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červen 2010

Geometrie a globálnı́ analýza
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Rybnı́čku 1, Opava.
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1. INTRODUCTION

The main goal of this work is to explore Paschke’s scalar quantum mechanics (SQM)
adequately, in a broad context. In accordance with this goal, the thesis is divided into an
introductory motivation part, where the motivations leading to SQM are studied, the main
part dealing thoroughly with the central notion of SQM and a final part dealing with a
possible extension and an application of the ideas of SQM.

The exposition in Chapter 1 is based on the author’s talk [A7] dealing with Bohr formu-
lation of quantum mechanics and paper [A2], which is a shortened version of the author’s
talk [A13], dealing with Feynman’s proof. In Chapter 2, we describe language of spectral
geometry which is employed in the formulation of SQM.

In Chapter 3, we discuss the necessity of the axioms of SQM and clearly demonstrate
their geometric and/or physical meaning. We show that reasonable nonrelativistic quantum
mechanics is exactly specified by the axioms given by Paschke. We also treat some non-
trivial systems showing the range of applicability of the studied framework. Next, a system
describing the electric Aharonov–Bohm effect is presented. It illustrates the topological
obstructions for the existence of a Hamiltonian.

The text of Chapter 3 forms the core of the work. It has been published in Journal of
Mathematical Physics, see [A3]. A slightly modified and shortened report will appear in
[A5]. A preliminary version of the paper was presented at the Workshop on Noncommu-
tative Manifolds in ICTP Trieste [A8] and the 9th International Conference on Squeezed
States and Uncertainty Relations Besançon [A10]. Abstract of the latter presentation was
published in [A1].

In Chapter 4 we first give a historical account of Dirac’s relativistic theory of electron.
In this part an extended version of the author’s paper [A6] is included. Then we turn to
the discussion of soldering structures (in a certain context called Infeld–van der Waerden
symbols). We show that a complex structure on phase space provides a soldering form for
internal degrees of freedom. The exposition will appear in Electronic Journal of Theoretical
Physics, [A4]. This is a joint work with T. Kopf and A. Lampartová.

2. MOTIVATIONS

First, we recall the ‘orthodox’ formulation of quantum mechanics, which have won
recognition through the interpretation of Bohr’s Copenhagen school. However, it suffers
from some technical difficulties which are only rarely mentioned in elementary physics
literature. Therefore, we draw a comparison to the algebraic formulation of geometric con-
siderations by Paschke.

Next, we recall Feynman’s proof of the Maxwell equations, which came to being in
1948 thanks to Feynman’s doubts over dogmas of quantum mechanics. After a short review
of Feynman’s proof in the version reported by F. Dyson in 1990 we study the impact of
Feynman’s proof in the new paradigm of 1990s, i.e. we study a heritage of Feynman’s
proof. We put Paschke’s definiton of SQM into the context of generalizations of Feynman’s
proof.

Then, we describe language of spectral geometry which is employed in the formulation
of SQM. In spectral geometry, the space is usually described by the notion of spectral triple
(D,A,H). It consists of a distinguished unbounded self-adjoint operator D (e.g., Dirac or
Laplace operator, depending on situation) and an algebra A, both (faithfully) represented
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on a Hilbert space H. Although we are going to modify some attributes of the spectral
triples, we recall the features which we build upon.

3. SCALAR QUANTUM MECHANICS

We study an attempt to construct quantum theory with minimal assumptions by
M. Paschke [32]. He calls it scalar quantum mechanics and he uses purely algebraic defini-
tions of geometric concepts to define quantum mechanics (for one non-relativistic particle)
over an arbitrary manifold Q. More recently, the notion of SQM was discussed in [25] and
[33].

It is captured by the algebra A = C∞0 (Q) of smooth real-valued functions on Q van-
ishing at infinity, where Q is a smooth orientable configuration manifold. The observables
are constructed from a representation of the algebra on the Hilbert space H = L2(Q, E),
i.e. the space of square integrable sections of the complex line bundle π : E → Q.

