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Školitel: Prof. RNDr. Miroslav Englǐs, DrSc.
Matematický ústav SU, Opava
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torského studia Matematické analýzy.
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1. Introduction

This thesis consists of two papers, [1] and [2]. The first paper considers the
asymptotic behaviour of a certain integral transform associated to Hilbert
spaces with reproducing kernels, the Berezin transform, and generalizes to
spaces of harmonic functions a result about it which is standard for spaces
of holomorphic functions and has well-known applications in mathematical
physics (quantization). Namely, for the standard weighted Bergman spaces
on the complex unit ball, the Berezin transform of a bounded continuous
function tends to this function pointwise as the weight parameter tends to
infinity. In [1] we show that this remains in force also in the context of
harmonic, rather than holomorphic, Bergman spaces on the ball. This gen-
eralizes the recent result of C. Liu for the unit disc, in addition to extending
the corresponding result for the holomorphic case.

The second paper proves a result about the ordinary (holomorphic) Berezin
transform of operators, which relates this transform to some geometric quan-
tities. Namely, we give estimate for higher-order covariant derivatives of the
Berezin transform of bounded linear operators on any reproducing kernel
Hilbert space of holomorphic functions. This extends, and puts into a wider
perspective, a number of recent results due to L. Coburn, J. Xia, B. Li,
M. Englǐs and G. Zhang, H. Bommier-Hato, and others. The answer turns
out to involve the curvature of the Bergman-type metric associated to the
reproducing kernel.

In the next two sections, we present more details on each paper.

2. Berezin transform on the harmonic Bergman space of the
ball

Let Bn be the ball in Rn, n ≥ 2, and dz the Lebesgue measure on Bn. For
α > −1, consider the measure

dAα(z) := cα(1− |z|2)αdz,

where

cα =
Γ(α+ n

2 + 1)

π
n
2 Γ(α+ 1)

is chosen so as to make dAα a probability measure. For simplicity, we will
usually assume that α is an integer.

The harmonic Bergman space L2
harm(Bn, dAα) consists, by definition, of

all harmonic functions in L2(Bn, dAα). It is known that point evaluation
functionals are continuous on the harmonic Bergman space, so it possesses a
reproducing kernel, i.e. there exists a function Rα(x, y) on Bn×Bn, harmonic
in each variable, such that

f(x) =
∫

Bn

f(y)Rα(x, y) dAα(y) = 〈f,Rα(·, x)〉

for each f ∈ L2
harm(Bn, dAα) and x ∈ Bn.
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The Berezin transform of a bounded linear operator T on L2
harm(Bn, dAα)

is the function T̃α(z) on Bn defined by

T̃ (α)(z) =
〈T (α)Rαz, Rαz〉
〈Rαz, Rαz〉

=
T (α)Rαz(z)
Rα(z, z)

,

where, for the sake of brevity, we have denoted Rαz(w) := Rα(z, w).
Finally, for f ∈ L∞(Bn), the Toeplitz operator Tf with symbol f is the

operator on L2
harm(Bn, dAα) defined by

Tfg = Qα(fg),

where Qα : L2
harm(Bn, dAα)→ L2

harm(Bn, dAα) is the orthogonal projection.
That is,

Tfg(z) =
∫

Bn

g(x)f(x)Rα(z, x) dAα(x).

It was shown by C. Liu [32] that if n = 2 (so that B2 is just the unit disc
in the complex plane C), then for f ∈ C(Bn)

T̃
(α)
f → f uniformly, and(1)

‖T (α)
f ‖ → ‖f‖∞(2)

as α→∞.
This extends the same result known previously for Toeplitz operators on

Bergman spaces of holomorphic functions, which finds important applica-
tions in mathematical physics (quantization on Kähler manifolds, see e.g.
[16]).

The aim of the paper [1] is to generalize Liu’s result also to n ≥ 3. To
do this, we first establish a (reasonably) explicit formula for the kernels
Rα(x, y) and our main result is a generalization of (1) and (2).

We remark that we actually obtain a somewhat stronger result than (1),
namely, we show that for any f ∈ BC(Bn) := C(Bn)∩L∞(Bn) we also have

T̃
(α)
f (z)→ f(z)

as α→∞ for all z ∈ Bn. This gives a new piece of information even for the
original case n = 2.

Our main results in [1] are the following:

Theorem 2.1. ([1, Theorem 4.2]) If f ∈ BC(Bn), the space of all bounded
continuous functions on Bn, then for each z ∈ Bn

T̃
(α)
f (z)→ f(z)

as α→∞ through the integers.

