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Předseda oborové rady: Prof. RNDr. Miroslav Englǐs, DrSc.
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1. Introduction

The main aim of this thesis is to solve open problems concerning dy-
namical systems generated by triangular, or skew-product maps of the
square, and by continuous maps of general one-dimensional compact
metric spaces like topological graphs, trees and dendrites. Essential
parts of the thesis are contained in the papers [1], [2], [3] and [4]; we
attach them as supplement.

The results were obtained in 2005 – 2009 at the Mathematical Insti-
tute of the Silesian University in Opava. The research was supported,
in part, by projects MSM4781305904 from the Czech Ministry of Ed-
ucation, and GA201/03/1153, GD201/03/H152 and GA201/06/0318
from the Czech Science Foundation. The support of these institutions
is highly appreciated.

2. Basic Terminology and notation

Throughout this abstract, I = [0, 1] is the unit compact interval,
X a compact metric space with a metric ρ, and C(X) the class of
continuous maps of X into itself. For f ∈ C(X), fn denotes the n-th
iterate of f , and a sequence {fn(x)}∞n=0 the trajectory of a point x ∈ X.

Recall that the set of accumulation points of the trajectory of a
point x ∈ X under f is the ω-limit set of x; it is denoted by ωf (x). If
ωf (x) = M for every x ∈M then M is a minimal set. We denote by ωf

the set of ω-limit points of f . By Fix(f) we mean the set of fixed points
of f , by Per(f) the set of periodic points of f and by Rec(f) the set
of recurrent points of f , i.e. the set of all x ∈ X such that x ∈ ωf (x).
The closure of Rec(f) is called the centre of f and is denoted by C(f).

A set A ⊂ X is (n, ε)-separated if, for any distinct points x1, x2 ∈ A,
there exists i such that 0 ≤ i < n and ρ(f i(x1), f i(x2)) > ε. For
Y ⊂ X, denote by sn(ε, Y, f) the maximum possible number of points
in an (n, ε)-separated subset of Y . The topological entropy of f with
respect to Y and the topological entropy of the map f are defined by

h(f |Y ) = lim
ε→0

lim sup
n→∞

1

n
log sn(ε, Y, f), and h(f) = h(f |X),

respectively. Other terminology is given when needed.
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3. Triangular maps

For a continuous map of the interval there is a long list of prop-
erties equivalent to zero topological entropy. About 40 of them are
applicable to triangular maps (i.e. F ∈ C(I2), F (x, y) = (f(x), gx(y)))
but only few of them are equivalent in this more general setting. In
the eighties, A. N. Sharkovsky proposed the problem of classification
of the triangular maps of the square with respect to such properties.
About 30 conditions were already considered, cf., e.g., [Ko], [BS1],
[BS2], [BSS], [FPS1], [FPS2], [FPS3], [K1], [K2], [K3], [PS1], [PS2],
[S], [SSp] and [SSt]. It turns out that these conditions belong to 17
equivalence classes, numbered 1 – 17; the properties belonging to the
same class of equivalence, are distinguished by letters, like 1a – 1f, or
2a and 2b, etc.

In [1] and [2] we contribute to the solution of this problem by adding
six other properties, 18 – 23. It appears that these conditions are mu-
tually non-equivalent. We exhibit the relations between them and five
other properties, 1a, 4b, 5, 13b and 14, that already have been stud-
ied. In this thesis we show all relations that follow from the previous
results, and we also add a new, still unpublished result, Lemma 3.2.
These results are summarized in Theorem 3.3.

We consider the following 32 properties of f ∈ C(X) belonging to 23
different classes of equivalence (used symbols and notions are explained
later).

