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1 Abstract

The submitted Thesis is devoted to the worst scenario methodand
its application to particular problems with uncertain nonlinear dif-
ferential equations. At first, a theoretical framework for solving a
class of worst scenario problems is proposed. The existenceof the
worst scenario is proved through the convergence of a sequence of
approximate worst scenarios. This theoretical framework is applied
to problems with quasilinear elliptic equations with uncertain coeffi-
cients (the problem for an ordinary and a partial differential equation
is solved). Furthermore, it is shown that the Galerkin approximation
of the state solution can be calculated by means of the Kachanov
method as the limit of a sequence of solutions to linearized prob-
lems. On the top of it, some illustrative numerical examplescon-
cerning a one-dimensional problem are presented.

2 Introduction

A great many problems in natural, technical, and social sciences can
be solved by means of suitable mathematical models. By usingsuch
models, we are able to predict results of processes in real world.
Nevertheless, modeling of the real world is encumbered withvarious
sorts of uncertainty. Since the input data of mathematical models is
uncertain, the output values are also encumbered by uncertainty. It is
our goal to evaluate the uncertainty of output data if the uncertainty
of input data is somehow specified.

In this work, we are concerned especially with models described
by differential equations with boundary conditions. For instance,
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let us consider the following boundary value problem: Find an un-
known functionu such that

−(a(u)u′)′ = f in (0, 1), (2.1)

u(0) = u1, u(1) = u2. (2.2)

This example represents the mathematical model of one-dimensional
steady heat conduction. The right-hand side functionf characterizes
internal heat sources, the coefficienta is the heat conductivity and
depends on the temperatureu, the valuesu1 andu2 are given bound-
ary temperatures.

In this steady heat conduction model, we can be interested, for
instance, in the temperature at a selected point of the heated body.
The problem (2.1)–(2.2), and consequently the temperatureat any
point, depend on the coefficienta. However, coefficients are ob-
tained through experimental measurements and are not knownex-
actly. It is not uncommon that a set of inputs is given. Consequently,
the a-dependent temperature must be considered uncertain. For a
more detailed mathematical treatment of this problem, see [1].

It is possible to consider the situation above more generally. The
problem (2.1)–(2.2) is a concrete example of so called stateprob-
lem, the functionu is called a state solution. So, consider a state
problem (represented by a boundary value problem, for instance)
whose input data is uncertain. This uncertainty is represented by
Uad, a given set of admissible input data. Since the state solution
u depends on the input parametera ∈ Uad, we obtain a set of state
solutions. As a rule, we are concentred with a real-valued quantity
of interest related to the state solution and represented bya criterion
functionalΦ = Φ(a, u(a)), generally directly dependent ona. Due
to the uncertainty of the state solution, we obtain a set of values of
the criterion functional.
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In practice, there exists a number of approaches to treatments of
uncertainty in mathematical models. The choice of an acceptable
approach depends largely on the amount of available information
about the input data. If a probability characterization of input val-
ues is available, then stochastic methods can be applied at least in
the form of the popular Monte Carlo method. If, however, the un-
certainty in inputs cannot be described in terms of probability, other
approaches, for instance fuzzy sets or the worst scenario method,
can be applied. In some cases, it is suitable and efficient to combine
various approaches to uncertainty. More detailed information can be
found, e.g., in [13].

The stochastic methods as well as the fuzzy set approach assume
certain additional information related to the input data ofa mathe-
matical model. Nevertheless, such information does not have to be
always available, only the set of admissible input data can be known,
and we wish to derive the corresponding set of outputs.

