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1. Basic facts on predator-prey systems

The predator-prey model was originally developed by Lotka (1925) and
Volterra (1931) from observations of the various fish populations in the
upper Adriatic in the 1920’s. It describes the nature of population fluc-
tuations. The model is

x′ = x(a − cy),
y′ = y(dx − b), (1)

where x is the prey density, y is predator density and a, b, c, d are
positive constants. Without predators the prey population grows at the
Malthusian rate ax which is decreased by cx as a result of encounters
with predators. Similarly, without preys as food predators decrease at
rate −by, but the appearence of preys helps slow down this decrease by
dx. It is easy to see that there are two critical points of system (1) (0, 0)
and ( b

d , a
c ). Simple analysis, which can be omited here, shows that the

first critical point (0, 0) is a saddle point and the second critical point
( b

d , a
c ) is a centre with neutral stability.
The existence and the uniqueness of the limit cycle are two important

problems closely connected with two-dimensional predator-prey models,
which are generalizations of system (1). This question has been com-
pletely solved for the well-known system

x′ = rx

(
1 − x

k

)
− m

α

(
yx

a + x

)
,

y′ = y

(
mx

a + x
− D0

)
, (2)

where x is the prey density, y the predator density, and r, k, m, α, a, D0

are positive constants. The coefficient D0 is the relative death-rate of
the predator, m is the maximal relative increase of the predator and a
is the Michaelis – Menten constant. It represents the amount of prey
necessary for the reproduction rate p/2 of the predator. We have α < 1,
since the whole biomass of the prey is not transformed to the biomass
of the predator and the constant k is the carrying capacity of the prey
population. In the absence of the predator, the prey population develops
according to the logistic equation.

Hsu, Hubbell and Waltman showed [7] that if there exists an asymp-
totically stable positive equilibrium, then it is also globally stable. For
the same model Cheng [1] proved that if such an equilibrium is unstable,
then it possesses a unique globally asymptotically stable limit cycle. His
proof was extended by Conway and Smoller [3] to systems for which the
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prey isocline is symmetric with respect to its maximum. Moreover, the
existence of a system with at least two limit cycles is proved in [3].

In this dissertation thesis we consider the predator-prey system

x′ = xg(x) − yp(x),
y′ = y[q(x) − γ], (3)

(x(0) ≥ 0, y(0) ≥ 0),

which is a a special case of the model introduced by Gause ([5]). The
function g(x) represents the relative increase of the prey in terms of its
density. For low densities the number of offspring is greater than the
number who have died, and so g(x) is positive. As the density increases,
living conditions deteriorate and the death-rate is greater than birth-rate
and hence g(x) is negative. The function cp(x) − γ gives the total in-
crease of the predator population. This is negative for low values of prey
densities, i.e., the prey population is insufficient to sustain the predator.
The function p(x), called trophic function of the predator or functional
response, expresses the number of consumed prey by a predator in a
unit of time as a function of the density of the prey population [12].

In chapter 2 we extend Cheng’s proof of uniqueness of the limit cy-
cle for system (3) under the assumption q(x) = cp(x). This extension
cannot be done without several additional assumptions. Keeping the
original assumption of symmetry of the prey isocline with respect to its
maximum, which was implicitly contained in the Cheng’s paper, we have
to assume two further conditions. First, a condition concerning p(x) is
natural since in system (3) but not in (2) p(x) is an arbitrary function.
The latter condition was found by Kuang and Freedman [10]. They in-
vestigated a predator - prey system of the Gause type. By transforming
to a generalized Lienard system they derived sufficient conditions for
the uniqueness of limit cycle, which can be applied to system (3). But
since this system has certain symmetric properties, we can considerably
contract the interval in which this condition must be satisfied. In this
chapter we also show that extension of Cheng’s proof due to Conway
and Smoller [3] contains a serious gap.

In chapter 3 we generalized the condition ensuering the uniqueness of
limit cycle due to Liou and Cheng [11]. They further developed a method
of reflection from [1]. Our generalization extends a class of predator-prey
systems for which the uniqueness of limit cycle is ensured.