(1) (a) h(f) = 0;
(b) h(f |CR(f)) = 0;
(c) h(f |Ω(f)) = 0;
(d) h(f |ω(f)) = 0;
(e) h(f |C(f)) = 0;
(f) h(f |Rec(f)) = 0;

(2) (a) h(f |UR(f)) = 0;
(b) there is no minimal set with positive topological entropy;

(3) h(f |AP(f)) = 0;

(4) (a) h(f |Per(f)) = 0;
(b) the period of any cycle of f is a power of two;
(c) every cycle is simple;

(5) f has no homoclinic trajectory;

(6) f |CR(f) is non-chaotic;
(7) f |Ω(f) is non-chaotic;
(8) f |ω(f) is non-chaotic;

2



(9) f |C(f) is non-chaotic;
(10) f |Rec(f) is non-chaotic;
(11) f |UR(f) is non-chaotic;
(12) UR(f) = Rec(f);

(13) (a) no infinite ω-limit set contains a cycle;
(b) any ω-limit set either is a cycle or contains no cycle;

(14) any ω-limit set contains a unique minimal set;

(15) f is not DC1;
(16) f is not DC2;
(17) f is not DC3;

(18) trajectory of any point can be strongly approximated by
trajectories of closed connected periodic sets;

(19) trajectory of any point can be weakly approximated by
trajectories of closed connected periodic sets;

(20) if ωf (x) = ωf2(x) then ωf (x) is a fixed point;
(21) there is no infinite countable ω-limit set;
(22) trajectories of any two points are correlated;
(23) for any closed invariant set A and any m ∈ N, the map

fm|A cannot be topologically almost conjugate to the shift.

By CR(f), Ω(f), UR(f) and AP(f) we denote the set of chain recur-
rent, non-wandering, uniformly recurrent and almost periodic points of
f , respectively.

Recall that a point x ∈ X is called

• chain recurrent if for any ε > 0 there is a sequence of points
{xi}ni=0 with x0 = x = xn and ρ(xi+1, f(xi)) < ε, for i ∈
{0, . . . , n− 1}.
• non-wandering if for any neighbourhood U of x, there exists
n ∈ N such that fn(U) ∩ U 6= ∅.
• uniformly recurrent if for any neighbourhood U of x, there exists
n ∈ N such that if fm(x) ∈ U where m ≥ 0, then fm+i(x) ∈ U
for some i with 0 < i ≤ n.
• almost periodic if for any neighbourhood U of x, there is an
n ∈ N such that f in(x) ∈ U , for any i ∈ N.

A map f is chaotic (in the sense of Li and Yorke) if there is an
f -chaotic pair, i.e. if there exist x, y ∈ X such that

0 = lim inf
n→∞

ρ(fn(x), fn(y)) < lim sup
n→∞

ρ(fn(x), fn(y)).
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For any pair x, y of points in X and any n ∈ N, define a distribution

function Φ
(n)
xy : (0, diamX]→ I by

Φ(n)
xy (t) =

1

n
{0 ≤ i ≤ n− 1; ρ(f i(x), f i(y)) < t}.

Put

Φxy(t) = lim inf
n→∞

Φ(n)
xy (t), and Φ∗xy(t) = lim sup

n→∞
Φ(n)

xy (t).

If there is a pair x, y of points in X such that

Φ∗xy ≡ 1 and Φxy(t) = 0, for some t > 0, or

Φ∗xy ≡ 1 and Φxy < Φ∗xy, or

Φxy(t) < Φ∗xy(t) for all t in some non degenerate interval,

then we say that f exhibits distributional chaos of type 1-3, briefly
DC1, DC2, DC3, respectively.

Let ε > 0. Trajectory of a point x ∈ X can be strongly ε-approximated
by the trajectory of a setA if there exists i ∈ N0 such that diam(f i(A)) <
ε and

lim
n→∞

ρ(fn(x), fn(A)) = 0

and it can be weakly ε-approximated by the trajectory of a set A if
there exist i, n0 ∈ N0 such that diam(f i(A)) < ε and, for any n ≥ n0,

ρ(fn(x), fn(A)) < ε.

The trajectory of a point x ∈ X can be strongly (resp. weakly) ap-
proximated if it can be strongly (resp. weakly) ε-approximated for any
ε > 0.

