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1 Abstract

The submitted Thesis is devoted to the worst scenario methdd
its application to particular problems with uncertain noeéar dif-
ferential equations. At first, a theoretical framework fotving a
class of worst scenario problems is proposed. The existeinte
worst scenario is proved through the convergence of a sequan
approximate worst scenarios. This theoretical framewsdplied
to problems with quasilinear elliptic equations with urtaer coeffi-
cients (the problem for an ordinary and a partial differgregguation
Is solved). Furthermore, it is shown that the Galerkin apjpnation
of the state solution can be calculated by means of the Kashan
method as the limit of a sequence of solutions to linearizedb
lems. On the top of it, some illustrative numerical exammes-
cerning a one-dimensional problem are presented.

2 Introduction

A great many problems in natural, technical, and socialheg&e can
be solved by means of suitable mathematical models. By ssiol
models, we are able to predict results of processes in reddlwo
Nevertheless, modeling of the real world is encumbered vatfous
sorts of uncertainty. Since the input data of mathematicalets is
uncertain, the output values are also encumbered by undgrtd is
our goal to evaluate the uncertainty of output data if thesutainty
of input data is somehow specified.

In this work, we are concerned especially with models dbsdcri
by differential equations with boundary conditions. Fostance,



let us consider the following boundary value problem: Findua-
known functionu such that

—(a(w)u') = f 1in (0,1), (2.1)

w(0) =wu1, u(l) = us. (2.2)

This example represents the mathematical model of onerdiimeal
steady heat conduction. The right-hand side funcficharacterizes
internal heat sources, the coefficients the heat conductivity and
depends on the temperaturgthe values:; andu, are given bound-
ary temperatures.

In this steady heat conduction model, we can be interested, f
instance, in the temperature at a selected point of the dhéamtey.
The problem (2.1)—(2.2), and consequently the temperauamny
point, depend on the coefficient However, coefficients are ob-
tained through experimental measurements and are not kegwn
actly. Itis not uncommon that a set of inputs is given. Consedjy,
the a-dependent temperature must be considered uncertain. For a
more detailed mathematical treatment of this problem, ke [

It is possible to consider the situation above more generélie
problem (2.1)—(2.2) is a concrete example of so called §taib-
lem, the functionu is called a state solution. So, consider a state
problem (represented by a boundary value problem, for mesfa
whose input data is uncertain. This uncertainty is repriesehy
U.q, a given set of admissible input data. Since the state soluti
u depends on the input parametee 4,4, we obtain a set of state
solutions. As a rule, we are concentred with a real-valueahtyty
of interest related to the state solution and representeddoyerion
functional® = ®(a,u(a)), generally directly dependent an Due
to the uncertainty of the state solution, we obtain a set hfegof
the criterion functional.



In practice, there exists a number of approaches to treasnoén
uncertainty in mathematical models. The choice of an aatxdpt
approach depends largely on the amount of available infooma
about the input data. If a probability characterizationrmgdut val-
ues is available, then stochastic methods can be appliezhstt in
the form of the popular Monte Carlo method. If, however, the u
certainty in inputs cannot be described in terms of proigbdther
approaches, for instance fuzzy sets or the worst scenarilboahe
can be applied. In some cases, it is suitable and efficierdrndme
various approaches to uncertainty. More detailed infolonatan be
found, e.g., in [13].

The stochastic methods as well as the fuzzy set approacimassu
certain additional information related to the input dataaohathe-
matical model. Nevertheless, such information does not habe
always available, only the set of admissible input data eknown,
and we wish to derive the corresponding set of outputs.

In engineering applications, mainly large values of thengia
of interest (e.g. temperature at a selected point of a hdutey or
local stress at a point of a loaded body) are important . Tstilate
this, we return to problem (2.1)—(2.2). It can be requediad inde-
pendently ofa € U,q, the temperature at the selected point musn’t
exceed certain given value. Therefore, we search for art jpgu
rametera’ € U,q such that the quantity of interest is maximal, i.e.
we search for the worst (case) scenario responsible forigrest
temperature at the observed point. Generally and moregelgcif
we consider the criterion functiondl mentioned above and if we
set¥(a) = ®(a,u(a)), the goal is to find a parametet € Uf,q such
that the valueb (a") is maximum. More detailed mathematical treat-
ment of the worst scenario method is included in Section&asso
[1], [2], [8], [9], [10], [11], [12], [13]. In practice, we a usually
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interested rather in the valule(a”) than the worst scenarid.

