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From semisprays to connections, from geometry
of regular O.D.E. in mechanicsto geometry of
horizontal Pfaffian P.D.E. on fibered manifolds
(and vice versa)!

A. Vondra

Abstract. The paper sumarizes motivations and interim investigations which have let
to a recently established formalism related to the geometry of higher-order equations
represented by connections on prolongations of afibered manifold. Then the crucial ideas
and results of the theory are presented.
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1. Motivations

The classical results from the Riemannian and Finslerian geometries characterizing
the extremal s of some specific (arc length and (kinetic) energy) lagrangians as geodesics
of canonical (Levi-Civita, Cartan) connections and the role of vector fiels called sprays
as generators of corresponding second-order ordinary differential equations are well-
known for along time; we can refer to [1], [31], [35], [59], [68], [74] in particular.

The classical underlying structure is here made of a differentiable m-dimensional
manifold M with local coordinates (q°). A linear connection on M is defined as a co-
variant derivative V : X(M) x X(M) — X(M) (or equivaently as the corresponding
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parallel lift) on vector fieldson M. A geodesicsisacurvec: J ¢ R — M, whose tan-
gent vector field dc/dt : 3 — T M is paralel with respect to the connection (covariant
derivative vanishes). The corresponding condition is nothing but a system of m linear
second-order ordinary differential equations for the componentsc” = g° o c of c:

d’c” __dc dc!
—2 + ij -
dt dt dt
where the functions I', € F(M) are the well-known Christoffels. A spray is a vector
field on the tangent bundle T M, horizontal with respect to the projection TTM — TM
and compatible with homothetieson T M. A geodesic spray ¢ for alinear connection V
is defined through the connection mapping and found out to be the only spray defining

just the linear second order differential equations for geodesics of the connection. In
coordinates,

D

=0, o=1...,m,

o d o i j 9
2 = q(l)W + FijQél)q(Jl)WErl)‘

The classical approach, defining very often geometric objects astransformation rules
of local coordinate expressions, survived in investigations of corresponding generaliza-
tions within some mathematical groups; cf. [3], [5], [32], [60], [75].

Another approach allowing more global point of view to the topic was introduced
and then worked out in [7], [8], [13], [19], [33], [34], [69], [76]. The corresponding
results were still intrinsically related to the underlying structures of tangent bundie T M
of amanifold M. The studied connection is no more necessarily linear, being defined as
a horizontal vector distribution in TM or equivalently as (1, 1)-tensor field I" on TM
compatible with the so-called almost tangent structure J on TM (inspired by [30]):
' = C, JI' = J, with C being the Liouville vector field on T M. The notion of the
spray is generalized to avector field called semispray and the relationship between con-
nections and semispraysis studied in details. The relation to an autonomous Lagrangian
L and Hamiltonian formalism is then studied through the Poincare-Cartan 2-form w,
related to theenergy E = 9. L — L of thelagrangian L in the Euler—agrange equation

®) i, =dE.

If L isregular and homogeneous, then there is a unique solution ¢ of (3), which is
a spray and the canonical projections of whose integral sections are just the extremals
of L. Consequently, I' = —d,, J isthe unique (linear) connection without torsion whose
paths are precisely the extremals of L.

Afterwards, analogous results were presented also on TKM e.g. in [10], [11], [12],
[14], [22].

These autonomous ideas has been then naturally extended to the time dependent sit-
uation: [9], [20], [21], [22]. First, the underlying structureishere R x T M, to where all
the structuresfrom T M are naturally extended. The crucial tool isagain acanonical ver-
tical endomorphism, now definedby S= J —C ® dt. A semispray isthen avector field
tonR x TM described by St = 0and J¢ = C. A path of ¢ isacurvecin M, such
that ¢ := (t, ¢, dc/dt) isanintegra curve of ¢. In addition to autonomous situation, the
so-called dynamical connections are appearing, defining further decompositions of as-
sociated tangent bundles to strong and weak horizontal distributions. Just through these
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distributions, the associated semisprays are defined. Namely, adynamical connectionis
an endomorphismon T(R x TM), suchthat JI' = SI' = ST'S=-ST'J = —-J.
It can be identified with an f (3, —1) structure, which meansthat ' — I' = 0. Its path
is the so-called weak horizontal curve in M and it is shown that there is a dynamical
connectionI" = —9, Swith the same paths for any semispray ¢. Inausual way it is pos-
sible to associate uniquely the so-called Lagrange vector field to any regular lagrangian
L on R x TM. Thus adynamica connection whose paths are just the extremals of L
can be found.