Let x ∈ Fix(f), and let xn, n = 1, 2, . . ., be distinct points in X such
that f(xn+1) = xn, for any n, f(x1) = x, and limn→∞ xn = x. Then
{xn}∞n=1 is a homoclinic trajectory related to the point x. A homoclinic
trajectory related to a periodic orbit is defined similarly, cf., e.g., [BC].

Trajectories of the points x, y ∈ X are correlated, if either ωf (x) or
ωf (y) is a fixed point or

ωf×f (x, y) 6= ωf (x)× ωf (y),

where the map f×f : X×X → X×X is given by (x, y) 7→ (f(x), f(y)).
Denote by (Σ, σ) the shift of the space of sequences of two symbols.

Thus, Σ = {0, 1}N, and σ : x1x2 . . . 7→ x2x3 . . .. A map f ∈ C(X) is
topologically almost conjugate to the shift if there exists a continuous
surjective map ψ : X → Σ, such that ψ ◦ f = σ ◦ψ and any point from
Σ has at most two preimages in X.
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We emphasize that these 32 properties are mutually equivalent if f
is a continuous map of the interval, cf., e.g., [BC], [SKSF]. We study
this problem in the class of triangular maps.

The triangular map is a continuous map F : I2 → I2 of the form

F (x, y) = (f(x), gx(y))

where the map f : I → I is called the base of F , and gx : Ix → I maps
the fibre Ix = {x} × I into I. We denote the class of triangular maps
by C∆(I2).

In [1] there are studied the relations between properties 1a, 4b, 5,
13b, 14 and 20 – 23 of triangular maps F ∈ C∆(I2). In [2] are fur-
thermore added properties 18 and 19. The following theorem sumarize
obtained results.

Theorem 3.1. The relations between properties 1a, 4b, 5, 13b, 14 and
18 – 23 of a triangular map F ∈ C∆(I2) are displayed by the following
scheme, see Figure 1. There are no other implications except for these
following by the transitvity.

1a

4b

5

13b

14

18

19

20

21
22

23

?

?

?

?
�

��=
Z
ZZ~

�	 @R �	
?

@R �	

Figure 1

Lemma 3.2. There is a map F ∈ C∆(I2) with the following properties:

(i) F |CR(F ) is non-chaotic;
(ii) there exist two points whose trajectories are not correlated;
(iii) F is not DC3.
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Using the results obtained by other authors it is now possible to find
the position of any of these 32 conditions, for the class of triangular
maps. Properties denoted by the same number, i.e., 1a – 1f, or 2a –
2b, or 4a – 4c, or 13a – 13b are mutually equivalent in C∆(I2). For the
proof, see [BC], [K1] and [K3].

The following theorem summarizes obtained results.

Theorem 3.3. All known relations between the properties 1 − 23 of
triangular maps are displayed below, see Table 1. Relations that have
been already known are labeled by the corresponding reference. Rela-
tions proved in this thesis are indicated by dark grey, relations follow-
ing from them by transitivity by light grey. Empty boxes indicate open
problems; they are also listed in the next Problem.

Problem 3.4. The following relations between the properties of trian-
gular map F ∈ C∆(I2) are not known:

3
?⇒ 2 Does the property h(F |AP(F )) = 0 imply h(F |UR(F )) = 0?

15
?⇒ 3 Does positiveness of topological entropy on the set of almost

periodic points imply DC1?

16, 17
?⇒ 1− 3, 11, 12 and 17

?⇒ 6− 10 Which relations are between:

– positive topological entropy;

– existence of homoclinic trajectory;

– chaos in the sense of Li and Yorke;

– UR(F ) 6= Rec(F )

and distributional chaos of type 2 and 3?

18, 19
?⇒ 2, 3, 11, 15 Does the property that trajectory of any point can
be strongly (resp. weakly) approximated by trajectories of closed
connected periodic sets imply any of the properties:

– h(F |UR(F )) = 0;

– h(F |AP(F )) = 0;

– F |UR(F ) is non-chaotic;

– F is not DC1?
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For better imagination we put the following scheme (see Figure 2)
with all known implications. Missing arrow means that either the par-
ticular implication does not hold (except the implications that follow
by transitivity) or this relation is not known.