We observe that the worst scenario method provides ratlser pe
simistic conclusions. The realization of the worst scemaright be
rather rare. It is suitable to use the worst scenario metmbygl io
such situations where, except fd),, no additional information is
available. On the other hand, the worst scenario methodaappe
for instance, in the output uncertainty analysis of fuzzysssed
models, see, e.qg., [3] and [6].

3 Main results

The goal of this section is to explicate the theoretical amrk of
the worst scenario method and to sumarize new results thatagd
on this subject in [8] and [9].

3.1 General theoretical framework of the worst scenario mdtod

The general abstract scheme of the worst scenario methdaeleas
proposed by I. Hla&Cek in [11, 13]. He considers an abstract state
problemP (A, u), where A denotes input data and represents a
state variable. The state problémA, ) can stand for a differential
equation, an integral equation, or a system of linear eqgnsfifor
instance. In this work, we concentrate our attention to |emols
described by differential equations with uncertain cosdfits. In
the following part we introduce a general mathematical #remrk
of the worst scenario method.

At first, we define the worst scenario problem. [Lébe a real,
separable, and reflexive Banach space andl' tdbe its dual space.
We assume that the state probléA, «) takes the form of an op-



erator equation
Au =10, ueV, (3.1)

whereA : V — V*, b € V*. The operatord depends on an input
parameterd that belongs to an admissible 86t C U, wherelU is
a Banach space. Consequently, the solutiaf equation (3.1) de-
pends on the parametdr, so thatu = u(A). Furthermore, the state
solutionu(A) is evaluated by a criterion function@l: U,q xV — R
that can also directly evaluate the value of the input patamé
The goal is to solve the following worst scenario problemndi
AY € U,q such that
AY = arg max ®(A, u(A)). (3.2)
AUy

The aim of the theoretical analysis is to prove the existefitee
solution to problem (3.2) as well as to suggest a way to finkbeest
approximately, the worst scenatity.

As shown in [13, Theorem 3.1], the problem (3.2) has a salutio
under the following assumptions:

(a) the sett,q is compact in’;

(b) a unique solutiom( A) of the state problem (3.1) exists for any
parameterd € Uyq;

(c) if A, — Ain U, thenu(A4,) — u(A) strongly or at least
weakly inV;

(d) if A, € Uaa, A, — Ain U andv, — v strongly or at least
weakly inV, then

lim sup ®(A,,v,) < (A, v).

n—oo



In a concrete practical problem, it can be difficult to shoatth
this assumptions ensuring the solvability of the worst acerprob-
lem (3.2) are fulfilled. In problems occurring in [8] and [$ee
also Section 3.2, a difficulty arrises with the assumptigrafmove
(more detailed information can be found in [8]). For thatsaa
another approach is applied in [8] and the existence of theisn
to problem (3.2) is proved via the convergence of the sahstitm
approximate worst scenario problems. The approximatidrased
on replacing the admissible dd{; by its finite-dimensional approx-
imationt/™ C U,q, and the spac® by its finite-dimensional sub-
spacd/,,. The symbols: andM stand for the relevant discretization
parameters. If we replace the spacen (3.1) by its subspacy,,
we obtain Galerkin approximatiom,(A) € V;, of the state solution
u(A). If we consider an approximation of (2.1)—(2.2), then tres el
ments ofi/,q (some real, Lipschitz continuous functions) are substi-
tuted by the elements "1 that can be continuous, piecewise lin-
ear functions, defined by values at nodal points € {1,..., M}.
For more detailed description of the séts; andu&{‘g see the fol-
lowing section. The finite-dimensional spakeusually is a finite
element space. The approximate worst scenario problerepdept
on the choice ot/’ andV;, is defined in the following way: Find
AMO e M such that

MO __ M M
At = argArjgllg){zg@(A ;up(A™)). (3.3)
This approach also provides a way to calculate, at leastoappr
mately, the worst scenarid’.

