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1. ANOTATION

Main results are published in two independent papers [1] and [2] appended to this
thesis. The common subject is the classification of irreducible sl,,-valued zero curvature
representations (ZCR), based on gauge transformation.

Inthefirst paper we obtained the complete classification of irreduciblesis-valued ZCRs.

The second paper gives a complete list of normal forms of irreducible sl,,-valued zero
curvature representations with the characteristic element possessing a single Jordan cell.

2. INTRODUCTION

Historical information can be found in [P] and [W].

The very beginnig of the Soliton theory dates back to the year 1834 when John Scott
Russell observed solitary wave in shallow water in a boat channel. His experience is
described in the famous Report on waves of 1844. Korteweg and de Vries [K] gave
analytical description of observed phenomena by the well-known KdV equation in 1895.

Surprisingly, the big growth of soliton theory in twentieth century begun with numerical
experiments carried out by Fermi, Pasta and Ulam in 1954-55, on the Los Alamos MA-
NIAC computer ([F], the reprint of the original report). Zabusky and Kruskal [ZK] (1965)
subsequently studied the continuum limit of the Fermi-Pasta-Ulam lattice equations and
found that certain solutions could be described in terms of the K orteweg-de Vries equation.
They found that the solitary wave solutions had behavior similar to the superposition prin-
ciple, despite the fact that the waves themselves were highly nonlinear. They denoted such
waves solitons and described the basic behavior of them.

Animportant step in the solution of the KdV equation was provided by Gardner, Greene,
Kruskal and Miura [G] (1967). They solved KdV by the methods of Inverse Scattering
Transform (IST) and obtained so called n-soliton solutions. Later on, Lax [L] (1968) found
out pairs of linear operators, known as Lax pairs, for which the KdV equation isisospectral
integrability condition.

Ablowitz, Kaup, Newell and Segur [A] (1973) applied methods of IST to the wide
class of nonlinear partial differential equations. Zakharov and Shabat [ZS] (1979) found
out correspondence between integrability and existence of Zero curvature representation
(ZCR) possesing a non-removable (spectral) parameter. Calogero denoted this class of
nonlinear systems as S-integrable. The name of ZCR came from an observation that (2)
coincides with zero curvature condition on an appropriate connection to be flat. Zero
curvature representations are strongly related with Lax pairs. However, the notion of ZCR
ismore general then the notion of Lax pair (at least in dimension 1 + 1).

When a ZCR with spectral parameter for a given equation is known, one may obtain
particular solutions of the equation (e.g., via Riemann—Hilbert problem or Backlund trans-
formation), infinite series of conservation laws. One of the possible methods for finding
ZCR for agiven equation is so called prolongation procedure introduced by Wahlquist and
Estabrook [WE] in 1976. In 1983, Dodd and Fordy [DF] made the prolongation procedure
agorithmic for a wide class of equations. However, there still remained some cases for
wich thisalgorithm does not work well. Some substantial problemswere dealt with by Mo-
lino [M], followed by Finley and Mclver [FM]. In the nineties Marvan proposed a direct
procedure to compute ZCR for a given equation ([M1], [M2] and [M3]) which amountsto
solving of certain system of equationsin total derivatives.

Nevertheless, existing computational procedures are insufficient for solving genera
classification problems, unless in combination with methods based on different criteria of
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integrability. The most complete lists of integrable systems are obtained from the formal
symmetry approach ([MSS], [MSY] and [MS]).

In the eighties Vinogradov ([Vil] and [Vi2]) begun to develop the geometric theory
of PDEs and introduced so called C-spectral sequence and category of diffieties. Diffiety
is a geometric object — an infinite dimensiona submanifold of the jet space J>° —which
completely describes the PDE and, in fact, is more general then PDE itself. Later on
Krasil’shchik and Vinogradov [KV] introduced the general concept of a covering (in
the category of diffieties) of which Wahlquist—Estabrook structures are a special case.
There is an effective tool for computing isomorphism classes of coverings after unique
representatives are found in each class.

Using the Vinogradov theory, Marvan [M1] introduced a characteristic element of a
ZCR, which is a matrix that transforms by conjugation during gauge transformations of
the ZCR. Independently Sakovich [S] defined the characteristic element for evolution
equations, and devel oped the theory of so called cyclic bases.