1

2

3

4

5

6

7

8 9
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Figure 2
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1 2 3 4 5 6 7 8 9 10 11

1 • def.
⇒

def.
⇒

def.
⇒ ⇒

[K2]
6⇒

[K2]
6⇒

[K2]
6⇒ 6⇒

[K2]
6⇒

[FPS2],[K2]
6⇒

2
[Ko]
6⇒ • def.

⇒
def.
⇒ ⇒ 6⇒ 6⇒ 6⇒ 6⇒ 6⇒ 6⇒

3
[Ko]
6⇒ • def.

⇒ ⇒ 6⇒ 6⇒ 6⇒ 6⇒ 6⇒ 6⇒

4
[Ko]
6⇒ 6⇒

[SSp]
6⇒ • [K1]

⇒ 6⇒ 6⇒ 6⇒ 6⇒
[FPS3]
6⇒ 6⇒

5
[K1]
6⇒ 6⇒ 6⇒

[K1]
6⇒ • 6⇒ 6⇒ 6⇒ 6⇒ 6⇒ 6⇒

6 ⇒ ⇒ ⇒ ⇒ ⇒ • def.
⇒

def.
⇒

def.
⇒

def.
⇒

def.
⇒

7 ⇒ ⇒ ⇒ ⇒ ⇒
[K2]
6⇒ • def.

⇒
def.
⇒

def.
⇒

def.
⇒

8 ⇒ ⇒ ⇒ ⇒ ⇒ 6⇒
[K2]
6⇒ • [K2]

6⇒
def.
⇒

def.
⇒

9 ⇒ ⇒ ⇒ ⇒ ⇒ 6⇒ 6⇒
[K2]
6⇒ • def.

⇒
def.
⇒

10
[BGKM]
⇒ ⇒ ⇒ ⇒ ⇒ 6⇒ 6⇒ 6⇒ 6⇒ • def.

⇒

11
[Ko]
6⇒

[BGKM]
⇒ ⇒ ⇒ ⇒ 6⇒ 6⇒ 6⇒ 6⇒

[FPS2],[K2]
6⇒ •

12
[SSp]
6⇒ 6⇒

[SSp]
6⇒

[K2]
⇒ ⇒ 6⇒ 6⇒ 6⇒

[K2]
6⇒

[FPS3]
6⇒ 6⇒

13
[SSp]
6⇒ 6⇒

[SSp]
6⇒

[FPS3]
6⇒

[BS1]
6⇒ 6⇒ 6⇒ 6⇒ 6⇒ 6⇒ 6⇒

14
[K1]
6⇒ 6⇒

[SSp]
6⇒

[K1]
⇒ ⇒ 6⇒ 6⇒ 6⇒ 6⇒

[K2]
6⇒

[FPS2],[K2]
6⇒

15
[SSt]
6⇒

[PS1]
6⇒

[PS2]
⇒

[PS2]
⇒ 6⇒ 6⇒ 6⇒ 6⇒ 6⇒

[PS1]
6⇒

16 ⇒ ⇒ 6⇒ 6⇒ 6⇒ 6⇒
[PS1]
6⇒

17 ⇒ ⇒

18
[2]
6⇒ ⇒ ⇒ 6⇒ 6⇒ 6⇒ 6⇒ 6⇒

19 6⇒ ⇒ ⇒ 6⇒ 6⇒ 6⇒ 6⇒ 6⇒

20 6⇒ 6⇒ 6⇒ 6⇒ 6⇒ 6⇒ 6⇒ 6⇒ 6⇒ 6⇒ 6⇒

21 6⇒ 6⇒ 6⇒ 6⇒ 6⇒ 6⇒ 6⇒ 6⇒ 6⇒ 6⇒ 6⇒

22 6⇒ 6⇒ 6⇒ 6⇒ 6⇒ 6⇒ 6⇒ 6⇒ 6⇒ 6⇒ 6⇒

23 6⇒ 6⇒ 6⇒ 6⇒ 6⇒ 6⇒ 6⇒ 6⇒ 6⇒ 6⇒ 6⇒

Table 1. - Part 1
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12 13 14 15 16 17 18 19 20 21 22 23