To prove that the solution of problem (3.2) can be obtaineti@as
limit of a sequence of solutions to the problems (3.3), waldisth
the following assumptions:



() the setdf,q andu&{‘g are compact i/;

(i) for any parameted € U,q there exists a unique state solution
u(A) of equation (3.1), and furthermore, a unique Galerkin ap-
proximationu,(A) € V;, of the state solutiom(A);

(i) the solution of the approximated state problem (tisagifinite-
dimensional parallel to (3.1)) depends continuously onirthe
put parameter, i.e., ifl,, € U,q andA,, — Ain U asn — oo,
thenuh(An) — uh(A) in Vi,

(iv) if {V} }, whereh, — 0 asn — oo, is a sequence of finite-
dimensional subspacesdf and ifA,, € U.q, A, — AiInU as
n — oo, thenuy (A,) — u(A)inV;

(v) it is possible to approximate any € U,q with an arbitrary
accuracy by an elememt" € U if M is a sufficiently large
number, i.e. there exists a sequedce’}, AM € UM, such
thatAY — AinU asM — oo;

(vi) the criterion functional is continuous, i.e. A, € U,q, A, — A
in U andv,, — v In V asn — oo, then

P(A,,v,) — P(A,v).

We note that, except for (iv), these assumptions can alsoureif
in [13, Chapter II].

It is not difficult to show that under assumptions (i) — (vigeth
approximate worst scenario problem (3.3) has a solution.céye
proceed as follows: For eache U, we define

Uy (A) = B(A, up(A)).
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Let A, € UM and A, — AinU asn — oo. It follows from (iii)
thatuy,(A,) — un(A) in V3. By virtue of assumption (vi) we get

(A, un(An)) — ®(A, un(A)),

which means that
UL(A,) — Y(A).

Thus, the functional is continuous or/}. Since, according to
assumption (i), the sét is compact i/, the functional¥, has a
maximum in/} i.e., an element!}’® € 1/M solves problem (3.3).
O

Now, we are prepared to present the main theoretical resoit ¢
cerning the existence of a solution to problem (3.2) andiredy
[13, Theorem 3.4]. If the assumptions (i) — (vi) are fulfilleten,
according to [8, Theorem 3.1], there exists a seque{mﬂlﬁéko} of
solutions to the approximate worst scenario problems ,(31;390 €

UMk, such thaty, — 0 andMj, — oo ask — oo, and

A0 — A in T, (3.4)
uhk(A%’“o) — u(A°) inV, (3.5)
(A un, (Ap)) — ® (A%, u(A")) (3.6)

ask — oo, whereA’ € U,q solves problem (3.2) and(A°) is the
corresponding solution to problem (3.1).

Remark We observe that it is possible to modify some of the asump-
tions (i) — (vi) above. To be specific, if we replace the straog-
vergenceu, (A,) — u(A) in (iv) andv, — v in (vi) by the weak
convergence, then the conclusions (3.4) — (3.6) will bedvéive re-
place the strong convergence in (3.5) by the weak conveegdiius
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latter modification of [8, Theorem 3.1] is applied to problemh a
partial differential equation examined in [9], see also fillewing
section.

3.2 Application to quasilinear elliptic differential equations with
uncertain coefficients

In this part, we apply the theoretical framework from Sattil
to problems with quasilinear elliptic differential equais with un-
certain coefficients. We suppose that the coefficients departhe
squared gradient (derivative) of the state solution. Supragons
can describe some electromagnetic phenomena, fluid flonopien
ena, and the elastoplastic deformation of a body, see [T& pA2].
At first, we examine a problem with a partial differential atjan,
after that we will give a result related to a problem with adioary
differential equation.