In engineering applications, mainly large values of the quantity
of interest (e.g. temperature at a selected point of a heatedbody, or
local stress at a point of a loaded body) are important . To illustrate
this, we return to problem (2.1)–(2.2). It can be requested that, inde-
pendently ofa ∈ Uad, the temperature at the selected point musn’t
exceed certain given value. Therefore, we search for an input pa-
rametera0 ∈ Uad such that the quantity of interest is maximal, i.e.
we search for the worst (case) scenario responsible for the highest
temperature at the observed point. Generally and more precisely, if
we consider the criterion functionalΦ mentioned above and if we
setΨ(a) = Φ(a, u(a)), the goal is to find a parametera0 ∈ Uad such
that the valueΨ(a0) is maximum. More detailed mathematical treat-
ment of the worst scenario method is included in Section 3, see also
[1], [2], [8], [9], [10], [11], [12], [13]. In practice, we are usually
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interested rather in the valueΨ(a0) than the worst scenarioa0.
We observe that the worst scenario method provides rather pes-

simistic conclusions. The realization of the worst scenario might be
rather rare. It is suitable to use the worst scenario method only in
such situations where, except forUad, no additional information is
available. On the other hand, the worst scenario method appears,
for instance, in the output uncertainty analysis of fuzzy set based
models, see, e.g., [3] and [6].

3 Main results

The goal of this section is to explicate the theoretical framework of
the worst scenario method and to sumarize new results that appeared
on this subject in [8] and [9].

3.1 General theoretical framework of the worst scenario method

The general abstract scheme of the worst scenario method hasbeen
proposed by I. Hlav́aček in [11, 13]. He considers an abstract state
problemP(A, u), whereA denotes input data andu represents a
state variable. The state problemP(A, u) can stand for a differential
equation, an integral equation, or a system of linear equations, for
instance. In this work, we concentrate our attention to problems
described by differential equations with uncertain coefficients. In
the following part we introduce a general mathematical framework
of the worst scenario method.

At first, we define the worst scenario problem. LetV be a real,
separable, and reflexive Banach space and letV ∗ be its dual space.
We assume that the state problemP(A, u) takes the form of an op-
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erator equation
Au = b, u ∈ V, (3.1)

whereA : V → V ∗, b ∈ V ∗. The operatorA depends on an input
parameterA that belongs to an admissible setUad ⊂ U , whereU is
a Banach space. Consequently, the solutionu of equation (3.1) de-
pends on the parameterA, so thatu ≡ u(A). Furthermore, the state
solutionu(A) is evaluated by a criterion functionalΦ : Uad×V → R

that can also directly evaluate the value of the input parameter A.
The goal is to solve the following worst scenario problem: Find
A0 ∈ Uad such that

A0 = arg max
A∈Uad

Φ(A, u(A)). (3.2)

The aim of the theoretical analysis is to prove the existenceof the
solution to problem (3.2) as well as to suggest a way to find, atleast
approximately, the worst scenarioA0.

As shown in [13, Theorem 3.1], the problem (3.2) has a solution
under the following assumptions:

(a) the setUad is compact inU ;

(b) a unique solutionu(A) of the state problem (3.1) exists for any
parameterA ∈ Uad;

(c) if An → A in U , thenu(An) → u(A) strongly or at least
weakly inV ;

(d) if An ∈ Uad, An → A in U andvn → v strongly or at least
weakly inV , then

lim sup
n→∞

Φ(An, vn) ≤ Φ(A, v).
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In a concrete practical problem, it can be difficult to show that
this assumptions ensuring the solvability of the worst scenario prob-
lem (3.2) are fulfilled. In problems occurring in [8] and [9],see
also Section 3.2, a difficulty arrises with the assumption (c) above
(more detailed information can be found in [8]). For that reason,
another approach is applied in [8] and the existence of the solution
to problem (3.2) is proved via the convergence of the solutions to
approximate worst scenario problems. The approximation isbased
on replacing the admissible setUad by its finite-dimensional approx-
imationUM

ad ⊂ Uad, and the spaceV by its finite-dimensional sub-
spaceVh. The symbolsh andM stand for the relevant discretization
parameters. If we replace the spaceV in (3.1) by its subspaceVh,
we obtain Galerkin approximationuh(A) ∈ Vh of the state solution
u(A). If we consider an approximation of (2.1)–(2.2), then the ele-
ments ofUad (some real, Lipschitz continuous functions) are substi-
tuted by the elements ofUM

ad that can be continuous, piecewise lin-
ear functions, defined by values at nodal pointsxi, i ∈ {1, . . . , M}.
For more detailed description of the setsUad andUM

ad see the fol-
lowing section. The finite-dimensional spaceVh usually is a finite
element space. The approximate worst scenario problem, dependent
on the choice ofUM

ad andVh, is defined in the following way: Find
AM0

h ∈ UM
ad such that

AM0
h = arg max

AM∈UM
ad

Φ(AM , uh(A
M)). (3.3)

This approach also provides a way to calculate, at least approxi-
mately, the worst scenarioA0.