Definition 1. Let A = C∞0 (Q). The system {At | t ∈ R} of unitary representations of the
algebra A is called scalar quantum mechanics over Q if the following conditions hold:

(a) LOCALIZABILITY: Representations of the operators at ∈ At are isomorphic to the
representations of the functions f ∈ C∞0 (Q) on the Hilbert space H = L2(Q, E).

(b) SCALARITY: The commutant of At, i.e. the set of the operators that commute with
all at ∈ At, contains merely (complex) functions on Q and complex multiples of
the identity operator. Thus, ∀t ∈ R,

A′t = (At)C + C1l,

where (At)C denotes the complexification of At and is ( · ) is the closure in the
weak topology.

(c) SMOOTHNESS: The time evolution is smooth with respect to the strong topology
and the following holds

i[At, Ȧt] ⊂ At, ∀t ∈ R.
(d) POSITIVITY: For every self-adjoint operator at, the inequality

−i[at, ȧt] ≥ 0

holds.
(e) NONTRIVIALITY: If there exists an operator at such that [at, ȧt] = 0, then ȧt = 0.

Paschke shows that his axioms are sufficient to prove the existence of a Hamiltonian
with desired properties [32]:

Theorem 2. Under the assumptions (a)–(e), there exists for all t ∈ R a unique Riemannian
metric gt given by

(1) gt(dat, dbt) = −i[at, ḃt],

a unique covariant derivative ∇(At, gt) on the complex line bundle π : E → Q and a
closed one-form φ = ϕ1 dϕ2 such that for all bt ∈ At the following holds:

(2) ḃt = −i[bt,∆(At, gt)],

(3) b̈t = −i[ḃt,∆(At, gt)]− i[bt, ∂∆(At, gt)/∂t]− iϕ1[ϕ2, ḃt],

where

∆(At, gt) =
1
2

dimQ∑
i,j=1

gij
t (−i ∂

∂qi
− (At)i) · (−i

∂

∂qj
− (At)j)
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is the covariant Laplacian in local coordinates qi on Q. If φ = dϕt is exact, then there
exists a Hamiltonian which is of the form

(4) H(t) = ∆(At, gt) + ϕt.

To see more clearly the possibilities and limitations of SQM we study two dynamical
systems on the circle (Q = S1), a simple example of a configuration space with nontrivial
topology, i.e. not diffeomorphic to Rn for some n. First, a free particle on the circle is
discussed. The dynamics can be defined by a time evolution operator

U(t) = e−im2t.

Next we describe a particle on an expanding circle with the dynamics defined by

U(t) = e−im2G(t),

where G is an arbitrary increasing function of time. In this system the Hamiltonian turns
up to be time-dependent.

We also study the dynamics of a free particle on S2. However, SQM on S2 can be
easily rephrased in the language of harmonic analysis on compact Lie groups and their
homogeneous spaces.

Next, the necessity of axioms (a)–(e) is elucidated. We justify each axiom as indispens-
able and present its physical and/or geometric meaning. We consider SQM stepwise with
just one of them violated and in all four cases we find a significant property of the quantum
world which fails to hold.

The LOCALIZABILITY AXIOM sets up the framework of smooth manifolds,C∗-algebras
and their representations on Hilbert spaces. We work mainly on one-dimensional manifolds
S1 and R.

THE SCALARITY AXIOM implies Newton’s law. We choose a “larger” Hilbert space,
where an operator exists that commutes with all at ∈ At, but that does not fall into At.
Thus, we suppose that

(5) A′t ) At.

The dynamics is defined with the help of the time evolution operator

U(1)(t) = e−im2t ⊗ e−ifj(t)σj ,

where f j are arbitrary functions and the summation convention on index j has been used.
We interpret Newton’s law as a rule assuring that the second time derivative of any

operator b is fully determined by b and ḃ. For a choice b = qi, with a local coordinate qi,
the interpretation is particularly apparent. In this sense, equation (3) can be considered as
Newton’s law.