Consider the following state problem (the weak formulatid
boundary value problem, see [9]): Findc H] () such that

// A(|Vul*)Vu - Vo dedy = // fvdzdy Yo € H) (),
¢ ¢ (3.7)
where{) C R? is a bounded open domain with a polygonal bound-
ary, H3(9) is the usual Sobolev space énwith vanishing traces
onofN, A = (aij)fﬁjzl is a diagonal matrixg,;, i € {1, 2}, are Lip-
schitz continuous functions di; (nonnegative real numbers), and

fe Q).

Now, we define the admissible set in more detail. To be able to
ensure the validity of assumptions mentioned in Sectioyv@have
to select suitable admissible coefficients. We will consjutesitive,
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increasing, and bounded Lipschitz continuous functiorisdéd on
Ry . More precisly, the admissible dét, is defined in the following
way: Letld!,, i € {1,2}, be a set of Lipschitz continuous functions
a;; defined orR and such that

0 < min;i < di <Ch, a.e. inf0, z¢|, (3.8)
r

a;i(r) =a;(xc) for x> xg, (3.9)

0< Qmin,i < a”(x) Samax,i Vo € R(—)’—, (310)

whereCt i, cminis Gmini, Gmaxi,» Tc are positive constants. The ad-
missible setl,q is defined as the Cartesian prodit x U2, Itis
obvious that the elements &f, can be represented by diagonal ma-
trices of functions. We observe thdt, is a subset of the Cartesian
productU x U, whereU is the Banach space of functions continuous
onRR; and constant for > z, for more details see [9].

The operator equation (3.1) arrises from (3.7) if we $et.=
H}(Q) and defined : V — V* andb € V* by

(Au,v) = //Q[all(\VuF)uxvx—l—azg(\Vu\?)uyvy]dxdy (3.11)

and
(b,v) = //vadxdy,

whereu,v € V and whereu,, v,, u,, v, denote the partial deriva-
tives ofu andw.

As mentioned earlier, the existence of the solution to pnabl
(3.2) is proved via the convergence of the approximate wsrst
narios. Therefore, we define the admissiblel#&t and a finite-
dimensional subspadg, of V. Letz;, j € {1,..., M}, be equally
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spaced points if0, z¢], x1 = 0 andxy, = z¢. Fori € {1,2}, we
define the set’;" C U, of functionsa € U/, such that|y,. . .,| €
Pl([l'j, xj-i-l])! J € {1, o, M — 1}, Wherepl([xj,xj+1]) denotes
the linear polynomials on the interval;, z;.;]. The admissible set
UM is defined as the Cartesian prodigf’' x ¢*. To define the
spacé/;,, we introduce a triangulatiofy, = {71, ..., Ty} of Q. Let
V;, be the space of functiong, € V, continuous orf2 and such that
vy|7, is a linear polynomial on the elemen}, j € {1,...,N}. We
assume that the diameter of any triangle j € {1,..., N}, does
not exceed.

On the condition that the assumption (vi) from the previces s
tion is fulfilled (the concrete criterion functional is appriately se-
lected), to be able to apply [8, Theorem 3.1], we have to yexrs-
sumptions (i) — (v), mentioned in Section 3.1.

By the Arzeb—Ascoli theorem, see [21, page 35], the $éis
u;‘ji, i € {1,2}, are compact i/, and, consequently, the admis-
sible setsi{, 4 anduﬁ are compact i/ x U. It means that the
asssumption (i) is fulfilled.

The existence of the solution of problem (3.7) is guaranteed
[22, Theorem 2.K.]. It is sufficient to verify that the operatd
defined by (3.11) is monotone, continuous, and coercivg ofihe
proof of the continuity and the coercivity of is not too difficult, see
[9, Lemma 2.2 and Lemma 2.3]. The proof of the monotonicity of
the operatord is a more challenging problem, see [9, Lemma 2.1].
To ensure the monotonicity o4, we add the requierement (see [9]
for the details)

AxcCT™ < Apin (3.12)

to the admissible s&t, 4, wherea,,;, = 121132{%111,@-}, Cpax =
YA
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max{Cy,;}. Therefore, if the condition (3.12) is fulfilled, the state

1<4<2
problem (3.7) has a solution. In addition, according to [Bima

2.4], the operato is strictly monotone and by virtue of [22, page
93, Corollary 1] the unigueness of the solution to the pnol(8.7) is
guaranteed. The existence of the unique Galerkin apprdximean
be proved similarly, see [9, Theorem 2.2]. So that, the aptiom
(i) is fulfilled.