Our approach, introduced in [78-81], was based on a generalization of the notion
of higher-order semisprays to a genera fibered manifold = : Y — X with one-
dimensional base X, which had to be reflected in the invariancy of al the concepts
with respect to the changes of fibered coordinates. Thus we defined the semispray dis-
tribution as an horizontal subbundle with respect to the corresponding fibration, and
we applied the properties of (generalized) higher-order connections in order to relate
them with semispray distributions. We also described the conditions for connections on
7y 1 to be associated to a given connection of order (r + 1) on 7z interms of relations
of the corresponding horizontal distributions and consequently the equations. Then we
discussed the whol e class of natural dynamical connectionson J" 7 canonically associ-
ated to agiven connection of order (r + 1) on  asageneralization of the corresponding
objectson R x T" M. All the structures wereintrinsically related to the geometry of un-
derlying jet bundles. On the other hand, the one-dimensional base allowed to consider a
special classof natural affinors (according to[23] for Rx T' M and [72] for J" ), being
in particular generated by volume forms on the base X of the fibered manifold. As the
main sources of the formalism and for the motivations we used [42],[44],[45] and [72].
The crucial definitions and properties of various connections on fibered manifolds were
dueto [56],[57]. The obtained results were then applied to a description of the geometry
of regular dynamics, using again [42], [44-45] together with [46], through which the
corresponding approach to the Lagrange and Hamilton formalism in time-dependent
higher-order dynamics by means of the regular lagrangian and its Lepagean equival ent
was applied. Moreover, we used the results of the papers [48], [49], which developed
the Hamilton theory directly from locally variational equations.

2. Interim investigations

All the motivations have lead to an essentia requirements: to investigate connec-
tions as equations and to do this in the most general situation, i.e., on a general fibered
manifold with an arbitrary dimensional base. In particular, it meant the study of special
“horizontal” kind of Pfaffian partial differential equations represented by the connec-
tions. The investigations went in two parallel and closely related directions.

First, atheory of natural operators (differential invariants) in sense of [40] and [47]
has been found of particular usefulness when studying certain natural operations be-
tween various connections on prolongations of afibered manifold in [24], [25]. A more
detailed analysis of the formalism used amounted to the conclusion that there is a gen-
eral framework the problems could be studied within. In [26], a new approach to the
study of connections in 2-fibered manifolds was introduced and the role of naturality
for this situation was discussed.
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Following [36], a2-fibered manifold isaquintuple Z-5Y- 5 X, whererr 1 Y — X
andp : Z - Y andthusalsow o p : Z — X are fibered manifolds. Our contribu-
tion rests upon the study of the role of an arbitrary fibered morphism & : Z — Jix.
The point is that one of the most interesting particular cases of such a morphism is
represented by ® = F'op withT" : Y — J'7 being aconnection on . The adopted ap-
proach was used in two particular situations: first, we studied natural relations between
connectionsin 3t 23 Y25 X with 7w : Y — X being a general fibered manifold and
w10 It = JY — Y the canonical affine bundle generated by 7. The situation can
be described diagamatically by

J(ry,0.idx)
X < gy B g1
lidx ﬂl,Ol (ﬂl)l,Ol
. (71,001,
(4) X < Y <—7T10 NES <—n1010 JlJTLo
b ol e
id id
X <% X R X.