To prove that the solution of problem (3.2) can be obtained asthe
limit of a sequence of solutions to the problems (3.3), we establish
the following assumptions:
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(i) the setsUad andUM
ad are compact inU ;

(ii) for any parameterA ∈ Uad there exists a unique state solution
u(A) of equation (3.1), and furthermore, a unique Galerkin ap-
proximationuh(A) ∈ Vh of the state solutionu(A);

(iii) the solution of the approximated state problem (that is, a finite-
dimensional parallel to (3.1)) depends continuously on thein-
put parameter, i.e., ifAn ∈ Uad andAn → A in U asn → ∞,
thenuh(An) → uh(A) in Vh;

(iv) if {Vhn
}, wherehn → 0 asn → ∞, is a sequence of finite-

dimensional subspaces ofV , and ifAn ∈ Uad, An → A in U as
n → ∞, thenuhn

(An) → u(A) in V ;

(v) it is possible to approximate anyA ∈ Uad with an arbitrary
accuracy by an elementAM ∈ UM

ad if M is a sufficiently large
number, i.e. there exists a sequence{AM}, AM ∈ UM

ad , such
thatAM → A in U asM → ∞;

(vi) the criterion functional is continuous, i.e. ifAn ∈ Uad, An → A

in U andvn → v in V asn → ∞, then

Φ(An, vn) → Φ(A, v).

We note that, except for (iv), these assumptions can also be found
in [13, Chapter II].

It is not difficult to show that under assumptions (i) – (vi) the
approximate worst scenario problem (3.3) has a solution. Wecan
proceed as follows: For eachA ∈ UM

ad , we define

Ψh(A) := Φ(A, uh(A)).
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Let An ∈ UM
ad andAn → A in U asn → ∞. It follows from (iii)

thatuh(An) → uh(A) in Vh. By virtue of assumption (vi) we get

Φ(An, uh(An)) → Φ(A, uh(A)),

which means that
Ψh(An) → Ψ(A).

Thus, the functionalΨ is continuous onUM
ad . Since, according to

assumption (i), the setUM
ad is compact inU , the functionalΨh has a

maximum inUM
ad , i.e., an elementAM0

h ∈ UM
ad solves problem (3.3).

�

Now, we are prepared to present the main theoretical result con-
cerning the existence of a solution to problem (3.2) and inspired by
[13, Theorem 3.4]. If the assumptions (i) – (vi) are fulfilled, then,
according to [8, Theorem 3.1], there exists a sequence{AMk0

hk
} of

solutions to the approximate worst scenario problems (3.3), AMk0
hk

∈
UMk

ad , such thathk → 0 andMk → ∞ ask → ∞, and

AMk0
hk

→ A0 in U, (3.4)

uhk
(AMk0

hk
) → u(A0) in V, (3.5)

Φ
(
AMk0

hk
, uhk

(AMk0
hk

)
)
→ Φ

(
A0, u(A0)

)
(3.6)

ask → ∞, whereA0 ∈ Uad solves problem (3.2) andu(A0) is the
corresponding solution to problem (3.1).

Remark We observe that it is possible to modify some of the asump-
tions (i) – (vi) above. To be specific, if we replace the strongcon-
vergenceuhn

(An) → u(A) in (iv) andvn → v in (vi) by the weak
convergence, then the conclusions (3.4) – (3.6) will be valid if we re-
place the strong convergence in (3.5) by the weak convergence. This
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latter modification of [8, Theorem 3.1] is applied to problemwith a
partial differential equation examined in [9], see also thefolowing
section.