An operator that illustrates the effects of the condition (5) is of the form b(1) = bt ⊗ σi,
where σi (i = 1, 2, 3) denotes Pauli matrices.

THE SMOOTHNESS AXIOM restricts order of the Hamiltonian. It is also called the
second-order condition, because it guarantees that the Hamiltonian is of second-order at
the most. Indeed, a violation of this axiom could admit too wild time evolutions of the
systems, e.g., such that are governed by a higher-order Hamiltonian. Whether this is in-
deed the case, hinges upon to what degree such examples are ruled out by one of the other
axioms, positivity. The impact of the positivity axiom is highly nontrivial (for results on
the positivity of commutators see [23, 22, 15]). We in fact show that it cannot be satisfied,
e.g. by any differential operator of order higher than 2.
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The smoothness axiom also specifies the form of the canonical commutation relations.

The axioms of positivity and nontriviality are closely connected. They determine positi-
ve definiteness of the metric and proper boundedness of the spectrum of the corresponding
Hamiltonian. They are discussed first separately but also violated concurrently to produce
an example exhibiting an indefinite metric, which is interesting on its own right.

The positivity axiom ensures positive definite metric. However, by a proper choice of
time direction one can always achieve positivity. The nontriviality condition guarantees
that the Hamiltonian is at least of second order. Its violation means that there exists a local
coordinate qt ∈ At such that

[qt, q̇t] = 0 with q̇t 6= 0.

Therefore, this would describe an unquantized directions on Q. Finally, violating both
positivity and nontriviality allows indefinite metrics. The resulting Hamiltonian possesses
a spectrum with neither a lower nor an upper bound.

Topological aspects of SQM on multiply connected configuration spaces are illustrated
on a system inspired by one of the most famous experiments showing topological effects
in quantum theory, namely the Aharonov–Bohm effect in its electric form, cf. analysis by
W. Moreau and D.K. Ross in [30]. Thus, the results have clear physical background and
consequences.

On the configuration manifold Q = S1 we take the algebra of observables A =
C∞(S1), its representation on the Hilbert space H = L2(S1, S1 × C) and set up the
time evolution so as to violate the existence of a Hamiltonian with a potential in At. It
reads:

U(t) =
∑
m∈Z

eiEmt |m〉〈m| .

The states of the system with respect to the coordinate basis are of the form

(6) ψm(ϕ) = C1Ai(ϕ− Em) + C2Bi(ϕ− Em),

where Ai and Bi are Airy functions, see, e.g., [1, 43].
The Hamiltonian is then of the form Ĥ = P 2 +X, where X is the local potential of a

constant one-form.
We can construct the covariant Laplacian ∆ = −d2

ϕ, but we do not succeed in the
constructing of H , as a global non-zero one-form φ = dϕt cannot have a global potential.
Indeed, as ϕt 6∈ At, the one-form φ is not exact and the assumptions of the theorem 2 are
not completely met. Hence, no Hamiltonian with the required properties exists.

4. SPINOSE PATHWAY TO GLORY: DIRAC’S ELECTRON THEORY 1928–1933

We open the last Chapter by a historical discussion of Dirac’s electron theory, which
is considered to be one of the highlights of inter-war mathematical physics. However, the
historical depiction of its genesis is often distorted by taking a starry-eyed point of view of
much later recollections. The idealized picture of Dirac’s heroic achievements are closely
inspected and history of problems with negative energies and its interpretation by hole
theory is put straight. We do not want to dispraise the value of Dirac’s achievements, we
just show how spinose his pathway to glory was.

It is clear from sources that Dirac had to struggle for his relativistic theory of electron.
For nearly two years he has not succeeded in finding a solution to the problem of negative
energies. Even after he had proposed the hole theory, he had to modify it because of severe
critique. The utmost problems were clarified at the turn of 1932–1933 and Dirac won the
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Nobel Prize. However, his theory has won recognition of one of the highlights of inter-war
mathematical physics only later.