Within this scheme, an alternative definition of the well-known semiholonomic jets has
been given and the formal curvaturemap R : 310 — 717 (V, Y ® 7*(A?T*X)) was
introduced. Among the results, we have shown that all natural operators transforming a
connection I on = and a connection ¥ on 3 o iNto a connection E on 73 being of the
zero order in W form a4-parameter family

(T, W) > k2P o W 4+ c(Ro T o m10) + dkp o W

fordl a,b,c,d € R, where R is the formal curvature map, kfl’b =kr, + bR, 'y =
idp, +al omo—idy,), ke : Jtmo — Iz isan affine bundle morphism defined
for any fibered morphism & : J7 — J'z (and especially for I',) as the composition

(m1,0)1,0xid dxid

k
Jlnl’o Jln Xy Jlﬂ'l,o E— JlJT Xy Jlnl,o E— 317'[1,

k is a canonical fibered morphism realizing the ‘derivative of composed sections';
and «r is (analogously to formal curvature map) the formal mixed curvature map
Kr - Jlﬂl,o — tho(VnY ® T*(A?T*X)).

Secondly, we worked with a 2-fibered manifold V, Y —>Y > X, where  is again
afibered manifold and p = y|y,y : VY — Y itsvertica bundle. Here, the situation
isthefollowing

I (zy.idy)
DA A I o ty) BN anler

idx l”l.o (ﬂOTY)l.Ol

(zv)1,
r PR V,Y < g1

(nory)l
X ’

©®)

idy
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where by v; we denote the canonical isomorphism between J*(r o 7y |y, v) and the sub-
bundle V., J'7 of 7;-vertical vectors on Jx. Here, al natural operators transforming
aconnection I on 7 and a connection ¥ on 7y : V.Y — Y into the connection E on
oty V,Y — X beng of the zero order in ¥ form a 2—parameter family

(I, W) > koa , oW + bD(kr oW, VT)

for dl a, b € R, where we refer to [26] for the details. Notice here only that VT isthe
vertical prolongation of the connection I, defined (following [37]) by VI" = vy 0 VT,
being thus a connection on (;r o y). This has been effectively used for finding a linear
connectionon zy : V,,Y — Y whose integral sections are just the symmetries of I".

The usefulness of such considerations for a description of the geometry of first and
second-order differential equations systems represented by these connections became
apparent in [54] and [82].

In [54], two dual indirect integration methods were discussed, both transferring the
givenintegration problem to that of solving related connections. In case of thefirst-order
system represented by a connection E on w1, the method of characteristics means
that the uniquely determined 2-connection I'® : J'z — J2?x, called characteristic
to E, was solved. More specifically, a connection E on 71 o is called characterizable if
Ro E = 0, where Ristheformal curvature map. If E is characterizable and Hgz its hor-
izontal distribution, then a 2-connection T'® : Jlr — J%x (within the framework of
(4) asaspecial type of aconnection on ;) is caled the characteristic connection of E,
if its horizontal distribution H isrelated to Hg and the canonical Cartan distribution
Cr.o by Hr@ = Hz N Cyy . Thedistribution Hr of the characteristic connection I'®
of E is caled the characteristic distribution of & and the integral manifolds of Hp
of maximal dimension are called the characteristics of the connection . Clearly, the
maximal integral manifolds of Hz (integral sections of E) are foliated by the maximal
integral manifolds of the characteristic distribution (characteristics, 1-jet prolongations
of integral sections of the characteristic connection). Accordingly, integral sections of
E are “glued together” from the characteristics.

Conversely, the method of fields of paths for the second-order system represented by
'@ wasintroduced. First, we have shown that if Z isan integrable characterizable con-
nection on 7y o and I'® its characteristic 2-connection on 7, then I'? isintegrable, and
each integral section of I'® islocally embedded in afield of paths I, which is an inte-
gral section of 2. A connectionT' : Y D V — Jlr isafield of paths of I'® if and only
if T(V) is foliated by first jets of integral sections of I'®, i.e,, if Hra|rv) = CJ ..
Then alocal connection E on 71 is caled an integral of I'® if Z is integrable and
'@ isits characteristic connection. We have shown that the existence of integrals of an
integrable 2-connection is a direct consequence of the integrability property, and that
one can construct an integral of I'® by means of a set of independent first integrals
of Hr . This procedure generalized the well-known Hamilton—Jacobi theory of calcu-
lus of variations in the sense of [49], [50] (and afterwards [53]), to non-variational and
partia differential equations.

