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1. Introduction

The thesis is based on two papers [Ko1], [Ko2]. The common subject
is the theory of discrete dynamical systems generated by triangular
maps of the unit square into itself.

All parts give relations between properties of triangular maps of the
square (we include also some known results). These properties are
mutually equivalent in the case of continuous maps of a compact in-
terval into itself. We look for equivalent ones with the property “the
map has zero topological entropy”. The problem was originally formu-
lated by Sharkovsky in 1989. The first part (Section 3) of the thesis
studies the properties of a special case of triangular maps that are non-
decreasing on the fibres. The second part (Section 4) provides relations
between some properties of triangular maps of the square. The third
part (Section 5) studies relations between thirteen properties of trian-
gular maps that are mutually equivalent whenever the fibre maps are
non-decreasing. Even in this case there are some open problems.

2. Basic terminology and notation

Throughout this abstract, I = [0, 1] is the unit compact interval,
I2 the unit square, and X a compact metric space with a metric ρ.
Let C(X, X) be the set of continuous mappings of X into itself, N the
set of positive integers, and N0 the set of non-negative integers. For
ϕ ∈ C(X, X), let ϕn(x) denote the n-th iterate of ϕ at x, for n ∈ N

and x ∈ X. The set of cluster points of the sequence (ϕn(x))n∈N is the
ω-limit set ωϕ(x) of x. Let π : I2 → I be the projection (x, y) �→ x.

Let f : I → I, and gx : {x}× I → I, for x ∈ I. A map F ∈ C(I2, I2)
such that F (x, y) = (f(x), gx(y)), for any x, y in I, is a triangular
map, f is the base of F , and the set Ix := {x} × I is the layer over x.
Throughout the paper, F always denotes a triangular map, and f its
base.

We proceed by the list of properties of continuous maps of a compact
metric space into itself; the symbols used in them are explained below.

(P1) h(ϕ) = 0
(P2) h(ϕ| CR(ϕ)) = 0
(P3) h(ϕ| Ω(ϕ)) = 0
(P4) h(ϕ| ω(ϕ)) = 0
(P5) h(ϕ| C(ϕ)) = 0
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lic, grant No. 201/97/001, and No. 201/00/0859, and by the Czech Ministry of
Education, project MSM 192400002. Support of these institutions is gratefully
acknowledged.
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(P6) h(ϕ| Rec(ϕ)) = 0
(P7) h(ϕ| UR(ϕ)) = 0
(P8) h(ϕ| AP(ϕ)) = 0
(P9) h(ϕ| APB(ϕ)) = 0
(P10) h(ϕ| Per(ϕ)) = 0
(P11) Every cycle is simple
(P12) Period of any cycle is a power of 2
(P13) There is no minimal set with positive topological entropy
(P14) ϕ has no homoclinic trajectory
(P15) ϕ| CR(ϕ) is non-chaotic
(P16) ϕ| Ω(ϕ) is non-chaotic
(P17) ϕ| ω(ϕ) is non-chaotic
(P18) ϕ| C(ϕ) is non-chaotic
(P19) ϕ| Rec(ϕ) is non-chaotic
(P20) ϕ| UR(ϕ) is non-chaotic
(P21) UR(ϕ) = Rec(ϕ)
(P22) Every ω-limit set contains a unique minimal set
(P23) No infinite ω-limit set contains a cycle
(P24) Every ω-limit set either is a cycle or contains no cycle

In the sequel, CR(ϕ) denotes the set of chain recurrent points of
ϕ. Thus, x ∈ CR(ϕ) if, for any ε > 0, there is a sequence of points
(xi)

n
i=0 with x0 = x and xn = x such that ρ(xi+1, ϕ(xi)) < ε, for

i = 0, 1, 2, . . . , n − 1. Ω(ϕ) is the set of non-wandering points of ϕ,
i.e., x ∈ Ω(ϕ) if, for any neighbourhood U of x, there is an n ∈ N

with ϕn(U) ∩ U �= ∅. By ω(ϕ) we denote the set of ω-limit points
of ϕ, and by Rec(ϕ) the set of recurrent points of ϕ, i.e., the set of
x ∈ X such that x ∈ ωϕ(x), while C(ϕ) = cl(Rec(ϕ)) is the centre of ϕ.
UR(ϕ) denotes the set of uniformly recurrent points of ϕ, i.e., the set of
x ∈ X such that for any neighbourhood U of x, there is an n ∈ N such
that if ϕm(x) ∈ U , where m ≥ 0, then ϕm+k(x) ∈ U for some k with
0 < k ≤ n. By AP(ϕ) we denote the set of almost periodic points of ϕ,
i.e., the set of x ∈ X such that for any neighbourhood U of x, there is
an n ∈ N such that ϕin(x) ∈ U , for any i. APB(ϕ) represents the set
of almost periodic points of ϕ in the sense of Bohr; thus x ∈ APB(ϕ)
if for any neighbourhood U of x, there is a k ∈ N such that for any i
there is a j with i < j ≤ i + k and ϕj(x) ∈ U . Per(ϕ) is the set of
periodic points of ϕ.

