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trie a globálnı́ analýza se konajı́ dne 17. 5. 2006 v 11.00 hod v mı́stnosti
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4 A covering and Bäcklund transformation 7

5 Nonlocal symmetries 8

6 The classification works 8

7 A new hyperbolic equation of pseudo-spherical type 9

8 Recursion operator 11

9 Recursion operator for the IGSG equation 11

10 Publications concerning the thesis 15

11 Presentations 15



1 Introduction
The Ph.D. thesis is based on two articles: A new hyperbolic equation pos-
sessing a zero curvature representation and Recursion operator for the
IGSG equation, while the first one was already published, the second one
was accepted to print. The common term of both papers is a zero-curvature
representation for a system of nonlinear partial differential equations.

The first paper presents a previously unknown hyperbolic equation of
pseudo-spherical type. It was found bz using a direct procedure to com-
pute a zero curvature representation. The zero-curvature representation of
the equation admits no parameter and is reducible to a proper subalgebra
of sl2.

In the second paper the inverse and direct recursion operator were
found for the intrinsic generalized sine-Gordon equation in any number
n > 2 of independent variables. Among the flows generated by the di-
rect operator we identify a higher-dimensional analogue of the pmKdV
equation.

2 Geometric theory of differential equations
Let E be a system of nonlinear partial differential equations

F l(xi, uk, uk
I ) = 0, (1)

where xi, i = 1, 2 (x1 = x, x2 = y) are independent variables, uk is arbi-

trary number (k = 1, ..., N) of unknown functions and u k
I =

∂suk

∂xi1 ...∂xis

are derivatives of these functions, with I = i1...is is multiindex. Say that
every function F l is smooth and depends on finite number of variables
x, y, uk, uk

I . Besides these local variables is possible use also nonlocal
variables or pseudopotentials zp satisfying the system of equations

zp
x = fp, zp

y = gp, (2)

where functions f p, gp depend on finite number of local variables and the
same dependence is for pseudopotentials z p. We postulate that system (2)
is compatible as a consequence of (1) z i

xy = zi
yx.

Let X , U be manifolds, r ≥ 0 an integer or ∞, x ∈ X a u ∈ U
arbitrary points. Let C∞(x, u) be the set of smooth mappings f defined
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at x, with values in U , such that f(x) = u. We say that two mappings
f, g ∈ C∞(x, u) are r-equivalent (at point x) if there exist a chart (X̃,ϕ)
on X and a chart (Ũ ,ψ) on U such that x ∈ X̃ u ∈ Ũ , and for each k,
0 ≤ k ≤ r or for each k when r = ∞:

Dk(ψfϕ−1)(ϕ(x)) = Dk(ψgϕ−1)(ϕ(x)).

The relation r-equivalent at point x is an equivalence relation onC ∞(x, u).
An equivalence class with respect to this equivalence relation is called
an r-jet with source x and target u. By J r

xf is denoted an r-jet with
source x and target u, whose representative is a mapping f . The set of
r-jets with source x ∈ X and target u ∈ U is denoted J r

(x,y)(X, U), and
Jr(X, U) =

⋃
Jr

(x,y)(X, U). The set J0(X, U) or only J 0 is canonically
identified with X × U . J∞ is an infinite-dimensional jet space, equipped
by local coordinates x, y, uk, uk

I (here X = R2). The functions F l then
may be interpreted as functions defined on J ∞.

