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Matematický ústav SU, Opava
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0. Introduction

The Thesis is based on four independent papers connected
by one common subject — they all study the theory of chaotic
discrete dynamical systems generated by continuous maps of a
compact metric space into itself. (For the first two papers see
[Ba1] and [Ba2], the third [Ba3] and fourth one [Ba4] will be
published in 2001.)

The first part provides a counterexample which disproves a
conjecture about orbit-enclosing ω-limit sets stated by Agron-
sky and Ceder in 1991. The second part shows by several exam-
ples that triangular maps of the unit square admit phenomena
which cannot occur in the one-dimensional case. The third part
proves that any bitransitive continuous map of the interval is
conjugate to a map extremely chaotic in the sense of Li and
Yorke almost everywhere. Finally, the fourth part shows that
a similar assertion holds for distributional chaos, too: Any bi-
transitive continuous map of the interval is conjugate to a map
distributionally chaotic almost everywhere.

1. Basic terminology and notation

Let A be a topological space, f : A → A a continuous map,
x ∈ A and n a nonnegative integer. By fn(x) we denote the
n-th iteration of x under f . The sequence {fn(x)}∞n=0, where
f0(x) = x, is the trajectory of x under f , and the set ωf (x)
of all limit points of the trajectory is the ω-limit set of x. An
ω-limit set is maximal if it is not propely contained in any other
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ω-limit set, and an ω-limit set is orbit-enclosing , if it contains
the trajectory.

If for any non-void subsets U and V of A there exists a
positive integer n such that fn(U)∩V �= ∅, then we say that f is
(topologically) transitive on A; f is bitransitive if f2 is transitive.
By a continuum we mean any compact connected set which
contains more than one point. A set M ⊂ A is arcwise connected
if each two points in M belong to some homeomorph of [0, 1]
which lies in M . A map F from a subset of A× A into itself is
called triangular if it is of the form F (x, y) = (f(x), g(x, y)).

Let I = [0, 1] be the unit interval. By C(I, I) we denote
the set of continuous maps f : I → I. Function f ∈ C(I, I) is
semiconjugate to g ∈ C(I, I) if there is a surjective map h ∈
C(I, I) such that h ◦ f = g ◦ h. If h is bijective, then f and g
are conjugate.

A map f ∈ C(I, I) is called chaotic in the sense of Li and
Yorke, briefly, LY-chaotic (resp. extremely LY-chaotic) if there
is an ε > 0 and a set S ⊂ I containing at least two points
such that, for every x, y ∈ S with x �= y, lim supn→∞ |fn(x) −
fn(y)| ≥ ε (resp. lim supn→∞ |fn(x) − fn(y)| = 1) and
lim infn→∞ |fn(x)−fn(y)| = 0. The set S is called LY-scrambled
set (resp. extremely LY-scrambled set) of f . We say that a func-
tion f ∈ C(I, I) is LY-chaotic almost everywhere if there is a
LY-scrambled set S of f with λ(S) = 1, where λ denotes the
Lebesgue measure.

For f ∈ C(I, I), x, y ∈ I, t ∈ R, and a positive integer n, let

ξ(x, y, n, t) = �{i; 0 ≤ i < n and |f i(x) − f i(y)| < t}.
Put F ∗

xy(t) = lim supn→∞
1
nξ(x, y, n, t), and Fxy(t) = lim infn→∞
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1
nξ(x, y, n, t). Then both Fxy and F ∗

xy are nondecreasing func-
tions, with 0 ≤ Fxy ≤ F ∗

xy ≤ 1, F ∗
xy(t) = 0 for t < 0, and

Fxy(t) = 1 for t > 1. We refer to F ∗
xy and Fxy as the upper

and lower distribution function of x and y, respectively. The
map f is distributionally chaotic (briefly, d-chaotic) in the wider
sense if there is a set S ⊂ I containing at least two points such
that, for any x �= y in S, Fxy < F ∗

xy (by this we mean that
Fxy(t) < F ∗

xy(t) for all t in a non-degenerate interval). Such S
is a d-scrambled set for f . If, in adition, for any x �= y in S,
lim infn→∞ |fn(x)− fn(y)| = 0, then we say that f is d-chaotic
in the narrow sense (see [SS]). Obviously, d-chaos in the nar-
row sense implies LY-chaos, but for d-chaos in the wider sense
it is not true (see Chapter 3). Moreover, a d-scrambled set S is
uniform if there is a (probability) distribution function F such
that, for any x �= y in S, Fxy ≤ F < F ∗

xy ≡ 1. The principal
measure of chaos of f is the number

µp(f) = sup
x,y∈S

∫ 1

0

(F ∗
xy(t) − Fxy(t))dt

.
A pair of points (x, y), x, y ∈ I, is called isotectic if, for

every positive integer n, the ω-limit sets ωfn(x) and ωfn(y) are
subsets of the same maximal ω-limit set of fn. The spectrum of
f , denoted by Σ(f), is the set of minimal elements of the set
{Fxy; (x, y) is isotectic}.
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2. Conjecture of Agronsky and Ceder

A number of examples have induced Agronsky and Ceder to
formulate the following conjecture (see [AC1]).
A continuum K ⊂ Ek is an orbit-enclosing ω-limit set if and
only if it is arcwise connected.

The aim of this section is to give a counterexample disprov-
ing this assertion.