In case of one PDE, the characteristic element together with the ZCR form a triple
of matrices. Whereas the characteristic element transforms by conjugation during gauge
transformation (see below) of the ZCR, one can transform the characteristic element to its
Jordan normal form. The remaining gauge freedom then can be used for further reduction
of one of the matrices constituing the ZCR. This method is used for classification of ZCRs
in thisthesis.

3. PRELIMINARIES

3.1. Jet bundle. Inthissection we reproduce the definition of the Jet bundle from [B, Ch.
3.and Ch. 41].

Let us have an m-dimensiona locally trivial bundle 7 : E — M over an n-dimensional
manifold M. A section of thebundle r isamap s : M — E suchthat 7 o s = idy,. |.€,
the map s takes apoint x € M to some point of the fiber E,. In a particular case of the
trivial bundle M x N — M, sectionsarethemaps M — N. Let usassumethat all bundles
under consideration are vector bundles, i.e., their fibers are vector spaces and the gluing
functions are linear transformations.

Let Y C M be a neighborhood over which the bundle = becomes trivid, i.e., such
that 7=1(U) = U x R,,. If U is a coordinate neighborhood on the manifold M with
local coordinates x4, ..., x,, then any point of the fiber is determined by its projection
to ¢/ and by its coordinates u!, ..., u™ with respect to the chosen basis. The functions
T1,...,2Tn,ul, ..., u™ arecoordinatesin 7~ (1) and are called adapted coordinates. I.e.,
any section isrepresented in adapted coordinates by avector function f = (f1,..., fm)in
thevariables x1, .. ., x,.

Two sections s; and s, of the bundle 7 will be called tangent with order & over the point
xo € M, if the vector functionsu = fi(x), u = fa(z) corresponding to these sections
have the same partial derivatives up to order k at the point x. This condition is equivalent
to the fact that the k-th order Taylor series of the sections coincide. The tangency condition
for k = 0 reduces to coincidence of f1(zo) and f2(zo), i.e.,, the graphs of the sections s;
and s, must intersect the fiber E,,, at the same point.

Tangency of sections with order k at a point  is an equivalence relation which will be
denoted by s; ~, . s2. The set of equivalence classes of sections, i.e., the set of k-th order
Taylor series, will be denoted by J* and called the space of k-jets of the bundle 7 at the
point z. The point of this space (the equivaence class of a section s) will be denoted by
[s]E. Thus, if 51~k sa, then [s1]¥ = [s2]%. The space of k-jets of the bundle 7 is the
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union of J¥ over all pointsz € M:

JF(m) = U Jr.
xeM

We define the projection 7y, : J*(7) — M. Then for any point § = [s]* € J*(r) we
have 1. (0) = z, and 7}, ' (z) = JF.

For the case k = 0 we have J%(w) = |, .\, B = E, i.e, the space J°(r) coincides
with the total space of the bundle 7.

Let us define local coordinates on the space of k-jets of the bundle =. Let
Z1,...,Tn,ul, ..., u™ be an adapted coordinate system in the bundle 7 over a neighbor-
hood ¢ of the point = € M. Consider the set 7, ' C J*(). Let us complete local
coordinates 1, ..., xn,, ul, ..., u™ by the functions p/ defined by the formula

ik ololgi o
5 ([slz) PRI L...,m, lo|<k.
We call the coordinates p canonical (or special) coordinates associated to the adapted
coordinate system (x;, u?).
We define the projections

Tt - JHl(W) - JtH(W) 77Tt+1,t([3]t+1) = [S]t

where t = 0, ..., k. Since the equivaence class [s]{™! € J!(r) determines the class
[s]t. € J*() uniquely, the projections ;1 + are well defined.
Let us consider the chain of projections
M p e JH ) — - — J*(n) jpaity JF () —

For any point 2 € M let us choose a sequence of points §; € J!(x), 1 = 0,1,...,k,...,
such that the equalities ;1 ;(6i+1) = 61, m(6y) = z arevalid. Dueto these equalities and
using the definition of the spaces .J!(7) one can choose a local section s of the bundle
such that ;. = [s]!, for any I. Thus any point 6; is determined by the partial derivatives up
to order [ of the section s at the point z, while the whole sequence of points {6;} contains
information on all partial derivatives of the section s at . Denote by J°° () the set of all
such sequences. Points of the space .J>° () may be understood as infinite Taylor series of
these sections.