5. SPIN AND SOLDERING STRUCTURES IN RELATIVISTIC QM

The vacuum of free quantum field theory is determined by a complex structure J on the
one-particle complex Hilbert space H, the classical phase space. It is shown here that such
a structure can supply a represented algebra A with a soldering form that relates internal
degrees of freedom, i.e., the eigenspaces of A in H with geometric structure. In this way,
the standard soldering form of spin geometry can be recovered.

A case of particular interest is the torus since its spin structure was recently discussed
not only in the classical but also in the noncommutative case [34] in the setting of A.
Connes’ axioms [7] for spectral geometry. Connes’ axioms provide automatically for a
spin structure and capture well much of the essentials of geometry. The here presented
approach is not intended to achieve the same degree of completeness but rather to provide
an alternative, physically motivated point of view on structures that may be eventually
obtained otherwise.

The example illustrating the chosen approach in this work is the discretized torus
T(n1,n2). The invariant vacua given by invariant complex structures are discussed. They
are described by a complex structure on H, i.e., a linear map J : H → H satisfying:
J2 = −1.

A sensible restriction of the freedom in J is to require the fulfillment of the following
conditions:

(1) Invariance of the vacuum. J is invariant under the action of the group G.
(2) Charge conjugation. There is an invariant anti-linear isomorphism between the

eigenspaces of J .
(3) Zeroth order condition. J is a zeroth order pseudo-differential operator. It means

that there is a finite limit to the symbol of the operator J in any direction in Fourier
space at infinity.

The high-frequency behavior of J is determinedand the soldering form an we get the
soldering form directly from the high-energy limit of the positive energy projection in
direction ni = ki

|~k|
of momentum space,

(7) lim
|~k|→∞

P+ =
1
2

(
1− ~6nγ0

)
.

Corresponding facts on continuous tori are mentioned throughout for comparison. The
significance of the presented approach is also discussed.

Given the physical motivation of the taken approach, it is interesting to compare the re-
sults with the situation of an ordinary spin structure, understood as the phase space (space
of initial conditions) of a Dirac field on a corresponding 2 + 1-dimensional flat spacetime.
Such a comparison justifies the interpretation of the high energy limit of the complex struc-
ture as the soldering form. This is worked out in the Appendix, after a short review of basic
facts on spin structures over low-dimensional Minkowski space.

6. PUBLICATIONS CONCERNING THE THESIS

[A1] J. Kotůlek, Scalar quantum mechanics in (counter)examples, in: Book of ab-
stracts of the 9th Int. Conf. on Squeezed States and Uncertainty Relations,
Besançon (France), May 2–6, 2005, (CNRS & SFMC, Besançon, 2005) 190.
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[A2] J. Kotůlek, Feynmanův důkaz Maxwellových rovnic, in: M. Bečvářová (ed.),
Sbornı́k 28. mezinárodnı́ konference Historie matematiky, Jevı́čko 24.–28. 8.
2007 (Matfyzpress, Praha, 2007), 61–63.

[A3] J. Kotůlek, Nontrivial systems and the necessity of the scalar quantum mechan-
ics axioms, J. Math. Phys. 50 (2009), 062101, 1–14. DOI:10.1063/1.3133887

[A4] T. Kopf, J. Kotůlek, and A. Lampartová, Positive energy projectors and spinors,
Electron. J. Theor. Phys. 7 (2010)(24), to appear.

[A5] J. Kotůlek, Exploring the Scalar Quantum Mechanics: nontrivial systems, topo-
logical aspects and the necessity of the axioms, in: Annual Proceedings of Sci-
ence and Technology at VŠB-TU Ostrava, Vol. IV (2010), to appear.

[A6] J. Kotůlek, Problémy Diracovy rovnice 1928–1933, in: Sbornı́k 31. mezinárodnı́
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Praha, 2010), to appear.
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Besançon, France, May 2–6, 2005. Poster: Scalar quantum mechanics in
(counter)examples.

[A12] Seminar on Mathematical Analysis, Opava, 29. 3. 2006. Talk: “Spinory na
sféře”.
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