The condition (3.12) ensuring the existence and uniquesféks
state solution and its Galerkin approximation is also useektify
the assumptions (iii) and (iv).

The assumption (iii) is fulfilled, see [9, Theorem 2.4].

To verify the assumption (iv), we have to introduce an appro-
priate sequence of finite-dimensional subspacég.offo this end,
let {7}, h — 0, be a regular family of triangulations 61, and
{7, } < {7n}, h,, — 0 asn — oo, be a sequence of these trian-
gulations. Let{V}, } be the corresponding sequence of the finite-
dimenional spaces defined above. Then, according to [8, lemm
4.4] and [9, Theorem 2.5], the assumption (iv) is fulfilletl e
replace the strong convergengg (A,) — u(A) by the weak con-
vergence.

By [9, Lemma 2.5], the assumption (V) is also fulfilled.

Thus, under the condition (3.12) and Remark (see Sectiop 3.1
the worst scenario problem (3.2) with the operator stateaggnl
given by (3.7) has a solutiod’ € U,4. In addition, according to
[8, Theorem 3.1], this solution is the limit of a sequenceadfisons
to approximate worst scenario problems (3.3). As will bewano
in the folloving section, to solve the problem (3.3) with i/

12



andV}, requires, among others, to find the Galerkin approximation
up(AM) € v, where AM € UM, to the solution of the nonlinear
problem (3.7). This Galerkin approximation can be deteeuiby
means of the Kachanov method as the limit of a sequence of the
solutions to linearized problems, see [9, Theorem 2.3].hi®dnd,

we define the following finite dimensional parallel to (3.7):

Find u;, € V}, such that

// A(|Vup)?)Vauy, - Vo dedy = // fvdxdy Yv € V.
? ¢ (3.13)

We show that under certain condition (see below) the Kachano
method applied to problem (3.13) converges for ang U4,4. The
folloving part summarizes the results concerning the appbn of
the Kachanov method to problem (3.13).

To be able to formulate a sufficient condition for the coneaae
of the Kachanov method, see (3.14) below, let us introduoeeso
necessary constants.

It follows from the equivalence of the norfp- || ;1) and the
semi-norm| - | ;1 (o) in Hj(Q) that

"U‘HI(Q) > Clequ(Q) Yv € V,

whereC; > 0.

In the following, we will use the equivalence of norms on the
finite-dimensional spac¥,. To this end, we fix a triangulatiof,
and the corresponding spakg. Let V), . be the space of functions
on (2 that are constant on each trianglec 7;, j € {1,...,N}. It
follows from the equivalence of norms af . that

][220y < Collv||r20) Vo € Vie,
whereCy > 0.
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It holds
Hux — UxHLQ(Q) + Huy — UyHL2(Q) < (4 Hu — UHV Yu,v € Vj,,

whereCs > 0.
Now, assume that

2C,C5CT™ | | 2)v/Zc

2
Cia

min

<1 (3.14)

Then, according to [9, Theorem 2.3], the Galerkin approxioma
up = up(A) € V, of the solution to problem (3.7) can be calculated
by means of the Kachanov method:

Let v’ € V, be arbitrary. Ifu* € V} is known, the following
iterationu**! € V}, is determined so that

/ / (an (Va2 ut o, + an (Ve )l o, |dudy = // fudady

forall v € V},. Then

|, — uf|ly — 0 as k— oo

In the end of this section, we turn our attention to the stadd{
lem examined in [8] and motivated by a boundary value problem
with ordinary differentially equation: Find € H}(0, 1) such that

1 1
/ a(u?)u'v'dr = / fodr Vo€ Hj(0,1), (3.15)
0 0
where the functiom € U, Is an admissible coefficient.
The admissible sét,q can be defined in the same way s

except for (3.8) that can be weakened to

0< % < a.e. inf0, z¢],
dx

14



where(, is a positive constant. The g¢f/ is defined analogously

asuﬁ’i. For more detailed information see [8]. By introducing

zg =0 < 21 < ... < 2y = 1, we defineV}, ¢ H(0,1),
the space of functions continuous @nb|, linear on the interval
[z, z41],7 =0, ..., N, and with vanishing value &tand1.