We study system (3) under the following assumptions:

(i) There exists a number k > 0 such that
g(x) > 0 for 0 ≤ x < k; g(k) = 0; g(x) < 0 for x > k.

(ii) p(0) = 0; p′(x) > 0 for x > 0; p′+(0) > 0.
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q(0) = 0; q′(x) > 0 for x > 0; q′+(0) > 0.

(iii) There is a unique point (x∗, y∗) with 0 < x∗ < k, y∗ > 0 such that
q(x∗) − γ = 0, x∗g(x∗) − y∗p(x∗) = 0.

(iv) The prey isocline h(x) := xg(x)
p(x) is an unimodal function and there

exists m, 0 < m < k, such that h′(x) > 0 for x ∈ (0, m), h′(x) = 0 for
x = m and h′(x) < 0 for m < x.

(v) The functions g(x), p(x), q(x) are as smooth as required.

The conditions (i) - (iii) are natural in the biological context mentioned
above. The last two conditions are necessary for mathematical calcula-
tions.

Under these assumptions system (3) has three equilibria 0 = (0, 0),
K = (k, 0), and E∗ = (x∗, y∗). Simple analysis of the Jacobian of system
(3), which has the form

J =

[
g(x) + xg′(x) − yp(x) −p(x)

yq′(x) q(x) − γ

]
,

yields that points (0, 0) and (k, 0) are saddle points. Next since Jacobian
J at point (x∗, y∗) is

J =

[
p(x∗)h′(x∗) −p(x∗)

y∗q′(x∗) 0

]

the eigenvalues are given by

1
2

(
p(x∗)h′(x∗) ±

√
[p(x∗)h′(x∗)]2 − 4p(x∗)y∗q′(x∗)

)
.

Hence (x∗, y∗) is stable if h′(x∗) < 0, and (x∗, y∗) is unstable if h′(x∗) >
0. If h′(x∗) = 0 point (x∗, y∗) is a center.

It is known that the existence and stability of a limit cycle is re-
lated to the existence of a positively invariant set of system (3) and to
the existence and stability of positive equilibrium. If the equilibrium is
asymptotically stable, then there may exist limit cycles, the innermost
of which must be unstable from the inside, and the outermost of which
must be stable from the outside. If limit cycles do not exist in this case,
the equilibrium is globally asymptotically stable. Conditions for the last
situation are given e.g. by Cheng, Hsu, and Lin [2].

From the existence of a positively invariant set of system (3) and from
unstability of the critical point (x∗, y∗) follows that there is at least one
periodic orbit surrouding point (x∗, y∗) (Poincaré-Bendinxon theorem).
It is posible to prove that such invarint set can be found as a trapezoid
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0KAB (see Fig. 1). Moreover, the orbit passing through every point in
the positive quadrant enters trapezoid 0KAB in finite time. Proofs of
the existence of limit cycles are given e.g. in [4]

Fig. 1

It is well-known fact that for analysis of the global stability of the
positve equilibrium as well as for analysis concerning the uniquness of
the limit cycle Lyapunov function may be useful. Its suitable form was
found by Harrison [6] in 1979. He proved that function

V (x, y) =
x∫

x∗

q(ξ) − q(x∗)
p(ξ)

dξ +
y∫

y∗

η − y∗

η
dη

is Lyapunov function of system (3). We use his result in proofs of our
results in both following chapters.

2. The known conditions of the uniqueness of the limit
cycle for system (3)

As we mentioned above Cheng [1] in 1981 proved the uniqueness of the
limit cycle for predator-prey system. In the next years several criteria for
the uniqueness of the limit cycle was found. Kuang and Freedman [10]
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and Huang and Merrill [8] transformed a class of predator prey mod-
els of Gause type to a generalized Lienard system, where the results of
uniqueness of the limit cycle are available. Their main result, rewritten
for system (3) is the following theorem.