A fibered manifold is a triple (U,π, X) in which U and X are mani-
folds and π is a surjective submersion of U ontoX . A mapping γ : V →
U , where V ⊆ X is an open set, is called a section of the fibered manifold
(U,π, X), if π ◦ γ = idV . By Jr

xγ is denoted r-jet whose representative
is a section γ. Similarly J rπ = {Jr

xγ; x ∈ X, γ is a section}.
In every domain of definition of the independent variables x, y, we

have two distinguished commuting vector fields on J ∞

Dx =
∂

∂x
+

∑

k,I

uk
Ix

∂

∂uk
I

, Dy =
∂

∂y
+

∑

k,I

uk
Iy

∂

∂uk
I

, (3)

which are called total derivatives.
The equation manifold E associated with system (1) is defined to

be the submanifold in J∞ determined by the infinite system of equations
F l = 0 and DIF l = 0 for I running through all symmetric multiindices
in x, y. The total derivativesDx,Dy are vector fields on J∞ tangent to E ,
therefore they admit a restriction to E . The restricted fields then generate
the Cartan distribution C on E . The pair (E , C), called a diffiety, is an
invariant geometric object associated with system (1).

Let (E , C) and (E ′, C′) be two diffieties, the mappings from (E , C) onto
(E ′, C′) that preserve the Cartan distributions are called morphisms of
diffieties. A bijective morphism of equation manifolds is called isomor-
phism. A morphism maps solutions of the system to solutions.
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3 A zero-curvature representation
Let G be a Lie group, let g be the corresponding Lie algebra. A zero-
curvature representation (ZCR) [7] for E with coefficients in g we mean a
g-valued one-form α = Adx + Bdy defined on E such that

DyA − DxB + [A, B] = 0 (4)

holds as a consequence of system (1). A, B are g-valued differential func-
tions, which depends on x, y, uk, uk

I and possibly on an essential (spectral)
parameter λ.

Let G be the connected and simply connected matrix Lie group as-
sociated with g. Then for an arbitrary G-valued function S, the form
αS = ASdx + BSdy, where

AS = DxSS−1 + SAS−1, BS = DySS−1 + SBS−1, (5)

is another ZCR, which is said to be gauge equivalent to the former. A
function Z is called a linear pseudopotential for (1) whenever it satisfies
the linear system DxZ = AZ, Dy = BZ .

We call a g-valued ZCR (A, B) reducible if either A, B or any of
the gauge-equivalent pairs fall entirely into a subalgebra g. Otherwise it is
called irreducible.

The pseudo-sphere (PSS) is a surface of R3, its Gaussian curvature
is constant K = −1. A differential equation for a real-valued function
u(x, t) is said to describe a pseudo-spherical surface if it is the necessary
and sufficient condition for the existence of smooth functions f ij , 1 ≤ i ≤
3, 1 ≤ j ≤ 2, depending on u and its derivatives, such that the 1-forms
w1 = f11dx + f12dt, w2 = f21dx + f22dt, w12 = f31dx + f32dt, satisfy
the structure equations of a surface of a constant Gaussian curvature equal
to −1, that is: dw1 = w12 ∧ w2, dw2 = w1 ∧ w12, dw12 = w1 ∧ w2.

The PSS property implies the existence of the ZCR with values in sl2
but ZCR need not depends on the parameter. If ZCR depends on the spec-
tral parameter λ then the equation is a soliton type.

4 A covering and Bäcklund transformation
A covering over an equation manifold E is a pair consisting of another
equation manifold E ′ and a surjective morphism p : E ′ → E . Two cover-
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ings E ′ and E ′′ are isomorphic over E when there exists an isomorphism
E ′ ∼= E ′′ that commutes with the projections to E .

A ZCR is trivial when it is gauge equivalent to zero. A covering
E ′ → E is said to trivialize a ZCR α = Adx + Bdy if the pullback of α
along the morphism E ′ → E is a trivial ZCR.

A Bäcklund transformation Φ from a diffiety E1 to a diffiety E2 is de-
fined as a pair of coverings p over E1 and q over E2 with a common source
Ẽ .

5 Nonlocal symmetries
A linearization of the system (1) is the system

lF l [U ] = 0, (6)

where
lF [U ] =

∑

k

∑

I

∂F

∂uk
I

Uk
I . (7)

Geometrically, the linearization can be introduced as the vertical vec-
tor bundle V E → E with respect to the projection E → M on the base
manifoldM .