1
[FPS1]
6⇒

[K1]
6⇒

[K1],[Ko]
6⇒

[FPS2]
6⇒ 6⇒ 6⇒ 6⇒ 6⇒

[1]
6⇒ ⇒

[1]
6⇒ ⇒

2
[Ko]
6⇒ 6⇒ 6⇒ 6⇒ 6⇒ 6⇒ 6⇒ 6⇒ 6⇒ ⇒ 6⇒ ⇒

3
[Ko]
6⇒ 6⇒ 6⇒ 6⇒ 6⇒ 6⇒ 6⇒ 6⇒ 6⇒ ⇒ 6⇒ ⇒

4 6⇒ 6⇒
[FPS2]
6⇒ 6⇒

[SSt]
6⇒ 6⇒ 6⇒ 6⇒ 6⇒

[1]
⇒ 6⇒ ⇒

5 6⇒ 6⇒ 6⇒ 6⇒ 6⇒ 6⇒ 6⇒ 6⇒ 6⇒
[1]
6⇒ 6⇒

[1]
⇒

6 ⇒
[K2]
6⇒

[K2]
6⇒

[K3]
6⇒ 6⇒

[BSS]
6⇒ 6⇒ 6⇒ 6⇒ ⇒

3.2
6⇒ ⇒

7 ⇒ 6⇒ 6⇒ 6⇒ 6⇒
[BSS]
6⇒ 6⇒ 6⇒ 6⇒ ⇒ 6⇒ ⇒

8 ⇒ 6⇒ 6⇒ 6⇒ 6⇒
[BSS]
6⇒ 6⇒ 6⇒ 6⇒ ⇒ 6⇒ ⇒

9 ⇒ 6⇒ 6⇒ 6⇒ 6⇒
[BSS]
6⇒ 6⇒ 6⇒ 6⇒ ⇒ 6⇒ ⇒

10
[K3]
⇒ 6⇒ 6⇒ 6⇒ 6⇒

[BSS]
6⇒ 6⇒ 6⇒ 6⇒ ⇒ 6⇒ ⇒

11
[Ko]
6⇒ 6⇒

[FPS2],[K2]
6⇒ 6⇒ 6⇒

[BSS]
6⇒ 6⇒ 6⇒ 6⇒ ⇒ 6⇒ ⇒

12 • [K2]
6⇒

[K2]
6⇒

[K3]
6⇒ 6⇒ 6⇒ 6⇒ 6⇒ 6⇒ ⇒ 6⇒ ⇒

13
[FPS2],[K2]
6⇒ • [Ko],[K1]

6⇒ 6⇒ 6⇒ 6⇒ 6⇒ 6⇒ 6⇒
[1]
⇒

[1]
6⇒ ⇒

14
[K2]
6⇒

[K1]
⇒ • [BS2]

6⇒ 6⇒ 6⇒ 6⇒
[2]
6⇒

[1]
⇒ ⇒ ⇒ ⇒

15
[SSt],[Ko]
6⇒ 6⇒ 6⇒ • [SSt]

6⇒ 6⇒ 6⇒ 6⇒ 6⇒ ⇒ 6⇒ ⇒

16 6⇒ 6⇒
def.
⇒ • [PS1]

6⇒ 6⇒ 6⇒ 6⇒ ⇒ 6⇒ ⇒

17
[PS1]
6⇒

[PS1]
6⇒

def.
⇒

def.
⇒ • 6⇒ 6⇒ 6⇒ ⇒

3.2
6⇒ ⇒

18
[Ko],[2]
6⇒ ⇒ ⇒

[SSt],[2]
6⇒ 6⇒ • def.