3.2 Application to quasilinear elliptic differential equations with
uncertain coefficients

In this part, we apply the theoretical framework from Section 3.1
to problems with quasilinear elliptic differential equations with un-
certain coefficients. We suppose that the coefficients depend on the
squared gradient (derivative) of the state solution. Such equations
can describe some electromagnetic phenomena, fluid flow phenom-
ena, and the elastoplastic deformation of a body, see [15, page 212].
At first, we examine a problem with a partial differential equation,
after that we will give a result related to a problem with an ordinary
differential equation.

Consider the following state problem (the weak formulationof a
boundary value problem, see [9]): Findu ∈ H1

0(Ω) such that
∫∫

Ω

A(|∇u|2)∇u · ∇v dxdy =

∫∫

Ω

fv dxdy ∀v ∈ H1
0(Ω),

(3.7)
whereΩ ⊂ R

2 is a bounded open domain with a polygonal bound-
ary, H1

0(Ω) is the usual Sobolev space onΩ with vanishing traces
on ∂Ω, A = (aij)

2
i,j=1 is a diagonal matrix,aii, i ∈ {1, 2}, are Lip-

schitz continuous functions onR+
0 (nonnegative real numbers), and

f ∈ L2(Ω).

Now, we define the admissible set in more detail. To be able to
ensure the validity of assumptions mentioned in Section 3.1, we have
to select suitable admissible coefficients. We will consider positive,
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increasing, and bounded Lipschitz continuous functions defined on
R

+
0 . More precisly, the admissible setUad is defined in the following

way: LetU i
ad, i ∈ {1, 2}, be a set of Lipschitz continuous functions

aii defined onR+
0 and such that

0 < cmin,i ≤
daii

dx
≤CL,i a.e. in[0, xC], (3.8)

aii(x) =aii(xC) for x ≥ xC, (3.9)

0 < amin,i ≤ aii(x) ≤amax,i ∀x ∈ R
+
0 , (3.10)

whereCL,i, cmin,i, amin,i, amax,i, xC are positive constants. The ad-
missible setUad is defined as the Cartesian productU1

ad × U2
ad. It is

obvious that the elements ofUad can be represented by diagonal ma-
trices of functions. We observe thatUad is a subset of the Cartesian
productU×U , whereU is the Banach space of functions continuous
onR

+
0 and constant forx ≥ xC, for more details see [9].

The operator equation (3.1) arrises from (3.7) if we setV :=
H1

0(Ω) and defineA : V → V ∗ and b ∈ V ∗ by

〈Au, v〉 :=

∫∫

Ω

[a11(|∇u|2)uxvx + a22(|∇u|2)uyvy]dxdy (3.11)

and

〈b, v〉 :=

∫∫

Ω

fv dxdy,

whereu, v ∈ V and whereux, vx, uy, vy denote the partial deriva-
tives ofu andv.

As mentioned earlier, the existence of the solution to problem
(3.2) is proved via the convergence of the approximate worstsce-
narios. Therefore, we define the admissible setUM

ad and a finite-
dimensional subspaceVh of V . Let xj, j ∈ {1, . . . , M}, be equally
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spaced points in[0, xC], x1 = 0 andxM = xC. For i ∈ {1, 2}, we
define the setUM,i

ad ⊂ U i
ad of functionsa ∈ U i

ad such thata|[xj ,xj+1] ∈
P1([xj, xj+1]), j ∈ {1, . . . , M − 1}, whereP1([xj, xj+1]) denotes
the linear polynomials on the interval[xj, xj+1]. The admissible set
UM is defined as the Cartesian productUM,1

ad × UM,2
ad . To define the

spaceVh, we introduce a triangulationTh = {T1, . . . , TN} of Ω. Let
Vh be the space of functionsvh ∈ V , continuous onΩ and such that
vh|Tj

is a linear polynomial on the elementTj, j ∈ {1, . . . , N}. We
assume that the diameter of any triangleTj, j ∈ {1, . . . , N}, does
not exceedh.