The complementary constructions (in the sense of decompositions generated by a
connection in question) were introduced in [82], having to do with symmetries of corre-
sponding equations. Here, the vertical prolongations of first and second-order connec-
tions in the sense of [36], [37], [40], [61], and [88] appeared to be of importance, and
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certain related “strong horizontal” concepts (reduced connections) were established,
following the ideas of [88].

The application of the above formalism for the first and second order ordinary dif-
ferential equations was presented in [83].

3. Higher-order equationsrepresented by connections

A natural requirement was to generalize the whole theory to the higher-order situ-
ation, i.e., to higher order connections and equations. This has been done in [84], the
material of which has been prepared for publication in [85] (for O.D.E.) and [86]. In
what follows, we thus work with standard framework and notation of jet prolongations
of afibered manifold = : Y — X, according to [72]. Following the aim of this paper
and space limitations, we do not give precise description of all notions we work with
and we refer to the above mentioned papers for full details.

First, the equations represented by higher-order connections are described, following
and combining the ideas and formalism of [2], [6], [29], [62], [63], [67], [72], [77].

By ak-th order differential equation on afibered manifold 7 : Y — X ismeant a
fibered submanifold £® of  : Jkr — X such that

-1
nk,kfl O Tk k—1 (g(k)) ;ﬁ 5(k).

A solution of £® isasectiony € Sy () suchthat jXy ¢ £X. Equations are frequently
defined by fibered morphisms. Thusif ® : JXz — Y’ isafibered morphism of constant
rank between m and =’ over X, the corresponding differential operator isthe mapping
Do : Sioc() = Sioc(’) defined by Do, () (x) = (Poj*y)(x),andforany ¢ € Sy (')
satisfying ¢ (U) C Im®, the k-th order differential equation determined by ® and v is

Eooy =ker, @ = {jfy; @(jfy) =y (0} C 37

Accordingly, a solution of £, is y € Sy(r) such that Do(y) = ¥|v, which in
coordinates means a system of P.D.E.

aky)»

o I A | |

(x‘)) =7 (X)),

whereo = 1, ..., dimx’. The Cartan distribution of the k-th order equation £® ¢
JK istheintersection

Cf = Cpp , NTEW,

carrying the most important information on the equation.
The equation of order (k + 1) represented by a (k + 1)-connection M ®+V : Jkz —
J**17 on 7 isthe submanifold

(k)

5r(k+1> _ F(k+1)(Jkn) - Jk+l7f,

realizing (generally nonlinear) system of PD.E. in normal form, i.e., explicitly solved
with respect to the highest derivatives:

k+1, 0o k
(6) T re o (xhy? 0y
axit. .. gyl Tk AR axit...gxik )’
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A section y € Sjc(n) iscaled thelntegral section (path) of T'®+D if it is the solution

of M7 i, if jktly = T o jky Evidently,
grtH _ okt
Vrk+1,0°

which corresponds to the characterization of integral sections as those y € Sioc()
whose covariant derivative Vi (y) := Vi o j¥H1y vanishes. On the other hand,
a (k + 1)-connection I'**+D represents a Pfaffian system

@’ =0 dy” =y dx
™ c o[ = _
Chies = dydl ker = Vi OX
rk+d o o i
wjl'“jk =0 dyial"*Jk = 1—‘11 Jid dxl’

hence y € Sy (r) isanintegral section of IV if, and only if, j¥y (U) isan integral
manifold of Hr«u, i.e., for each x € U it holds Ty j*y (TxU) € Hrwin (jXy). Interms
of hp+n it means

Nrein |k, = Tjky oTmy: T]-E),Jkr[ — T]-E},Jkr[.

A (k + 1)-connection I'®+D on 7 isintegrable if, and only if, one of the following
equivalent conditions holds:

— For an arbitrary y € Y, there is a unique integral section of I'®+D passing
through it.

— The horizonta distribution Hp«+1) is completely integrable.

— [Dr&+i, Dpon ] = Ofor dl i, p.

— The connection F("“) isflat, i.e., Rruy = 0.