⇒ ⇒ ⇒ ⇒ ⇒

19 6⇒ ⇒
[2]
⇒ 6⇒ 6⇒

[2]
6⇒ • ⇒ ⇒ ⇒ ⇒

20 6⇒ 6⇒ 6⇒ 6⇒ 6⇒ 6⇒ 6⇒ 6⇒ • 6⇒
[1]
⇒

[1]
6⇒

21 6⇒ 6⇒ 6⇒ 6⇒ 6⇒ 6⇒ 6⇒ 6⇒ 6⇒ • 6⇒
[1]
⇒

22 6⇒
[1]
6⇒ 6⇒ 6⇒ 6⇒ 6⇒ 6⇒ 6⇒

[1]
6⇒ 6⇒ • 6⇒

23 6⇒ 6⇒ 6⇒ 6⇒ 6⇒ 6⇒ 6⇒ 6⇒ 6⇒ 6⇒ 6⇒ •

Table 1. - Part 2
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4. Trees, graphs and dendrites

In this section we generalize some notions and results from the the-
ory of discrete dynamical systems on the unit interval to the case of
trees, graphs and dendrites.

Let arc be any topological space homeomorphic to the compact unit
interval. A graph is a continuum (a nonempty compact connected met-
ric space) which can be written as a union of finitely many arcs any
two of which can intersect only in their endpoints. Let S = R/Z be
the circle. A tree is a graph containing no subset homeomorphic to
the circle. A dendrite is a locally connected continuum containing no
subset homeomorphic to the circle.

In [3], we study the properties of ω-limit sets, recurrent points and
centre in these various cases of continuums.

It is known that, for compact interval I the set of all ω-limit points
of f is closed, and contains the centre of f (cf. [Sh3], [BC]). In [Bl1],
and recently in [MSu], it is proved that it holds also for any graph. The
first main result in [3] shows that it is not true in the case of dendrites.

Theorem 4.1. There is a continuous self-map f of a dendrite such
that ωf is not closed, and it is a proper subset of C(f).

Another known fact concerning ω-limit sets is the following. By
[Sh2], if (ωk)∞k=1 is a sequence of ω-limit sets of a continuous interval
map f such that ωk ⊂ ωk+1, for every k ∈ N, then the closure of their
union is also an ω-limit set of f . This fact can be obtained also as
a consequence of a more general result proved in [BBHS]. Moreover,
it holds also for graphs. By [MSh], the set of all ω-limit sets of a
continuous graph map endowed with the Hausdorff metric is compact.
Therefore, since an increasing (with respect to inclusion) sequence of
ω-limit sets of a graph map f converges (with respect to the Hausdorff
metric) to the closure of their union, the closure is also an ω-limit set
of f . Again, this is not true for dendrites. In [3], we find an example
of a continuous map of dendrite having strictly increasing sequence of
ω-limit sets which is not contained in any maximal one. Consequently,
the space of ω-limit sets of a continuous dendrite map endowed with
the Hausdorff metric need not to be compact.

Theorem 4.2. There is a sequence of ω-limit sets (ωk)∞k=1 of a con-
tinuous self-map f of a dendrite such that ωk ⊂ ωk+1, for every k ∈ N,
but there is no ω-limit set of f containing every ωk.

10



It is also known that the positiveness of topological entropy, the ex-
istence of a horseshoe and the existence of a homoclinic trajectory are
mutually equivalent, for interval maps (cf., e.g., [ALM], [BC], [SKSF]).
The aim of [4] is to investigate the relations between these properties
for continuous maps of trees, graphs and dendrites. We consider three
different definitions of a horseshoe and two different definitions of a
homoclinic trajectory.

Suppose that there are disjoint compact sets A,B ⊂ X such that

(1) f(A) ∩ f(B) ⊃ A ∪B.

Then usually one says that f has a horseshoe or that A,B form a
horseshoe for f . We call it a strict general horseshoe.

When X is a compact interval I, it is often said that f has a horse-
shoe if there are closed subintervals A,B (as the only possible kind of
connected subcontinua) with disjoint interiors satisfying (1).

Generalizing this definition of a horseshoe for graphs and dendrites,
we get the following three definitions.

