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0. Introduction

The Thesis is based on four independent papers connected
by one common subject — they all study the theory of chaotic
discrete dynamical systems generated by continuous maps of a
compact metric space into itself. (For the first two papers see
[Bal] and [Ba2], the third [Ba3] and fourth one [Bad] will be
published in 2001.)

The first part provides a counterexample which disproves a
conjecture about orbit-enclosing w-limit sets stated by Agron-
sky and Ceder in 1991. The second part shows by several exam-
ples that triangular maps of the unit square admit phenomena
which cannot occur in the one-dimensional case. The third part
proves that any bitransitive continuous map of the interval is
conjugate to a map extremely chaotic in the sense of Li and
Yorke almost everywhere. Finally, the fourth part shows that
a similar assertion holds for distributional chaos, too: Any bi-
transitive continuous map of the interval is conjugate to a map
distributionally chaotic almost everywhere.

1. Basic terminology and notation

Let A be a topological space, f : A — A a continuous map,
x € A and n a nonnegative integer. By f™(z) we denote the
n-th iteration of z under f. The sequence {f™(z)}52,, where
f%(z) = z, is the trajectory of x under f, and the set wy(x)
of all limit points of the trajectory is the w-limit set of z. An
w-limit set is mazimal if it is not propely contained in any other



w-limit set, and an w-limit set is orbit-enclosing, if it contains
the trajectory.

If for any non-void subsets U and V of A there exists a
positive integer n such that f™(U)NV # @, then we say that f is
(topologically) transitive on A; f is bitransitive if f2 is transitive.
By a continuum we mean any compact connected set which
contains more than one point. A set M C A is arcwise connected
if each two points in M belong to some homeomorph of [0, 1]
which lies in M. A map F from a subset of A x A into itself is
called triangular if it is of the form F(z,y) = (f(z), g(z,y)).

Let I = [0,1] be the unit interval. By C(I,I) we denote
the set of continuous maps f : I — I. Function f € C(I,I) is
semiconjugate to g € C(I,I) if there is a surjective map h €
C(I,I) such that ho f = g o h. If h is bijective, then f and g
are conjugate.

A map f € C(I,1) is called chaotic in the sense of Li and
Yorke, briefly, LY-chaotic (resp. extremely LY-chaotic) if there
isan € > 0 and a set S C I containing at least two points
such that, for every z,y € S with « # y, limsup,,_, . |f"(z) —
ftW) = e (rvesp. limsup, . [f"(z) — f"(y)] = 1) and
liminf, o | f™(z)—f"(y)| = 0. The set S is called LY-scrambled
set (resp. extremely LY-scrambled set) of f. We say that a func-
tion f € C(I,I) is LY-chaotic almost everywhere if there is a
LY-scrambled set S of f with A(S) = 1, where A denotes the
Lebesgue measure.

For f € C(I,1), z,y € I, t € R, and a positive integer n, let

E(@,y,n,t) = 1{i;0 < i <mand |f(z) - f{(y)] < t}.
Put Iy, (t) = limsup,,_ Le(z,y,n,t), and Fpy(t) = liminf,
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L¢(z,y,n,t). Then both F,, and Fy, are nondecreasing func-
tions, with 0 < F,, < Fy < 1, F; (t) = 0 for t < 0, and
Fpy(t) = 1 for t > 1. We refer to F;, and Fy, as the upper
and lower distribution function of x and y, respectively. The
map f is distributionally chaotic (briefly, d-chaotic) in the wider
sense if there is a set S C I containing at least two points such
that, for any x # y in S, Fpy < Fy, (by this we mean that
Fyy(t) < Fy,(t) for all ¢ in a non-degenerate interval). Such S
is a d-scrambled set for f. If, in adition, for any = # y in 5,
liminf,, . [f™(x) — f"(y)| = 0, then we say that f is d-chaotic
in the narrow sense (see [SS]). Obviously, d-chaos in the nar-
row sense implies LY-chaos, but for d-chaos in the wider sense
it is not true (see Chapter 3). Moreover, a d-scrambled set S is
uniform if there is a (probability) distribution function F such
that, for any x # y in S, Fyy < F < F; = 1. The principal
measure of chaos of f is the number

1p(f) = sup / (F2 () = Fuy () dt

z,yeS

A pair of points (z,y), z,y € I, is called isotectic if, for
every positive integer n, the w-limit sets wyn» (z) and wyn(y) are
subsets of the same maximal w-limit set of f™. The spectrum of
f, denoted by X(f), is the set of minimal elements of the set
{Fyy; (x,y) is isotectic}.
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2. Conjecture of Agronsky and Ceder

A number of examples have induced Agronsky and Ceder to
formulate the following conjecture (see [AC1]).

A continuum K C E* is an orbit-enclosing w-limit set if and
only if it is arcwise connected.

The aim of this section is to give a counterexample disprov-
ing this assertion.

The crucial point of this section is the construction of a tran-
sitive map ¢ : D — D, where D = I? U ([1,00) x {1/2}), such
that for any = € [0, 00), lim,— oo ||¢(2,1/2)—(2,1/2)|| = 0. Then
the map ¢ is transformed by a homeomorphism h : D — I?UW,
where W is the graph of the curve y = % + %sin -, for
x €[1,2),intoamap F : S — S, where S = IPUW U ({2} x I),
and with the help of a theorem proved by Agronsky and Ceder
in [AC2] (in the Thesis Theorem 2) it can be easily seen that
the above described set is an orbit-enclosing w-limit set with
regard to F. That means that the set S together with the map
F : S — S is the required counterexample which disproves the
Agronsky and Ceder conjecture. Moreover, in this example the
set S has a non-empty interior and the map F' is triangular.