Denote by hρ(ϕ|M) the topological entropy of the map ϕ with respect
to the compact subset M and by hρ(ϕ) the topological entropy of the
map ϕ. If no confusion can arise we write h instead of hρ.
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Let ϕ ∈ C(I, I) and let α = {x1, x2, . . . , x2n} ⊂ I, where n ∈ N0, be
a cycle of ϕ with period 2n such that x1 < x2 < . . . < x2n . Then α is
a simple cycle of ϕ, if either n = 0 (and α = {x} is a fixed point), or
n > 0 and the sets {x1, x2, . . . , x2n−1}, {x2n−1+1, . . . , x2n} are invariant
sets with respect to ϕ2, and each of them is a simple cycle of ϕ2.

Let α be a cycle of a triangular map F with period 2k, k ∈ N0, such
that π(α) is a simple cycle of the base f with period 2n = m, for some
n ≤ k. Then α is a simple cycle of F if, for every x ∈ π(α) and every
z ∈ α∩Ix, {F im(z)| i = 1, 2, . . . , 2k−n} ⊂ Ix is a simple cycle of Fm| Ix

(which is a one-dimensional map Ix → Ix).
A subset M of X is a minimal set if M = ωϕ(x), for any x ∈M .
Let x ∈ X be a fixed point of ϕ. A sequence (xn)∞n=1 of distinct

points in X such that ϕ(xn+1) = xn, for every n ∈ N, ϕ(x1) = x, and
limn→∞ xn = x, is a homoclinic trajectory related to the point x. A
sequence (yn)∞n=1 of distinct points in X such that ϕ(yn+1) = yn, for
every n ∈ N, ϕ(y1) = yk, for some k ∈ N (i.e., {y1, . . . , yk} is a cycle
of period k), and limn→∞ ykn+i = yi for i = 1, 2, . . . , k, is a homoclinic
trajectory related to the cycle {y1, . . . , yk}.

A map ϕ is chaotic (in the sense of Li and Yorke) if there is a ϕ-
chaotic pair {x, y} ⊂ X, i.e., points x, y ∈ X such that

0 = lim inf
n→∞

ρ (ϕn (x) , ϕn (y)) < lim sup
n→∞

ρ (ϕn (x) , ϕn (y)) .

For more terminology see standard books like [BC] or [SKSF].

3. Triangular maps non-decreasing on the fibres

In the case of general triangular maps of the square there are many
open problems. We consider the special maps which are non-decreasing
on the fibres, and try to find relations between (P1)–(P24) in this
different situation. The known relations between the properties in this
case can be given by the following theorem.

Theorem A. Consider properties (P1)–(P24) of triangular maps non-
decreasing on the fibres listed in Section 2. The relations between them
are displayed by the graph on Figure 1 where a missing arrow means
that there is no implication, except for implications that follow by tran-
sitivity. Mutually equivalent properties are situated in one circle. The
two open problems are indicated by arrows with query.

Even in this special case there are two open problems. We conjecture
that there is a triangular map F non-decreasing on the fibres such that
UR(F ) = Rec(F ) and F | Rec(F ) is chaotic, and hence, that the two
implications (P21) ⇒ (P19) and (P21) ⇒ (P20) are invalid.
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4. General triangular maps

The properties (P1), (P10), (P11), (P12), (P14), (P22), (P23), and
(P24) are studied in this section. The known results concerning these
properties which has been published in [Ko1] can be summarized in the
following theorem.

Theorem B. Consider properties (P1), (P10), (P11), (P12), (P14),
(P22), (P23), and (P24) of triangular maps. The relations between
them are displayed by the graph on Figure 2 where a missing arrow
means that there is no implication, except for implications that follow
by transitivity. Mutually equivalent properties are situated in one circle.
The two remaining open problems are indicated by arrows with query.
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5. Properties (P1)–(P13) in the general case

From the previous section it follows that properties (P1)–(P13),
which are mutually equivalent in the case of triangular maps non-
decreasing on the fibres, are not mutually equivalent in the case of
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general triangular maps of the square. Their classification seems to be
difficult. In this section we only show what is known and what are the
open problems.

It is already known that (P1) ⇒ (P2) ⇒ (P3) ⇒ (P4) ⇒ (P5) ⇒
(P6) ⇒ (P7) ⇒ (P8) ⇒ (P9) ⇒ (P10) (this easily follows from the
definitions), and (P10)⇔ (P11)⇔ (P12).

5.1 Lemma (1 ⇔ 3 ⇔ 5) [BC] Let (X, ρ) be a compact metric
space and ϕ ∈ C (X, X). Then h (ϕ) = h (ϕ| Ω (ϕ)) = h (ϕ| C (ϕ)).

The following lemma is given in [FSS], for continuous mappings of
the interval. Here we rewrite its proof for continuous maps of any
compact metric space.