For any point 6o, = {x, 0 tren € J(7), let usset Mo 1 (0oc) = O aNd Too (0) =
x. Then for al £ > [ > 0 we have the following equalities 7, o 7 = 7T and
Tkl © Moo,k = Moo, arevalid. In addition, if s is a section of the bundle 7, then the map
Joo(8) : M — J(m) is defined by the equality joo(s)(z) = {x, 0k }ren. One has the
following identities: 7o k © joo (5) = jk(s) A Too © Joo(s) = id .

Let I'() denote the set of all sections of the bundle 7. The section j.(s) of the bundle
oo + J°(m) — M iscdled theinfinitejet of the section s € I'(w).

Theset J>°(x) isendowed with anatural structure of asmooth manifold, however, itis
infinitedimensional. Local coordinates arising in J°°(7) over aneighborhood & C M are
r1,. .., 2, together with all functions pZ, where || is of an arbitrary (but finite) value.

The bundle 7o, : J*°(m) — M is called the bundle of infinite jets, while the space
J*°(mr) is called the manifold of infinite jets of the bundle 7.

3.2. Cohomological Algebra. Thefollowing sectionisbased onthelecturenotesfromthe
VII., VIII., and IX. Italian summers schools in Santo Stefano del Sole held by G. Moreno,
Ch. di Pietro and L. Vitagliano.
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Let R be a commutative unitary ring. Let {A‘};cz be a family of R—modules. The
directsum A =P, ., A is called a Z—graded module (or, simply, a graded module). Let
ac A" C Aforsomei € Z. Then a is called a homogeneous element of degree i. If
a is a homogeneous element, then its degree will be denoted by |a|. Let A, B be graded
R—modules. An R—module morphism ¢ : A — B is caled a graded homomor phism of
degree k if for any i € Z we have ¢(A?) C B*+*. Together with graded homomorphisms,
graded R—modules form a category which will be denoted by Mod% to underline that the
gradings are elementsin Z.

Let A be agraded R—module. Moreover, suppose that A is an associative R—algebra,
withinternal multiplication A. Leta € A and b € A’ be homogeneous elements. If for any
sucha,bwehavea A b € A7, then A iscalled agraded R—algebra. Let A, B be graded
R—agebras. Then an algebra morphism ¢ : A — B is caled a graded homomorphism
of degree k if it is adegree k graded homomorphism of R—modules. Together with graded
homomorphisms, graded R—algebras form a category which will be denoted by Alg}% (i.e.,
gradings are elementsin 7).

Exactly, as in the nongraded cases, subalgebras and ideals of a given A € Alg% are
defined. If Z C Aisanided, then the quotient .A/7 is defined and it belongs to Algﬁ.

LetAe AlgIZ%. A differential calculus can bedeveloped over A asinthecase A € Algp
keeping in mind the heuristic law: in any formula a sign (—1)*!I*I" must be added for any
pair of graded homogeneous objects x, x' which exchange their positions. As an example
let A € Alg%. A graded R—module morphism

X A— A

issaid agraded .A—derivation of degree | X| € Z if, for any pair of homogeneous elements
a,b € Athegraded Leibnitz ruleis satisfied,

X(aAb) = (=1)UeHXDPIH A X (a) + (=1)191XTg A X (B).
Similarly, the graded commutator of a, b € A isdefined as
[a,b] = aAb— (=1)121Pp A g,

Let P = P,y P? be a graded R—module. A sequence of R—modules is a degree 1

graded endomorphism f of P. In practice a sequenceis achain of R—module morphisms
o pil gpl f_i,piﬂﬂ...

and f = @,, f'. Let P, Q be graded R-modulesand f : P — Pandg: Q — Q

be sequences. A morphism of the sequences f and g is agraded morphismh : P — Q

compatible with the sequences, i.e., such that h o f = g o h. We will often consider degree

0 morphisms of sequences, i.e., h(P?) C Q' forany i € Z.