On the condition that the assumption (vi) from the previous sec-
tion is fulfilled (the concrete criterion functional is appropriately se-
lected), to be able to apply [8, Theorem 3.1], we have to verify as-
sumptions (i) – (v), mentioned in Section 3.1.

By the Arzel̀a–Ascoli theorem, see [21, page 35], the setsU i
ad,

UM,i
ad , i ∈ {1, 2}, are compact inU , and, consequently, the admis-

sible setsUad andUM
ad are compact inU × U . It means that the

asssumption (i) is fulfilled.

The existence of the solution of problem (3.7) is guaranteedby
[22, Theorem 2.K.]. It is sufficient to verify that the operator A
defined by (3.11) is monotone, continuous, and coercive onV . The
proof of the continuity and the coercivity ofA is not too difficult, see
[9, Lemma 2.2 and Lemma 2.3]. The proof of the monotonicity of
the operatorA is a more challenging problem, see [9, Lemma 2.1].
To ensure the monotonicity ofA, we add the requierement (see [9]
for the details)

4xCCmax
L ≤ amin (3.12)

to the admissible setUad, whereamin := min
1≤i≤2

{amin,i}, Cmax
L :=
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max
1≤i≤2

{CL,i}. Therefore, if the condition (3.12) is fulfilled, the state

problem (3.7) has a solution. In addition, according to [9, Lemma
2.4], the operatorA is strictly monotone and by virtue of [22, page
93, Corollary 1] the uniqueness of the solution to the problem (3.7) is
guaranteed. The existence of the unique Galerkin approximation can
be proved similarly, see [9, Theorem 2.2]. So that, the assumption
(ii) is fulfilled.

The condition (3.12) ensuring the existence and uniquenessof the
state solution and its Galerkin approximation is also used to verify
the assumptions (iii) and (iv).

The assumption (iii) is fulfilled, see [9, Theorem 2.4].

To verify the assumption (iv), we have to introduce an appro-
priate sequence of finite-dimensional subspaces ofV . To this end,
let {Th}, h → 0, be a regular family of triangulations ofΩ , and
{Thn

} ⊂ {Th}, hn → 0 asn → ∞, be a sequence of these trian-
gulations. Let{Vhn

} be the corresponding sequence of the finite-
dimenional spaces defined above. Then, according to [8, Lemma
4.4] and [9, Theorem 2.5], the assumption (iv) is fulfilled, if we
replace the strong convergenceuhn

(An) → u(A) by the weak con-
vergence.

By [9, Lemma 2.5], the assumption (v) is also fulfilled.

Thus, under the condition (3.12) and Remark (see Section 3.1),
the worst scenario problem (3.2) with the operator state equation
given by (3.7) has a solutionA0 ∈ Uad. In addition, according to
[8, Theorem 3.1], this solution is the limit of a sequence of solutions
to approximate worst scenario problems (3.3). As will be shown
in the folloving section, to solve the problem (3.3) with givenUM

ad
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andVh requires, among others, to find the Galerkin approximation
uh(A

M) ∈ Vh, whereAM ∈ UM
ad , to the solution of the nonlinear

problem (3.7). This Galerkin approximation can be determined by
means of the Kachanov method as the limit of a sequence of the
solutions to linearized problems, see [9, Theorem 2.3]. To this end,
we define the following finite dimensional parallel to (3.7):
Finduh ∈ Vh such that

∫∫

Ω

A(|∇uh|2)∇uh · ∇v dxdy =

∫∫

Ω

fv dxdy ∀v ∈ Vh.

(3.13)
We show that under certain condition (see below) the Kachanov
method applied to problem (3.13) converges for anyA ∈ Uad. The
folloving part summarizes the results concerning the application of
the Kachanov method to problem (3.13).

To be able to formulate a sufficient condition for the convergence
of the Kachanov method, see (3.14) below, let us introduce some
necessary constants.