5.2 Lemma If A ⊂ X is an invariant set then h(ϕ| A) =
h(ϕ| cl(A)).

Proof. For simplicity put A = A1 and cl(A) = A2. For a given
ε > 0, i ∈ {1, 2} and a positive integer n, let si (ϕ, ε, n) ⊂ Ai be a
maximal set such that for any x, y ∈ si (ϕ, ε, n), x �= y, there is an
integer k with 0 ≤ k < n and |ϕk (x)−ϕk (y) | > ε. From the definition
of topological entropy it follows that it suffices to show that for any
ε > 0,

#s1 (ϕ, ε/3, n) ≥ #s2 (ϕ, ε, n)(1)

since the inequality h (ϕ| A1) ≤ h (ϕ| A2) is trivial. Thus let x1, . . . , xm

be the elements of s2 (ϕ, ε, n). Since cl(A1) = A2, by the continuity of
ϕ there are points y1, . . . , ym ∈ A1 such that for any j ∈ {1, . . . , m}
and any r ∈ {0, . . . , n}, |ϕr (xj) − ϕr (yj) | < ε/3. Now if for some
k ∈ {0, . . . , n − 1} we have |ϕk (xi) − ϕk (xj) | > ε, then clearly
|ϕk (yi) − ϕk (yj) | > ε/3. Thus {y1, . . . , ym} is contained in a max-
imal set s1 (ϕ, ε/3, n) and (1) follows. Q.E.D.

5.3 Corollary (5 ⇔ 6) h(ϕ| C(ϕ)) = 0 if and only if
h(ϕ| Rec(ϕ)) = 0.

Proof. The assertion follows the definition of the centre. Q.E.D.

5.4 Lemma (7 �⇒ 6) There is a triangular map F such that
0 = h(F | UR(F )) < h(F | Rec(F )).

Proof. The triangular map F constructed in the proof of Theorem
9 in [K] has the required properties. Q.E.D.

Consider a continuous map ϕ : X → X of a compact metric space.
Let β be the Borel sets of X. Denote byM(X, ϕ) and E(X, ϕ) the set
of invariant and ergodic measures of ϕ, respectively.
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5.5 Lemma [W, Theorem 6.1] Let B ∈ β, and µ ∈M(X, ϕ). For
any ε > 0, there are Cε closed and Uε open such that Cε ⊂ B ⊂ Uε and
µ(Uε \ Cε) < ε.

5.6 Lemma (7⇔ 13) h(F | UR(F )) = 0 if and only if there is no
minimal set with positive topological entropy.

Proof. The proof is due to José S. Cánovas (cf. [C]).
Consider the sets UR(F ) and cl(UR(F )). By Lemma 5.5, for any

ε > 0, we have

Cε ⊂ UR(F ) ⊂ Uε, and C̃ε ⊂ cl(UR(F )) ⊂ Ũε.

Then
Cε ⊂ UR(F ) ⊂ cl(UR(F )) ⊂ Uε

and

µ(Ũε \ Cε) ≤ µ((Uε \ Cε) ∪ (Ũε \ C̃ε))

≤ µ(Uε \ Cε) + µ(Ũε \ C̃ε) < 2ε.

So, for any B ∈ β such that B ⊂ cl(UR(F )) \ UR(F ) we have µ(B) =
0, which proves that any invariant measure µ ∈ M(cl(UR(F )), F ) is
supported on UR(F ). Hence

h(F | UR(F )) = h(F | cl(UR(F )))

= sup{hµ(F )| µ ∈ E(cl(UR(F )), F )}
= sup{hµ(F )| µ ∈ E(UR(F ), F )},

by the variational principle for topological entropy [W, Corollary 8.6.1].
Since for any invariant measure µ it holds that hµ(F ) ≤ h(F ) (see [W,
Theorem 8.6]).

If for any minimal set M we have that h(F | M) = 0, then for any
ergodic measure in E(cl(UR(F )), F ) we have hµ(F ) ≤ h(F | M) = 0,
for some minimal set M . Hence

h(F | UR(F )) = sup{hµ(F )| µ ∈ E(UR(F ), F )}
= sup{h(F | M)| M is minimal} = 0.

The other implication follows from the fact that every minimal set
is a subset of UR(F ). Q.E.D.

The known facts, the relations between the properties (P1)–(P13)
in the general case, and the open problems are displayed by the graph
on Figure 3 where a missing arrow means that there is no implication,
except for implications that follow by transitivity. Mutually equivalent
properties are situated in one circle. The open problems are indicated
by arrows with query.
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Trnovec, Slovakia, May 7–10, 1998. Talk on: “The problem of
classification of triangular maps with zero topological entropy.”

[7] European Conference on Iteration Theory — ECIT 98, Muszyna,
Poland, August 30–September 5, 1998. Invitation. Talk on: “The
problem of classification of triangular maps with zero topological
entropy.”

vii



[8] 28th Winter School in Abstract Analysis, Křǐst’anovice, Czech
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