A sequence f : P — P iscalled short if it consists of only two arrows, i.e., f* = 0 for
anyi # 0,1. A sequence f : P — P iscalled exact in the i—th term (or in the term P?), if
ker f* =im f*~1. A sequenceiscalled exact if it isexact in each term, i.e., ker f = im f.

Let P beagraded R—moduleand 6 : P — P asequence. The pair (P, ¢) isacomplex
if606=0,i.e,6 o081 =0foranyi. Thend iscalled adifferential.

Note that (P, §) is acomplex if kerd D imd, if ker 8 D im §°~! for any . Elements
inker 6° are said i—cocycles and elementsin im §°~! are said i—coboundaries. We can take
the quotient

H'(§) =kerd'/im o' !
4



and it is called the i-th cohomology module (or cohomology in the term P?). The graded
module
H(5) = P H'(6) = kerd/im
i€Z
is called the cohomology module. H(4) is sometimes denoted by H(P) when this does
not give rise to confusion. Let p € ker d, i.e., p isacocycle. Its cohomology class will be
denote by [p]s (or simply [p] if this doesn’t give rise to any confusion).

Let (P, d) and (Q, ¢) becomplexes. A mor phismof complexesisnothing but amorphism
of the sequencesé : P — P ande : Q@ — Q. Complexes of R—modules, together with
their morphisms form a category. Let h : P — O be a degree k£ morphism of the
complexes (P, d) and (Q, ¢).

For any ¢, it iswell defined the R-inear map

H'(h) : H'(8) 3 [pls — [h(p)]e € H (o).
The map
H(h)= @ H'(h): H(S) — H(e)
1€EZL
is said to be induced by the complex morphism k and it is a degree k graded morphism of
R—-modules.

Notethat H isacovariant functor from the category of complexes of R—modulesto the
category of graded R—modules.

3.3. Diffieties. A diffietyisa(possibly, infinite dimensional) smooth manifold X equipped
with afinite dimensional Frobenius distribution C.

Let us assume an (n + m)-dimensional locally trivia bundle 7 : E — M over an
m-dimensional manifold M. Let x1,...,2,,,u!,...,u"™ are coordinates in == (/) for
a neighborhood ¢/ over which the bundle = becomes trivial. Let J>°() be an infinite-
dimensional jet space with the local jet coordinates (x;, u?, u}). Notethat I = (iy .. .i,)
denotes a symmetric multiindex (instead of o, used in section 3.1). We have distinguished
vector fieldson J°° ()

D; =0/0x' + ) ul,0/0u],
7.1
which are called total derivatives.
Let us consider afinite system of finite-order PDE's

Q) Fl(zi,uj,...,uz,...):0,

I =1,...,n,onunknowns v’ and their derivatives u]I We assume that system (1), along
with all its differential consequences D;F! = 0, determines a submanifold & C J>°(r).
The total derivatives are tangent to £, hence they have a well-defined action on smooth
functionson £. Therestricted fields D, = D;|¢ span the Cartan distribution C on £. Then
(€,C) isobvioudly adiffiety.

3.4. ZCR and the characteristic element. In this section we reproduce the definition of
the ZCR and the characteristic element by M. Marvan in [M4].

Let we have a system (1) of PDE’s with the corresponding diffiety £. On £, we have
the direct decomposition of the tangent bundle 7€ asC @ V&, the Cartan distribution and
the vertical vector bundle with respect to the projection on 7. Let C>°£ denote the ring of
C*> functionson &, let A% = AnnC and A>'€ = Ann V€ denote the C°°E-modules
of contact 1-forms and horizontal 1-forms, respectively. We have the induced splittings
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ANE =@, ,—, A€ intor + 1 direct summands A9€ = AP A& A \TAVIE. The
exterior differential split into the sum d = d + ¢ of the horizontal differential d: A»9€ —
AP+ and the vertical differential ¢: AP2€ — APHLag,