As well as in the two-dimensional case, the solution of thabpr
lem (3.2) can be obtained as the limit of a sequence of thdispu
to approximate worst scenario problems (3.3). However, e o
tained rather stronger results in one-dimensional case.

It is possible to verify the assumptions (i) — (vi) analoggun
this case, in contrast to the 2D—problem, a condition likéZBcan
be omitted. In addition, we are able to prove that the cooedp
Ing nonlinear operator defined by the left hand side of (3i48yen
strongly monotone, see [8, Lemma 4.2]. This implies that @e c
prove the strong convergeneg (A,) — u(A) in the assumption
(iv), see [8, Theorem 4.4], and, consequently, select theriom
functional satisfying the assumption (vi) with the strongneer-
gencev, — v. It makes possible to use a larger class of criterions.
Furthermore, we obtain the strong convergence in (3.5).

4 Numerical examples

In this section, we will show a procedure to find, at least agpr
imately, a solution of problem (3.3). For computational glicity
reasons, we confine ourselves to the one-dimensional pnoéxe
amined in [8]. We will consider examples of equations witimsy
metric and non-symmetric right-hand side. The computativare
performed in MATLAB.

LetZ/™ be the finite-dimensional admissible set afdhe finite-

15



dimensional subspace of Sobolev sp&ge0, 1) concerning the one-
dimensional problem defined at the end of Section 3.2. At fivet
set¥(a) = ®(a,u(a)), so that we will examine-dependent func-
tional U defined on/M. Furthermore, the finite-dimensional ad-
missible set/}! can be identified with a compact subggf of the
Euclidean spacRY, if we define

UM =f{aeRY :FacUM a=(m,...,ay)
= (a(x1),...,a(za))},

see also [1]. In this sense, the functiodals, as a matter of fact, a
real function = ¥(a), wherea = (o, . . on) e UM, To obtain
the value of function¥ at any pointa € Ll , it Is necessary to
solve the following nonlinear problem (a flnlte -dimensibaiaalogy
to (3.15)): Findu,, € V}, such that

1
/ a(u?)u,v'de —/ fodx Vv € Vp, (4.1)
0

wherea € UM, a(z;) = a;, i = 1,..., M. The solution of the
state problem (4.1) is obtained by using the Kachanov metheel
previous section). Subsequently, the criterion functichas ap-
plied. Summarily, we solve the following global optimizati prob-
lem arising from (3.3): Find’ € 2/} such that

o’ = arg max \I'( ).

aebl%

To find the element” at least approximately, we use the Nelder-
Mead simplex method, see, e.g., [16]. This method is impidete
by the standard MATLAB functioriminsearch By means of this
algorithm, we can find a local extreme of a real function defioe
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the entire spacR?. The Nelder-Mead algorithm starts from an ar-
bitrarily selected initial(M + 1)-simplex. It is sufficient to enter
an initial point, thefminsearchalgorithm determines the remaining
vertices of the initial simplex. The values at vertices aral@ated
and, subsequently, the simplex is transformed. If this @doce is
repeated, a non-increasing real sequence of function vatugen-
erated. This process continues until a termination cateis met.