It follows from the equivalence of the norm‖ · ‖H1(Ω) and the
semi-norm| · |H1(Ω) in H1

0(Ω) that

|v|H1(Ω) ≥ C1‖v‖H1(Ω) ∀v ∈ V,

whereC1 > 0.
In the following, we will use the equivalence of norms on the

finite-dimensional spaceVh. To this end, we fix a triangulationTh

and the corresponding spaceVh. Let Vh,c be the space of functions
onΩ that are constant on each triangleTj ∈ Th, j ∈ {1, . . . , N}. It
follows from the equivalence of norms onVh,c that

‖v‖L∞(Ω) ≤ C2‖v‖L2(Ω) ∀v ∈ Vh,c ,

whereC2 > 0.

13



It holds

‖ux − vx‖L2(Ω) + ‖uy − vy‖L2(Ω) ≤ C3 ‖u − v‖V ∀u, v ∈ Vh ,

whereC3 > 0.
Now, assume that

2C2C3C
max
L ‖f‖L2(Ω)

√
xC

C4
1a

2
min

< 1. (3.14)

Then, according to [9, Theorem 2.3], the Galerkin approximation
uh ≡ uh(A) ∈ Vh of the solution to problem (3.7) can be calculated
by means of the Kachanov method:

Let u0 ∈ Vh be arbitrary. Ifuk ∈ Vh is known, the following
iterationuk+1 ∈ Vh is determined so that
∫∫

Ω

[a11(|∇uk|2)uk+1
x vx + a22(|∇uk|2)uk+1

y vy]dxdy =

∫∫

Ω

fv dxdy

for all v ∈ Vh. Then

‖uh − uk‖V → 0 as k → ∞.

In the end of this section, we turn our attention to the state prob-
lem examined in [8] and motivated by a boundary value problem
with ordinary differentially equation: Findu ∈ H1

0(0, 1) such that
∫ 1

0

a(u′2)u′v′dx =

∫ 1

0

fv dx ∀v ∈ H1
0(0, 1), (3.15)

where the functiona ∈ Uad is an admissible coefficient.

The admissible setUad can be defined in the same way asU i
ad

except for (3.8) that can be weakened to

0 ≤ da

dx
≤ CL a.e. in[0, xC],
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whereCL is a positive constant. The setUM
ad is defined analogously

asUM,i
ad . For more detailed information see [8]. By introducing

x0 = 0 < x1 < . . . < xN+1 = 1, we defineVh ⊂ H1
0(0, 1),

the space of functions continuous on[a, b], linear on the interval
[xj, xj+1], j = 0, . . . , N , and with vanishing value at0 and1.

As well as in the two-dimensional case, the solution of the prob-
lem (3.2) can be obtained as the limit of a sequence of the solutions
to approximate worst scenario problems (3.3). However, we ob-
tained rather stronger results in one-dimensional case.

It is possible to verify the assumptions (i) – (vi) analogously. In
this case, in contrast to the 2D–problem, a condition like (3.12) can
be omitted. In addition, we are able to prove that the correspond-
ing nonlinear operator defined by the left hand side of (3.15)is even
strongly monotone, see [8, Lemma 4.2]. This implies that we can
prove the strong convergenceuhn

(An) → u(A) in the assumption
(iv), see [8, Theorem 4.4], and, consequently, select the criterion
functional satisfying the assumption (vi) with the strong conver-
gencevn → v. It makes possible to use a larger class of criterions.
Furthermore, we obtain the strong convergence in (3.5).

4 Numerical examples

In this section, we will show a procedure to find, at least approx-
imately, a solution of problem (3.3). For computational simplicity
reasons, we confine ourselves to the one-dimensional problem ex-
amined in [8]. We will consider examples of equations with sym-
metric and non-symmetric right-hand side. The computations were
performed in MATLAB.