Let’s define a symmetry of (1) as a real-valued, vector-valued or
matrix-valued differential function U that satisfy (6) on solution manifold
E of the system (1).

Morphisms E → V E that are section of the bundle V E → E corre-
sponds to symmetries of E .

A nonlocal symmetry corresponds to a morphism E ′ → V E over E ,
where E ′ is a covering of the original equation.

6 The classification works
If we are interested in a problem of classification of integrable equations
we know there are these basic methods:

a) Painlevé method [17]
b) symmetry analysis
c) zero-curvature representation.
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A symmetry analysis explores which equations have enough rich alge-
bra of symmetries. This method was used to complete classfications for
example evolution equotions.

Recall that there are two kinds of integrability by integrable systems
a) S-integrable systems, which possess a ZCR with parameter,
b) C-integrable systems, which is possible to transform to linear sys-

tem.
The symmetry analysis does not distinguish betweenS- andC-integra-

bility. In full generality, classification of hyperbolic equations that could
be solved by the inverse scattering method is still an open problem.

K. Tenenblat and her research group devoted a number of works to the
classification of nonlinear equations of PSS type [3],[4]. The PSS prop-
erty implies the existence of the ZCR with values in sl2, hence indicates
integrability by the inverse scattering method if the ZCR depends on the
spectral parameter.

Other representative of ZCR method is M. Marvan who classified
scalar second order evolution equations [9].

7 A new hyperbolic equation of pseudo-spherical
type

A main motivation for the work with ZCR was an attempt to classify all
hyperbolic equations

uxy = F (x, y, u, ux, uy) (8)

possessing a nongenerate ZCR with values in sl2, by using the ”direct
method” of [8].

Consider a nonlinear hyperbolic equation (8) with sl 2-matrices A, B
which satisfy a condition (4). MatricesA, B are not reducible to a solvable
algebra.

To matrices A, B there exists so called characteristic matrixR and we
restrict ourselves to the normal form Jr for R

Jr =
(

r 0
0 −r

)
. (9)
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The matrix A is supposed to be in the normal form with respect to the
action of the stabilizer of the matrix Jr:

A =
(

a1a2 a2

a2 −a1a2

)
, while B =

(
b1 b2

b3 −b1

)
. (10)

For an arbitrary sl2-valued function C on (8) let D̂xC = DxC −
[A, C], D̂yC = DyC − [B, C].

We consider the following system of differential rquations in total
derivatives, consisting of 6 equations in 6 unknowns (a 1, a2, b1, b2, b3, r):

DyA − DxB + [A, B] = 0

∑

I

(
−D̂

)

I

(
∂F

∂uI
Jr

)
= D̂xD̂yJr, (11)

and parameter F .
For solution of (11) we used a software for differential calculus on jet

spaces and diffieties [11].
During computation we went through a lot of branches but only one

of them led to a usable result and so we found a new PSS equation, which
is apparently missing in the literature. Using the following sequence of
transformations 1) (x, y, u) → (x, y, w), kde K = w, 2) (x, y, w) →

(x, y, a), where w = 4a− c1

8
, b31 = −4a2 +

c2
1

16
, 3)(x, y, a) → (x, y, v),

where v = au, a2 = b, we can introduce obtained PSS equations in the
form:

vxy =

(
− vvxvy +

vx

2

(
∂b

∂y
+ 2

∂b

∂x
v

)
− v2

(
∂2b

∂x2
+ 8v2 − 16b

)
+

+
∂2b

∂x2
− 1

2

(
∂b

∂x

)2

− 8b2

)
/(b − v2).

(12)
Thus the resulting equation (12) comes out as a representant of a whole
equivalence class of equations.

10



8 Recursion operator
In Olver’s formalism [14], a recursion operator Ψ is a pseudodifferen-
tial operator

∑s
i=−r fiDi ◦ hi which maps symmetries to symmetries.