Corollary 2.2. ([1, Corolary 4.4]) For any f ∈ C(Bn)

‖T (α)
f ‖ −→ ‖f‖∞ as α→∞.
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3. Geometric properties of the holomorphic Berezin transform

For a domain Ω ⊂ Cn, denote by O(Ω) the vector space of all holomorphic
functions on Ω, and let H ⊂ O(Ω) be an arbitrary Hilbert space which has a
reproducing kernel, i.e. such that the point evaluation functionals f 7→ f(z)
are continuous from H into C for any z ∈ Ω. The reproducing kernel
K(z, w) of H is then a function on Ω × Ω, holomorphic in z, w, which has
the reproducing property

f(z) = 〈f,Kz〉 ∀f ∈ H,

where Kz = K(·, z) ∈ H. We will assume throughout that ‖Kz‖2 = K(z, z)
satisfies

K(z, z) > 0 ∀z ∈ Ω.

The formula

K(z, z) = ‖Kz‖2 = sup{|f(z)|2 : f ∈ H, ‖f‖ ≤ 1}

then exhibits logK(z, z) as a supremum of logarithms of moduli of holo-
morphic functions, implying that logK(z, z) is plurisubharmonic. In other
words, the matrix of mixed second order derivatives

(3) gjk :=
∂2

∂zj∂zk
logK(z, z)

defines an Hermitian (semi-)Riemannian metric on Ω by

(4) ‖v‖2z :=
∑
j,k

gjkvjvk

for v ∈ TzΩ ∼= Cn the tangent space at z ∈ Ω, which in turn induces the
(semi-) distance function β(·, ·) on Ω in the standard way [26] [27].

In his quantization program in 1970’s, Berezin [9] introduced a general
symbol calculus for linear operators on reproducing kernel spaces. More
specifically, for X ∈ B(H), the algebra of all bounded linear operators on H,
the Berezin symbol (or Berezin transform) of X is the function on Ω de-
fined as

X̃ := 〈Xkz, kz〉
where

kz = K(z, z)−1/2K(·, z) =
Kz

‖Kz‖
is the normalized kernel function at z. (This is also often called coherent
state in physics literature.) It is immediate that X̃ is real analytic and
‖X̃‖∞ ≤ ‖X‖, and it is well-known that X is uniquely determined by X̃.

The prototypes of the spaces H are the Bergman spaces A2(Ω) of all
holomorphic functions in L2(Ω, dV ) on a bounded domain Ω ⊂ Cn with
Lebesgue measure dV , or the Segal-Bargmann(-Fock) spaces A2(Cn) of all
entire functions in L2(Cn, dµ) for the Gaussian measure

dµ(z) = (2π)−ne−|z|
2/2 dV (z).
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The reproducing kernel K(z, w) is then just the original kernel function of
Bergman [10] for Ω bounded, while K(z, w) = ez·w/2 for Ω = Cn. Similarly,
the metric (3) is the Bergman metric on Ω $ Cn, and coincides (up to
a constant factor) with the Euclidean metric for Ω = Cn. In both cases,
Coburn [17] obtained a Lipschitz estimate for the Berezin symbol on A2(Ω),
namely,1

(5) |X̃(a)− X̃(b)| ≤ 2 ‖X‖ β(a, b)

for any a, b ∈ Ω and X ∈ B(A2(Ω)). Furthermore, he showed in [18] that
the above estimate is sharp in the sense that

(6) sup
a,b∈Ω,a6=b,

0 6=X∈B(A2(Ω))

|X̃(a)− X̃(b)|
‖X‖ β(a, b)

= 2.

It was subsequently noted by Xia (unpublished) that for Ω = Cn, the
proof in [17] can even be used to provide a stronger result: namely, X̃ and
its partial derivatives of all orders are bounded. M. Englǐs and G. Zhang [22]
improved upon and extended Xia’s result by showing that LX̃ is bounded
for any invariant linear differential operator L on Ω and any X ∈ B(H),
when H is any one of the standard weighted Bergman spaces on a bounded
symmetric domain Ω.

The proof in [22] relied on the homogeneity of Ω under its group of holo-
morphic automorphisms, and made it clear that the invariant geometry of
Ω was, at least for bounded symmetric domains, the right context in which
to view X̃; for this reason, there was also stated a conjecture there to the
effect that, for any k = 1, 2, . . . ,

(7) sup
z∈Ω
‖∇kX̃(z)‖z ≤ ck ‖X‖ ∀X ∈ B(A2(Ω))

with some constants ck, for any bounded domain Ω ⊂ Cn. Here ∇kX̃ stands
for the k-th covariant derivative of X̃, and ‖·‖z for its (tensor) norm at z ∈ Ω
with respect to the Bergman metric (3).