LetUM
ad be the finite-dimensional admissible set andVh the finite-
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dimensional subspace of Sobolev spaceH1
0(0, 1) concerning the one-

dimensional problem defined at the end of Section 3.2. At first, we
setΨ(a) = Φ(a, u(a)), so that we will examinea-dependent func-
tional Ψ defined onUM

ad . Furthermore, the finite-dimensional ad-
missible setUM

ad can be identified with a compact subsetÛM
ad of the

Euclidean spaceRM , if we define

ÛM
ad = {α ∈ R

M : ∃a ∈ UM
ad α = (α1, . . . , αM)

= (a(x1), . . . , a(xM))},

see also [1]. In this sense, the functionalΨ is, as a matter of fact, a
real functionΨ̂ = Ψ̂(α), whereα = (α1, . . . , αM) ∈ ÛM

ad . To obtain
the value of function̂Ψ at any pointα ∈ ÛM

ad , it is necessary to
solve the following nonlinear problem (a finite-dimensional analogy
to (3.15)): Finduh ∈ Vh such that

∫ 1

0

a(u′2
h )u′

hv
′dx =

∫ 1

0

fv dx ∀v ∈ Vh, (4.1)

wherea ∈ UM
ad , a(xi) = αi, i = 1, . . . , M . The solution of the

state problem (4.1) is obtained by using the Kachanov method(see
previous section). Subsequently, the criterion functional Φ is ap-
plied. Summarily, we solve the following global optimization prob-
lem arising from (3.3): Findα0 ∈ ÛM

ad such that

α0 = arg max
α∈ÛM

ad

Ψ̂(α).

To find the elementα0 at least approximately, we use the Nelder-
Mead simplex method, see, e.g., [16]. This method is implemented
by the standard MATLAB functionfminsearch. By means of this
algorithm, we can find a local extreme of a real function defined on
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the entire spaceRM . The Nelder-Mead algorithm starts from an ar-
bitrarily selected initial(M + 1)-simplex. It is sufficient to enter
an initial point, thefminsearchalgorithm determines the remaining
vertices of the initial simplex. The values at vertices are evaluated
and, subsequently, the simplex is transformed. If this procedure is
repeated, a non-increasing real sequence of function values is gen-
erated. This process continues until a termination criterion is met.

We have to solve a global optimization problem on the bounded
set ÛM

ad ⊂ R
M . To solve this problem by the unconstrained op-

timization routinefminsearch, we establish a transformationT :

R
M → ÛM

ad and search for the maximum of the composite func-
tion Ψ̂ ◦ T : R

M → R. We used the transformationT given in the
following way:

1. Let the parameters of the admissible setÛM
ad be:M , amin, amax,

CL, xC.

2. Letx = (x1, . . . , xM) ∈ R
M be arbitrary. We obtain the corre-

sponding valueT (x) = α = (α1, . . . , αM) ∈ ÛM
ad as follows:

For the first component ofα we define

α1 = amin +
(amax − amin)(

π
2 + arctanx1)

π
,

for αi, i = 2, . . . , M , we define

αi = αi−1 +
K(π

2 + arctanxi)

π
,

whereK = min{CLxC

M−1
, amax − αi−1}.

We observe that, to be allowed to use thefminsearchalgorithm
to solving of our maximization problem, we apply this algorithm to
function−Ψ̂ ◦ T .
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Now, we will present concrete numerical examples. We consider
problem (3.15), respectively its finite-dimensional parallel (4.1). Let
the parameters of admissible setUad be: amin = 1, amax = 6, CL =
0.3, andxC = 10. Let the dimension ofUM

ad be M = 11 and the
dimension of the finite element spaceVh beN = 50. We will solve
the state problem (4.1) with two different right-hand sidesf1 andf2.
In the concrete,f1(x) = 300x(1− x), and

f2(x) =

{
100 for 0 ≤ x ≤ 2

3

−100 for 2
3 < x ≤ 1.

The worst scenario problem (3.3) is solved with the following crite-
rion functional:

Φ(a, u(a)) = −106

∫ 1

0

[u(a) − uh(a
M0)]2 dx, (4.2)

whereuh(a
M0) ∈ Vh is the state solution of problem (4.1) computed

for the selected (and afterwards searched) parameteraM0. This pa-
rameter is determined by the vector of nodal valuesα0 = (3.00, 3.10,

3.30, 3.40, 3.45, 3.50, 3.70, 3.80, 3.95, 4.00, 4.20) ∈ ÛM
ad . It is not

difficult to show that the functionalΦ defined by (4.2) satisfies the
assumption (vi) from Section 3.1.