We have to solve a global optimization problem on the bounded
setZ/M < RM. To solve this problem by the unconstrained op-
timization routinefminsearch we establish a transformatich
RM — /M and search for the maximum of the composite func-
tionW o7 : RM — R. We used the transformatidh given in the
following way:

1. Let the parameters of the admissiblel@g[ be: M, awin, Gmax
CL, Ic.

2. Letz = (v1,...,zy) € RY be arbitrary. We obtain the corre-
sponding valud’(z) = a = (a, ..., ay) € UM as follows:
For the first component af we define

(@max — @min) (5 + arctanz;)
Q1 = Gpin T )

-
fora;, 1 =2,..., M, we define
K (5 + arctan z;)
Qj = Q-1+ ;
m

whereK = min{ ]Cvfff, Umax — Qi1 }-

We observe that, to be allowed to use thensearchalgorithm

to solving of our maximization problem, we apply this alglom to
function—V o 7.
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Now, we will present concrete numerical examples. We canmsid
problem (3.15), respectively its finite-dimensional pigh.1). Let
the parameters of admissible &gt be: a,,in = 1, apax = 6, Cp =
0.3, andzc = 10. Let the dimension of/}{ be M = 11 and the
dimension of the finite element spakgbe N = 50. We will solve
the state problem (4.1) with two different right-hand sideand f».

In the concretef; (z) = 300x(1 — x), and

h() 100 for 0<zx
€Tr) =
i ~100 for 2<u

IA
—_ WIN

IA

The worst scenario problem (3.3) is solved with the follogvanite-
rion functional:

B(a, u(a)) = —10° /O (@) — un(@®2de,  (4.2)

whereuy,(a™) € Vj, is the state solution of problem (4.1) computed
for the selected (and afterwards searched) paramé&ter This pa-
rameter is determined by the vector of nodal valiés- (3.00, 3.10,
3.30, 3.40, 3.45, 3.50, 3.70, 3.80, 3.95, 4.00,4.20) € ﬁc{t{. It is not
difficult to show that the functionab defined by (4.2) satisfies the
assumption (vi) from Section 3.1.
Figures 4.1 — 4.4 present the obtained results. The appabixim

appr of the searched paramete¥" is calculated for the right-hand
sides f; and f, with using two different initial points. Also, the
parameter;, corresponding to selected initial poing, € z);g and,
for comparison, the parametet'’ are presented. In addition, the
value \I/(am) of the functlon\If at the initial point, the final value
\If( appr) at the pomtaappr e UM -4 corresponding to the parameter

a0 and the number of iterations of the Nelder-Mead simplex

appr’
method are presented.

18
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Figure 4.1 The approximatioru/9
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5 Publications

1. P. Harasim On the worst scenario method: A modified convergence theo-
rem and its application to an uncertain differential equatPreprint Series
in Mathematical Analysis, Mathematical Institute in Opa8desian Uni-
versity in Opava, MA 61/2007.

2. P. Harasim On the worst scenario method: A modified convergence theo-
rem and its application to an uncertain differential equatiAppl. Math.
53(2008), 583- 598.

3. P. Harasim On the worst scenario method: A modified convergence theo-
rem and its application to an uncertain differential equatiProceedings of
SNA09, Institute of Geonics AS CR, Ostrava, February 2(82838

4. P. Harasim Worst scenario method and other approaches to uncertainty
Proceedings of Ph.D. Workshop 2009 (CD), Institute of Ges®S CR,
Ostrava, November 2009

5. P. Harasim On the worst scenario method: Application to a quasilinear
elliptic 2D-problem with uncertain coefficients. Appl. MatAccepted

6 Presentations

1. Seminar on Numerical Analysis 2009 (SNA09), InstitufeGeonics AS
CR, Ostrava, February 2009. Lecture: On the worst scenagihad: A
modified convergence theorem and its application to an teioedifferen-
tial equation.

2. Modelling 2009, Institute of Geonics AS CRSB-Technical University
of Ostrava and International Association for Mathematicd &omputers
in Simulations (IMACS), Roznov pod Radhostém, Czech ubdip, June
2009. Lecture: On the worst scenario method: Applicatioartaincertain
differential equation and numerical examples.
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3. Ph.D. Workshop 2009, Institute of Geonics AS CR, OstréN@ayember
2009. Lecture: Worst scenario method and other approaohesertainty.

7 Long-term visits

1. Universidad de Murcia, October-December 2005, Murgi@jis Socrates-
Erasmus
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