Coordinate formulas for the differentials d, ¢ are derived from their action on A°0& =
C>&, whichis

df = ) Difda’,

lf = Zﬁwll, w}:duﬁ—Zug)Idxi.
T i

We denote by AE the graded exterior algebraof horizontal formson £. Let us consider a
finite-dimensional real or complex Lie algebra g. The tensor product with AE = @, A€
is a graded nonassociative algebra under the bracket [y ® A,v ® B] = (1 A v) ® [A, B]
for A,B € gand i, v € AE. Then

[pv U] = 7(71)7,8[07 p]ﬂ J[p,o] = [Jp, 0} + (71)7“[/03 Jg]

forpe A" ® g, 0 € A°E ® g. Due the Ado’s theorem we can assume that g is a matrix
algebra, i.e, that g is a subalgebra in some gl,,. Then A€ ® gl,, is a graded associative
algebra with respect to the multiplication (1 ® A) - (v ® B) = (u Av) ® (A - B) induced
by the ordinary matrix multiplication, while

[p,o]=p-o—(=1)0-p, dlp-o)=dp-o+(=1)p-do

forpe A"€ @ gl,,, 0 € A*E ® gl,,. Elements of C*°& © g will be called g-matrices.

A g-valued zero-curvaturerepresentation (ZCR) for £ isahorizontal 1-forma € A'E®g
satisfying
2 da = 3o, al.

Ifa =3, A;da?, A; € g, then eq. (2) becomes D; A; — D; A; + [A;, A;] = 0, for pairs
{i,7} suchthat i # j.
Given aZCR «, we consider operators

0o =d—ady: NMERg— AT ERg,

where ad,, p = [o, p] for any p € A ® g. We have 9,, 0 9, = 0 as a consequence of (2),
which gives the horizontal gauge complex (or 0-th linear gauge complex [M1])

0-A¢0gln Alewg 2 A2 0g—--— AEwg— 0.
The groups
ker(A4€ ® g 2 R9+1E @ g)
im(Ae-1€ @ g 24 Rag @ g)

are called the horizontal gauge cohomol ogy groups with respect to the ZCR .
If =3, Aida?, A; € g, then for an arbitrary g-matrix C € C*E ® g we have

HI(AE ®g) =

©) 0.C =) DiCda',  DiC=D;C—[4;C]

K3

Operators D; commute whenever « isaZCR. We define recursively D;; = D; o D;.
6



Likewise, for p = 1 the corresponding modules A'¢ ® g form the so-called first linear
gauge complex

0—>A1°€®g ANMeEgg— .- - APERg— 0.
The groups
ker(AM9E @ g 2o ALatIE @ g)

Hyl(AE ®g) = >
im(ALI1E @ g = ALIE ® g)
are computable in principle. We refer to [M 1] or [Ve] for details of the isomorphism

ker(g ® Pm ¢ g®Pm a 1)

lm(g®Pm q+1 Hg@Pm q)

Here the starting point is the “compatibility complex” Py, — P, — P, — ---, where P,
are modules of sections of appropriate vector bundles over £ (see [Ve]). We only remark
herethat dim Py = h = the number of unknowns, dim P; = n = the number of equations
in system (1), and the first arrow Py — P; can be identified with the operator of universal
linearization, while each of the subsequent arrows expresses the integrability conditions
for the previous one. Always P; = 0 for all j > m, while for non-overdetermined systems
we have even P; = 0 for al j > 1. Thedual complex - -- — P2 — Pl — PO is composed
of formally adjoint operators between dual modules P := Hom(P, A™&). Finaly,

HY(AE @ g) =

"—>9®132—>9®131—>9®ﬁ0

is obtained by replacing each operator D, with its covariant counterpart D; = D; — ad A

The element /(a) € AV1€ ® g isacocycle by (2); the corresponding 1-st cohomology
class ch(a) = [¢(a)] € HL1(E, g) will be called the characteristic class of the ZCR «.
Thecharacteristic element x,, weintroduced in[M1] istheimage of ch(«) under the above
isomorphism
ker(g®Pm 1 _>9®Pm 2)

lm(g®Pm _>9®Pm 1)

In [M1, Prop. 4.2] we proved that if H>? = 0 and ch(a) = 0, then o = df - 6~ for
an appropriate G-matrix 6, where G is connected and simply connected matrix Lie group
associated with g. Such o’s are called trivial.