Figures 4.1 – 4.4 present the obtained results. The approximation
aM0

appr of the searched parameteraM0 is calculated for the right-hand
sidesf1 and f2 with using two different initial points. Also, the
parameterain corresponding to selected initial pointαin ∈ ÛM

ad and,
for comparison, the parameteraM0 are presented. In addition, the
value Ψ̂(αin) of the functionΨ̂ at the initial point, the final value
Ψ̂(α0

appr) at the pointα0
appr ∈ ÛM

ad corresponding to the parameter
aM0

appr, and the number of iterationsk of the Nelder-Mead simplex
method are presented.
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Figure 4.1 The approximationaM0
appr of the searched parameteraM0 for the right-

hand sidef1 and the given initial pointαin ∈ ÛM

ad corresponding to the parameterain

( Ψ̂(αin) = −1.2828.106 , Ψ̂(αM0
appr) = −0.86.10−2, k = 3000)
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Figure 4.2 The approximationaM0
appr of the searched parameteraM0 for the right-

hand sidef1 and the given initial pointαin ∈ ÛM

ad corresponding to the parameterain

( Ψ̂(αin) = −1.3589.105 , Ψ̂(αM0
appr) = −0.399.10−1, k = 2500)
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Figure 4.3 The approximationaM0
appr of the searched parameteraM0 for the right-

hand sidef2 and the given initial pointαin ∈ ÛM

ad corresponding to the parameterain

( Ψ̂(αin) = −9.1308.105 , Ψ̂(αM0
appr) = −0.1144, k = 6700)

0 2 4 6 8 10 12
0

1

2

3

4

5

6

 

 

a
in

a
appr
M0

aMO

Figure 4.4 The approximationaM0
appr of the searched parameteraM0 for the right-

hand sidef2 and the given initial pointαin ∈ ÛM

ad corresponding to the parameterain

( Ψ̂(αin) = −9.7035.104 , Ψ̂(αM0
appr) = −0.126.10−1, k = 4600)
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5 Publications

1. P. Harasim: On the worst scenario method: A modified convergence theo-
rem and its application to an uncertain differential equation. Preprint Series
in Mathematical Analysis, Mathematical Institute in Opava, Silesian Uni-
versity in Opava, MA 61/2007.

2. P. Harasim: On the worst scenario method: A modified convergence theo-
rem and its application to an uncertain differential equation. Appl. Math.
53 (2008), 583- 598.

3. P. Harasim: On the worst scenario method: A modified convergence theo-
rem and its application to an uncertain differential equation. Proceedings of
SNA’09, Institute of Geonics AS CR, Ostrava, February 2009,34-38

4. P. Harasim: Worst scenario method and other approaches to uncertainty.
Proceedings of Ph.D. Workshop 2009 (CD), Institute of Geonics AS CR,
Ostrava, November 2009

5. P. Harasim: On the worst scenario method: Application to a quasilinear
elliptic 2D-problem with uncertain coefficients. Appl. Math. Accepted

6 Presentations

1. Seminar on Numerical Analysis 2009 (SNA’09), Institute of Geonics AS
CR, Ostrava, February 2009. Lecture: On the worst scenario method: A
modified convergence theorem and its application to an uncertain differen-
tial equation.

2. Modelling 2009, Institute of Geonics AS CR, VŠB-Technical University
of Ostrava and International Association for Mathematics and Computers
in Simulations (IMACS), Rožnov pod Radhoštěm, Czech Republic, June
2009. Lecture: On the worst scenario method: Application toan uncertain
differential equation and numerical examples.
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3. Ph.D. Workshop 2009, Institute of Geonics AS CR, Ostrava,November
2009. Lecture: Worst scenario method and other approaches to uncertainty.

7 Long-term visits

1. Universidad de Murcia, October-December 2005, Murcia, Spain. Socrates-
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