3. Distributional chaos for triangular maps
The natural question arising during the study of one-dimen-

sional dynamical systems is whether the results can be general-
ized to higher-dimensional dynamical systems.
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It is known (see e.g. [FPS], [Ko]) that there are phenomena in
higher-dimensional dynamical systems which are impossible in
the one-dimensional case, and that such phenomena occur even
for two-dimensional dynamical systems generated by triangular
maps of the unit square, i.e. by the most simple non-trivial two-
dimensional mappings.

The aim of this section is to prove that the below listed
properties of one-dimensional dynamical systems disappear if
we go over to dynamical systems generated by triangular maps
of the unit square:

Property 1 (see [SS]). For any f € C(I,I) the spectrum of f
is non-empty and finite.

Property 2 (see [J]). For any f € C(I,I) the principal measure
of chaos of f is generated by a pair of points.

Property 3 (see [SS]). Any distributionally chaotic map f €
C(I,1I) is chaotic in the sense of Li and Yorke.

This aim has been achieved by construction of three trian-
gular mappings of the unit square: the first one has an infinite
spectrum, the second one is d-chaotic but its principal measure
of chaos is not generated by any pair of points and its spectrum
is empty, and the third one is d-chaotic in the wider sense but
not chaotic in the sense of Li and Yorke.

4. LY-chaos and transitivity
In the early eighties Gy. Targonski formulated the question

whether there are any functions f € C(I,I) with scrambled
sets of positive Lebesgue measure. After several partial result



(see e.g. in [S1] the Smital’s example of a function with LY-
scrambled set with full outer Lebesgue measure). The question
was finally answered in the affirmative in 1984 by Kan and
Smital who gave independently of each other examples of func-
tions with LY-scrambled sets of positive Lebesgue measure (see
[Ka] and [S2]). Moreover, in 1985 Misiurewicz (see [M]) and in
1987 Bruckner and Hu (see [BH]) presented examples of func-
tions with LY-scrambled set with full Lebesgue measure (i.e.
examples of functions chaotic almost everywhere).

As follows from this survey, up to now only individual ex-
amples of functions with LY-scrambled sets of positive Lebesgue
measure have been published. The natural question is therefore
to give a universal description of all such functions. This sec-
tion provides the first step in this direction — it shows that
the property of being LY-chaotic almost everywhere is univer-
sal for all bitransitive maps up to a homeomorphism. Actually,
the main result of this section goes much deeper than that —
it shows that (up to a homeomorphism) all bitransitive maps
are not only LY-chaotic but even extremely LY-chaotic almost
everywhere. More precisely, the following theorem is proved.
Theorem A. Any bitransitive map f € C(I,I) is topologically
conjugate to an almost everywhere extremely LY-chaotic map
geC,I).

Using a result of A. M. Blokh (see [B]) we get as a conse-
quence of Theorem A that for any map f € C(I,I) with positive
topological entropy there is a positive integer k such that f¥ is
semiconjugate to a continuous map extremely LY-chaotic almost
everywhere.
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5. Distributional chaos and transitivity

The last part of the Thesis studies the effects of replacing
chaos in the sense of Li and Yorke in Theorem A by distribu-
tional chaos. It turns out that the main idea underlying the
proof of Theorem A can be used for proving its direct anologue
for distributional chaos. Through this section d-chaos means d-
chaos in the narrow sense.

Theorem B. Any bitransitive map f € C(I,I) is topologically
conjugate to an almost everywhere d-chaotic map g € C(I,1).

Moreover, certain features of the construction used in the
proof of Theorem B make it possible to prove in a short and
simple way the following slightly stronger version of this theo-
rem.

Theorem C. Any bitransitive map f € C(I,I) is topologically
conjugate to a map g € C(I,I) with uniform d-scrambled set S
of the full Lebesgue measure.

The result of A. M. Blokh (see [B]) can be used for distribu-
tional chaos in the same way as it was used for LY-chaos in the
close of Section 4 — by applying Blokh’s result to Theorem C we
can show that for any map f € C(I,I) with positive topological
entropy there is a positive integer k such that f* is semiconju-
gate to a continuous map d-chaotic almost everywhere.

Finally, let us remark that the assertion “any bitransitive
map f € C(I,I) is topologically conjugate to an almost ev-
erywhere LY-chaotic map g € C(I,I)” (i.e. a weak version of
Theorem A) can be easily deduced directly from Theorem C.
However, there are good reasons for choosing the approach pre-
sented in the Thesis. First, Theorem C provides chaoticity but
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not extreme chaoticity of the map g, and second, the — rather
technical and lengthy — proof of Theorem C is much more trans-
parent on the background formed by techniques and ideas de-
veloped in the course of proving Theorem A. Last, but not least,
the decisive motivation for studying the above described ques-
tions for distributional chaos comes from the successful proof of
Theorem A for chaos in the sense of Li and Yorke.
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