This provides a convenient way to generate infinite families of sym-
metries. Pseudodifferential operators involve inverses D−1 of the total
derivative operator D = Dx. Here D−1 is formally defined by identities
D ◦ D−1 = id,D−1 ◦ D = id. But the latter identity is actually invalid.

A problem of inverting a recursion operator motivated Guthrie [2] to a
generalization such that his nonlocalities are no longer limited to inverses
D−1 of total derivatives. Equivalent definition of recursion operator for-
mulated by M. Marvan [6] is as follows:

A recursion operator for an equation manifold E is a pair of coverings
K, L : E → VE over linearization VE of E such that K and L commutes
with projections of VE to E .

From this point of view we can consider a recursion operator as a spe-
cial case of Bäcklund autotransformation of linearized diffiety.

The hierarchy of symmetries generated by a recursion operator may be
extended also to the opposite direction by inverting the operator Ψ. Thus
obtained operatorΨ−1 generates analogic hierarchy of symmetries and is
called inverse operator recursion.

9 Recursion operator for the IGSG equation
A classical wave equation and sine-Gordon equations were generalized to
higher dimensions, by considering a pair of functions v, h of n indepen-
dent variables x = (x1, ..., xn), where v(x) = (v1(x), ..., vn(x)) is a unit
vector field

∑
i(v

i)2 = 1 in Rn and h(x) is an off-diagonal n × n matrix
satisfying:

vi
j = vjhji, j ,= i,

vi
i = −

∑

s$=i

vshis,

hij
i = −hji

j − Kvivj −
∑

s$=i,j

hsihsj , i > j,

hij
j = −hji

i −
∑

s$=i,j

hishjs, i < j,
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hij
k = hikhkj , j ,= i ,= k ,= j. (13)

This set of equations is called the intrinsic generalized wave equation
(IGWE) whenK = 0, and the intrinsic generalized sine-Gordon equation
(IGSGE) whenK ,= 0. Moreover this system is integrable in the sense of
soliton theory.

Lie symmetries of IGSGE and IGWEwere computed by Tenenblat and
Winternitz [16] along with the corresponding invariant solutions. However
no higher symmetries have been written yet.

The system (13) has a ZCR, which consists of sparse antisymmetric
2n × 2n matrices A(k), k = 1, ..., n, which satisfy: A(k)xl − A(l)xk +
[A(k),A(l)] = 0.

Symmetries are determined by functions V i, H i,j on the manifold E ,
that satisfy ∑

i

viV i = 0,

V i
j = vjHji + hjiV j , j ,= i,

V i
i = −

∑

s$=i

(vsHis + hisV s),

Hij
i = −Hji

j − K(viV j + vjV i)

−
∑

s$=i,j

(hsiHsj + hsjHsi), i > j,

Hij
j = −Hji

i −
∑

s$=i,j

(hisHjs + hjsHis), i < j,

Hij
k = hikHkj + hkjHik, j ,= i ,= k ,= j, (14)

where V i
j = DjV i.

FollowingGuthrie [2] we interpret recursion operators as Bäcklund au-
totransformations for the linearized system (14). There exists a recursion
operator that can be written in terms of an auxiliary system of equations

Wxk = [A(k), W ] + lA(k)W. (15)

If V i, H ij are symmetries and W satisfies (15), then V ′i, H ′ij are also
symmetries:

V ′i = 2zV i − 2z
n∑

s=1s$=i

vsW is,
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H ′ij = Kvj
n∑

s=1

vsW s,n+i −
(

1
2
K + 2z2

)
W j,n+i. (16)

Thus formulas (15) and (16) determine a family of inverse recursion
operatorsRZ for the IGSG equation. To obtain a direct recursion operator
is necessary to find an inversion of RZ . So this direct operator L gener-
ates a local flow of third order, wchich are called the generalized pmKdV
equation.
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