The crucial point of this section is the construction of a tran-
sitive map ϕ : D → D, where D = I2 ∪ ([1,∞) × {1/2}), such
that for any x ∈ [0,∞), limx→∞ ||ϕ(x, 1/2)−(x, 1/2)|| = 0. Then
the map ϕ is transformed by a homeomorphism h : D → I2∪W ,
where W is the graph of the curve y = 1

2 + 1
2 sin π

x−2 , for
x ∈ [1, 2), into a map F : S → S, where S = I2 ∪W ∪ ({2}× I),
and with the help of a theorem proved by Agronsky and Ceder
in [AC2] (in the Thesis Theorem 2) it can be easily seen that
the above described set is an orbit-enclosing ω-limit set with
regard to F . That means that the set S together with the map
F : S → S is the required counterexample which disproves the
Agronsky and Ceder conjecture. Moreover, in this example the
set S has a non-empty interior and the map F is triangular.

3. Distributional chaos for triangular maps

The natural question arising during the study of one-dimen-
sional dynamical systems is whether the results can be general-
ized to higher-dimensional dynamical systems.
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It is known (see e.g. [FPS], [Ko]) that there are phenomena in
higher-dimensional dynamical systems which are impossible in
the one-dimensional case, and that such phenomena occur even
for two-dimensional dynamical systems generated by triangular
maps of the unit square, i.e. by the most simple non-trivial two-
dimensional mappings.

The aim of this section is to prove that the below listed
properties of one-dimensional dynamical systems disappear if
we go over to dynamical systems generated by triangular maps
of the unit square:
Property 1 (see [SS]). For any f ∈ C(I, I) the spectrum of f
is non-empty and finite.
Property 2 (see [J]). For any f ∈ C(I, I) the principal measure
of chaos of f is generated by a pair of points.
Property 3 (see [SS]). Any distributionally chaotic map f ∈
C(I, I) is chaotic in the sense of Li and Yorke.

This aim has been achieved by construction of three trian-
gular mappings of the unit square: the first one has an infinite
spectrum, the second one is d-chaotic but its principal measure
of chaos is not generated by any pair of points and its spectrum
is empty, and the third one is d-chaotic in the wider sense but
not chaotic in the sense of Li and Yorke.

4. LY-chaos and transitivity

In the early eighties Gy. Targoński formulated the question
whether there are any functions f ∈ C(I, I) with scrambled
sets of positive Lebesgue measure. After several partial result
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(see e.g. in [S1] the Smı́tal’s example of a function with LY-
scrambled set with full outer Lebesgue measure). The question
was finally answered in the affirmative in 1984 by Kan and
Smı́tal who gave independently of each other examples of func-
tions with LY-scrambled sets of positive Lebesgue measure (see
[Ka] and [S2]). Moreover, in 1985 Misiurewicz (see [M]) and in
1987 Bruckner and Hu (see [BH]) presented examples of func-
tions with LY-scrambled set with full Lebesgue measure (i.e.
examples of functions chaotic almost everywhere).

As follows from this survey, up to now only individual ex-
amples of functions with LY-scrambled sets of positive Lebesgue
measure have been published. The natural question is therefore
to give a universal description of all such functions. This sec-
tion provides the first step in this direction — it shows that
the property of being LY-chaotic almost everywhere is univer-
sal for all bitransitive maps up to a homeomorphism. Actually,
the main result of this section goes much deeper than that —
it shows that (up to a homeomorphism) all bitransitive maps
are not only LY-chaotic but even extremely LY-chaotic almost
everywhere. More precisely, the following theorem is proved.
Theorem A. Any bitransitive map f ∈ C(I, I) is topologically
conjugate to an almost everywhere extremely LY-chaotic map
g ∈ C(I, I).

Using a result of A. M. Blokh (see [B]) we get as a conse-
quence of Theorem A that for any map f ∈ C(I, I) with positive
topological entropy there is a positive integer k such that fk is
semiconjugate to a continuous map extremely LY-chaotic almost
everywhere.
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5. Distributional chaos and transitivity

The last part of the Thesis studies the effects of replacing
chaos in the sense of Li and Yorke in Theorem A by distribu-
tional chaos. It turns out that the main idea underlying the
proof of Theorem A can be used for proving its direct anologue
for distributional chaos. Through this section d-chaos means d-
chaos in the narrow sense.
Theorem B. Any bitransitive map f ∈ C(I, I) is topologically
conjugate to an almost everywhere d-chaotic map g ∈ C(I, I).

Moreover, certain features of the construction used in the
proof of Theorem B make it possible to prove in a short and
simple way the following slightly stronger version of this theo-
rem.
Theorem C. Any bitransitive map f ∈ C(I, I) is topologically
conjugate to a map g ∈ C(I, I) with uniform d-scrambled set S
of the full Lebesgue measure.

The result of A. M. Blokh (see [B]) can be used for distribu-
tional chaos in the same way as it was used for LY-chaos in the
close of Section 4 — by applying Blokh’s result to Theorem C we
can show that for any map f ∈ C(I, I) with positive topological
entropy there is a positive integer k such that fk is semiconju-
gate to a continuous map d-chaotic almost everywhere.

Finally, let us remark that the assertion “any bitransitive
map f ∈ C(I, I) is topologically conjugate to an almost ev-
erywhere LY-chaotic map g ∈ C(I, I)” (i.e. a weak version of
Theorem A) can be easily deduced directly from Theorem C.
However, there are good reasons for choosing the approach pre-
sented in the Thesis. First, Theorem C provides chaoticity but
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not extreme chaoticity of the map g, and second, the — rather
technical and lengthy — proof of Theorem C is much more trans-
parent on the background formed by techniques and ideas de-
veloped in the course of proving Theorem A. Last, but not least,
the decisive motivation for studying the above described ques-
tions for distributional chaos comes from the successful proof of
Theorem A for chaos in the sense of Li and Yorke.
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