THEOREM 1.1

Suppose in system (3)
(i) h′(x∗) > 0,
(ii) d

dx

(
p(x)h′(x)
q(x)−γ

)
≤ 0,

in 0 ≤ x < x∗ and x∗ < x ≤ k. Then system (3) has exactly one
limit cycle which is globally asymptotically stable with respect to the set
R2

+ \ E∗.

Liou and Cheng [11] further developed a method of reflection from [1]
to extend the class of predator prey models for which the uniqueness
of limit cycle is ensured. They studied system (3) under te condition
p(x) = x. It is interesting to compare their main result with theorem
1.3.

THEOREM 1.2

Suppose in system (3)
(i) h′(x∗) > 0
(ii) d

dx

(
xh′(x)
q(x)−γ

)
≤ 0,

in 0 ≤ x < x∗ and x̄∗ < x ≤ k, where x̄∗ = h−1
2 ◦ h1(x∗) and h1 =

h|(0,m), h2 = h|(m,k). Then system (3) has exactly one limit cycle which
is globally asymptotically stable with respect to the set R2

+ \ E∗.

Recently the generalization of the result from Theorem 1.1 appeared in
Tzy-Wei Hwang’s paper [9]. His result, again rewritten for system (3),
is

THEOREM 1.3

Suppose in system (3)
(i) h′(x∗) > 0,
(ii) there exist α, β ≥ 0 such that d

dx

(
p(x)h′(x)

(q(x)−γ)(α+βh(x))

)
≤ 0,

in 0 ≤ x < x∗ and x∗ < x ≤ k. Then system (3) possesses exactly one
limit cycle which is globally asymptotically stable with respect to the set
R2

+ \ E∗.
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3. The new results

Our main result in chapter 2 gives further contraction of the inter-
val where condition (ii) from theorems 1.1 and 1.2 must be satisfied.
Through this chapter we assume that the prey isocline h(x) is sym-
metric function with respect to its maximum and consider the case
q(x) = cp(x). Under these assumptions the following theorem holds.

THEOREM (3.1 chapter 2)

Let for system (3) the following assumptions be satisfied.
(i) h(x∗) > 0,
(ii) p(x′)(cp(x) − γ) + p(x)(cp(x′) − γ) ≤ 0 for x′ ∈ [0, xQ], where
x′ = 2m − x,
(iii) d

dx

(
p(x)h′(x)
cp(x)−γ

)
≤ 0, for x ∈ (2m − x∗, k].

Then system (3) possesses a unique limit cycle which is globally asymp-
totically stable in the positive quadrant.

In chapter 3 we derive the condition ensuring the uniqueness of the limit
cycle. We generalize the result from theorem 1.2 by introducing the func-
tion W (x), which was motivated by Tzy-Wei Hvang’s paper. The result
is

THEOREM (2.1 chapter 3)

Let for the system (1) the following assumptions be satisfied:
(i) x� < m,
(ii) d

dx

(
p(x)h′(x)

(q(x)−γ)(W (x))

)
≤ 0 for x ∈ (0, x∗) ∪ (x̄∗, k),

where W (x) is a smooth positive funcion such that
W (x) = W (x̄) for x ∈ (0, x∗) ∪ (x̄∗, k),
W ′(x) is negative for x ∈ [0, x∗) and positive for x ∈ (x̄∗, k],
the equality W (x) = − (q(x)−γ)

p(x)h′(x) holds in no subinterval of intervals
(0, x∗), (x̄∗, k).
Then system (1) possesses a unique limit cycle which is globally asymp-
totically stable in the positive quadrant.

4. Presentation and publications

The main results of the dissertation were reported at the Seminar on
Dynamical Systems in Opava (Mathematical Institute of the Silesian
University, 1997 - 2000), Seminar on Differential Equations and Integra-
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tion Theory in Prague (Mathematical Institute of the Czech Academy
of Sciences, 2000),and on Sixth Colloquium on the Qualitative Theory
of Differential Equations in Szeged (1999). They are published in the
paper
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