,D) and write (A,B) ∼ (C,D), if (A,B) is gauge equivalent with the

ZCR (C,D) or with the ZCR (C∗, D∗). It is proved that this relation is an equivalence.
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Firstly we identify cases, when the normal form can be achieved purely algebraically.

Our construction of the general normal form is based on this knowledge. Finally, we gave

the algorithm for computing the gauge matrix which sends the matrixA to the corresponding

normal form.

As an example we listed all irreducible normal forms for sl7-valued zero curvature

representations.
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