Our first result generalizes the directional derivative estimate proved for
H = A2(Ω) in [19], and also implies the Lipschitz estimates.

Theorem 3.1. ([2, Theorem 2]) For T ∈ B(H) and v ∈ Cn,

(8) |DvT̃ (z)| ≤ 2 ‖T‖ ‖v‖z,

with ‖v‖z as in (4).

In a different direction, Helene Bommier-Hato studied the case of H =
A2(Cn, dµm), the space of all entire functions on Cn square-integrable with
respect to the “power-Gaussian” measures

(9) dµm(z) = e−|z|
m
dV (z)

1The constant 2 appears here instead of
√

2 in [17] due to a different normalization of
the metric (4): the one used in [17] is twice our (4).
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on Cn, with an arbitrary m > 0. It was proved in [13] that X̃ is locally
Lipschitz, more specifically

|X̃(a)− X̃(b)| ≤ C ‖X‖ |a|
m
2
−1|b− a|

for |a| large and b in a small neighbourhood of a. Similarly, in [14] it was
shown that the directional derivatives satisfy

|DvX̃(a)| ≤ C ‖X‖ |a|
m
2
−1 ‖v‖,

implying that X̃ is even globally Lipschitz for m ≤ 2. These results from
[13] are also covered by our Theorem 3.1.

The Lipschitz estimate (5) means, in particular, that X̃ is uniformly con-
tinuous with respect to the Bergman metric; this was applied for Ω = D,
the unit disc, by Suárez [39], and for Ω the unit ball of Cn, n > 1, by Nam,
Zheng and Zhong [36], in the study of Toeplitz algebras. Our Theorem 3.1
may have similar applications for more general domains.

Theorem 3.1 can be stated using the language of norms of first-order
covariant derivatives (viewed as differential forms) with respect to the Rie-
mannian metric (3).

Theorem 3.2. ([2, Theorem 7]) For any T ∈ B(H) and z ∈ Ω,

‖∂T̃ (z)‖z ≤ ‖T‖, ‖∂T̃ (z)‖z ≤ ‖T‖.
Our second result are analogous estimates for the second-order covariant

derivatives.

Theorem 3.3. ([2, Theorem 8]) For T ∈ B(H) and z ∈ Ω,

‖∂∂T̃ (z)‖z ≤
√
S + n2 + n ‖T‖,

where S is the scalar curvature. Similarly for ‖∂∂T̃ (z)‖z.
Theorem 3.4. ([2, Theorem 9]) For T ∈ B(H) and z ∈ Ω,

‖∂∂T̃ (z)‖z = ‖∂∂T̃ (z)‖z ≤ 2
√
n ‖T‖.

Corollary 3.5. ([2, Corolary 10]) For T ∈ B(H) and z ∈ Ω,

‖∇2T̃ (z)‖z ≤ 2
√

2(S + n2 + 5n) ‖T‖.
Furthermore, for n = 1 the result in the last corollary is also sharp,

i.e. the left- hand side is in general unbounded if the right-hand side is.
In particular, as there exist spaces for which the scalar curvature S blows up
at the boundary, the above-mentioned “covariant differentiation conjecture”
(7)in general fails for k ≥ 2.

The proof also implies that

S ≥ −n(n+ 1)

for any metric associated as in (3) to a reproducing kernel Hilbert space
H ⊂ O(Ω). This contrasts with the fact that it is easy to devise Kähler
metrics on Ω whose scalar curvature assumes arbitrarily large negative val-
ues. The inequality (3) must thus be something inherent to metrics coming
from reproducing kernels.
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Finally, we prove the following substitute for the covariant differentiation
conjecture when k ≥ 2.

Theorem 3.6. ([2, Theorem 12]) For any m ≥ 2, there exists a scalar
quantity rm on Ω, given by a polynomial expression involving the contravari-
ant metric tensor gjk, the curvature tensor Rijkl, and the latter’s covariant
derivatives of orders ≤ 2m− 4, such that

‖∇mT̃ (z)‖2z ≤ rm(z) ‖T‖2

for any z ∈ Ω and T ∈ B(H).

Expressions of a similar kind as our rk occur as coefficients of the as-
ymptotic expansion of the heat kernel and related geometric quantities, see
e.g. [23] or [8].
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[4] J. Arazy, M. Englǐs: Qp-spaces on bounded symmetric domains, J. Funct. Spaces
Appl. 6 (2008), 1419–1457.

[5] N. Aronszajn: Theory of reproducing kernels, Trans. Amer. Math. Soc. 68 (1950),
337-404.

[6] S. Axler, P. Bourdon, W. Ramey: Harmonic Function Theory, Springer-Verlag New
York, Inc., 2001.
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