Assuming system (1) non-overdetermined, P, iszero. Then H}'' (A€ ® g) vanishes for
m > 2 and every ZCRistrivial, whilefor m = 2 wehaveanisomorphism H}' (A€ ® g) =
ker(g ® P, — g ® Py) and characteristic elements are n-tuples of g-matrices x; defined
on & and satisfying

~ OF! ~
4 Z(_l)IJIDJ (le> =0, D; = D; —ady, .
J

1,J

HYLY(AS @ g) =

We also have an explicit formula for the characteristic element for «, first written by
Sakovich [S] for evolution equations: if g-matrices C; satisfy

da — 3[a, a] :ZDJFZ'Ci],
1,J
then

(5) Xl = Z(-B)JClJ ‘g .

J



For amatrix function S: £ — G, we have the conjugation Ads: A€ @ g — A€ ® g
defined by v +— S - - S~L. For any ZCR a, the form

a¥=dS-S'+S-a-S7!
is another ZCR; we call it gauge equivalent to «.. One easily checks that
(6) 5as o Ads = Ads o al,

so that Adg is a morphism of the horizontal gauge complexes. Since Adg is invertible
(with inverse Adg-1), we have

) HI(AE @ g) = HI (AE ® g).

Similarly to (7), we have the isomorphism H1(A€ @ g) = Hi’sq (A€ ® g) induced by the
conjugation Adg. Hence, gauge equivalent ZCR's have conjugate characteristic elements.
The converseis not true in general.

We call ag-valued ZCR « irreducibleif neither of the gauge equivalent forms o® falls
into a proper subalgebra of g. Otherwise « is called reducible.

Since we can assume that g is the subalgebrain gl,,, it is convenient to suppose that
g issl,, the algebra of traceless n x n matrices. Indeed, every gl,, -valued matrix can be
decomposed to an sl,,-valued matrix and a trace (a multiple of the unity matrix, i.e, a
coservation law).

4. APPENDICES

4.1. Normal forms of irreducible sl;-valued zero curvature representations. In the
paper [1] we gave the complete list of normal forms of irreducible sl3-valued ZCRs.
The main idea for finding the normal form is based on the fact, that the characteristic
element transforms by conjugation during gauge transformations of the ZCR. Without loss
of generality, we assume that the chracteristic element is in the Jordan norma form. In
the case of sl3 we have five different Jordan normal forms (up to conjugation) denoted
by Ji,...,Js. For each of them we compute the correspondings stabilizer subgroups
(with respect to conjugation) of the group SLs, denoted by W71, ..., W5. Since gauge
transformation is a group action, we compute the action of the stabilizer subgroups on the
matrix A inthe ZCR (A, B).

Certain Jordan normal forms (resp. stabilizer subgroups) are invariant with respect to
action by permutation matrices possibly composed with the automorphism A +— —AT. We
use this observation for reduction of the number of normal forms.

We proved that if the matrix A in the ZCR (A, B) falls to a proper subalgebra of s,
then the ZCR is either reducible or the matrix A is gauge equivalent to zero.

We obtained eight normal forms such that they do not liein the proper subalgebraof sls.

4.2. On normal forms of irreducible sl,,-valued zero curvature representations. The
second paper [2] gives a complete list of normal forms of irreducible sl,,-valued zero
curvature representations with the characteristic element possessing a single Jordan cell.
Here the mentioned Jordan normal for is denoted by J and the corresponding stabilizer
subgroup by H ;. We can use for reducing the number of normal forms conjugation with
apermutation matrix P, composed with the automorphism A — — AT, It is used notation
A*:=—P-A"T . P71 Wedefined arelation ~ asfollows. The ZCR (A, B) is equivalent
with a ZCR (C, D) and write (A, B) ~ (C, D), if (A, B) is gauge equivalent with the
ZCR (C, D) or with the ZCR (C*, D*). It is proved that this relation is an equivalence.
8



Firstly we identify cases, when the normal form can be achieved purely algebraically.
Our construction of the general normal form is based on this knowledge. Finally, we gave
thealgorithm for computing the gauge matrix which sendsthe matrix A tothe corresponding
normal form.

As an example we listed all irreducible normal forms for sl,-valued zero curvature
representations.
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