Let X be a tree, a graph or a dendrite. Suppose that there are
subsets A,B satisfying (1). If, moreover, A,B are

• arcs which are either disjoint or intersect only in their endpoints,
then we say that A,B form an arc horseshoe for f .
• subcontinua which are either disjoint or intersect only in their

endpoints, then we say that A,B form an endpoint intersection
horseshoe for f .
• subcontinua which are either disjoint or intersect only in finitely

many points, then we say that A,B form a finite intersection
horseshoe for f .

It is clear that every arc horseshoe is an endpoint intersection horse-
shoe, and every endpoint intersection horseshoe is a finite intersection
horseshoe.

Since any graph consists of finitely many arcs, sets A,B in the defi-
nitions of an arc horseshoe, a finite intersection horseshoe, an endpoint
intersection horseshoe can intersect in finitely many points each one of
finite order. Thus, always an iteration can be found for which there
exists a strict general horseshoe. Together with results from [LM] we
get that these three types of horseshoes are equivalent for graph maps.
Thus, in this case we will call all these three notions just a horseshoe.

11



Finally, we define a homoclinic trajectory. For a diffeomorphism of a
smooth manifold, a homoclinic point is defined to be a point which is in
both the stable manifold and the unstable manifold of some hyperbolic
periodic point.

For interval maps, one says that a point x is homoclinic (in the sense
of Poincaré) if there is a periodic point p, not containing x in its orbit
but in its unstable manifold and such that p ∈ ωf (x). For example, L.
Block in [B] defines a homoclinic point in the following more restrictive
way. A point x is homoclinic if there is a periodic point p with period k,
x 6= p, x belongs to the unstable manifold of p under fk, and fnk(x) = p
for some n.

We decided to adopt the following definition for continuous maps
of compact metric spaces. Let α = {p1, p2, . . . , pk} be a k-cycle, and
(xn)∞n=−∞ be a sequence such that x0 /∈ α and f(xn) = xn+1. If for
every j ∈ {1, 2, . . . , k}, limn→−∞ xnk+j = limn→∞ xnk+j = pj then we
say that (xn)∞n=−∞ is a homoclinic trajectory of f related to the cycle α
(or to the fixed point p if α = {p}). If moreover f(x1) = p1, then we
call this trajectory an eventually periodic homoclinic trajectory.

The first main result in [4] shows the relations between the positive-
ness of topological entropy, the existence a horseshoe and the existence
of a homoclinic trajectory one of two mentioned kinds in the case of
trees and graphs.

Theorem 4.3. Let f be a continuous map of a graph. The following
two properties are equivalent:

(1) h(f) > 0;
(2) there is an n such that fn has a horseshoe.

Each of them implies that

(3) f has an eventually periodic homoclinic trajectory;

which implies that

(4) f has a homoclinic trajectory.

There is no other implication between these four properties (except the
implications that follow by transitivity).

If the graph is a tree then all these properties are mutually equivalent.

The situation is far more interested in the case of dendrites.

Theorem 4.4. Let f be a continuous map of a dendrite. The relations
between the properties

(1) h(f) > 0;
12



(2) there is an iteration of f which has an arc horseshoe;
(3) there is an iteration of f which has an endpoint intersection

horseshoe;
(4) there is an iteration of f which has a finite intersection horse-

shoe;
(5) f has an eventually periodic homoclinic trajectory;
(6) f has a homoclinic trajectory;

are described by the following scheme (see Figure 3,) where every arrow
means the implication, arrows with question mark mean open problems,
a missing arrow means that the implication does not hold except the
implications that follow by transitivity.
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Figure 3

As follows from Theorem 4.4 there are still open problems concerning
the relations between the properties under consideration.

Problem 4.5. Does the existence of an endpoint intersection horseshoe
for a dendrite map f imply the existence of a homoclinic trajectory of f
(or even an eventually periodic homoclinic trajectory)?
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[SSt] J. Smı́tal, M. Štefánková, Distributional chaos for triangular maps,
Chaos Solitons Fractals 21 (2004), no. 5, 1125 – 1128.
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