JLT®HD Jidy) 013 o T*HD ¢ I+,

—The components of T**Y satisfy D (T, p) = Drunp(T,..) for arbi-
trayi,p=1,.
Denote by
Cr(k+1) — anJrl’k N TF(kJrl)(Jkn)

the Cartan distribution of the equation represented by I'**D_ Clearly, it is aregular n-
dimensional distribution on the submanifold T ®+D (Jkxr) c Jk+171 annihilated by the
forms of ., (¢ = 0,...,k — 1) together with d_ﬁl---jk TS dx' and dle der —
dare or equivalently spanned by the vector fields

jarjkea?

Tr**D (Do)

ad ad
=D Vg — gy —
X £=0 o ayigl'"J'z n ayjl"'jk
d
ay]?lmikp
Then it is easy to prove that a (k + 1)-connection &b on 7 isintegrableif, and only

if, the distribution CT*“"" iscompletely integrable, and asectlon y isanintegra section
of I®+D if, and only if, j*+1y istheintegral mapping of CI*™

“l_ Dl"(k+l) p(Ffljkl )
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In accordance with the above general situation, a (k + 1)-connection T**D on 7 :
R x M — Risasection T®D : R x T*"M — R x TK"IM of idg x 75" **. Any
(k 4+ 1)-connection is characterized by its horizontal form hp«+1y = Draiy ® dt, where
the absolute derivative
3 =L 9 .9
8 Drasy = = + ; q(i+1)Wg) + F(k+1)m

is the so-called semispray on R x TXM, defining the one-dimensional my-horizontal
semispray distribution Hp«+1. Due to the product structure and analogously to the first-
order case, '+ can be represented by the vector field

k-1
0

(k+1) __ Z o o

w =) Uity Ty

=0 39¢) 30k,

dong pr, : R x T"M — TKM, which is nothing but a time-dependent semispray
on TM; in the autonomous situation, a semispray on TXM is a section of 7,5 % :
TIM — TXM.

The (k+1)-th order (generaly nonlinear) systemof O.D.E. represented by a (k + 1)-
connection I'®D on 7 : R x M — R can be described both globally as the

((k + 1) m + 1)-dimensional submanifold
r“H@®R x TkM) c R x TM

of R x T***M and locally by

dk+lco dkck
dt<rt T kD (t’&"”’ dtk);

the Pfaffian version of whichiis

9

dg” =q3,dt, ... , dgg 4 =dagg,dt, dqg, =T, dt

Theintegral sectionsof I'“*D arethusthe‘graphs’ of the geodesics of the above semis-
pray w*+D inthe sense that w*+ o jk+ly = ck+D,

4. Prolongations and fields of paths

The r-th jet prolongation of the equations is studied. In general, the prolongation
of an equation carries the information on the equation together with a given number of
“consequences’, obtained by differentiating the original equation. In case of connec-
tions, the construction of the prolongation in terms of the prolongations of correspond-
ing morphisms results in a very transparent characterization, which follows the defini-
tion of afield of paths asalocal lower-order connection representing an order-reduction
of theinitial equations.

Let £® < J*7 be ak-th order equation on 7. Ther-th prolongation of £® is the
subset

g(k)(r) — Jrg(k) ) Jk—Hn
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with Jr&® ¢ 3" . For the equation £, defined by afibered morphism (¥, v),
EQND = {3y 3@, idy) 0 ki (K y) = Ly} € I x

is again a differential equation, now of the (k + r)-th order. In fact, £5" represents
the family of P.D.E. obtained by differentiating the original equations O, 1, ..., r times
with respect to the independent variables.

Letk > Oand I'®D : Jkz — J17 pe an integrable (k + 1)-connection on 7.
Ther -th prolongation of the equation E™"? ¢ J%+15 represented by T*+? is defined

to be the submanifold
T Po _ ymrk+uom c JtrHig

where M *D() jsthe |ast term of the sequence of sections
(D*HDO pltd® | pltD))

recurrently defined foreach ¢ =1,...,r by

kDO - Jl(l—-(k+l)(efl)’ idx) oo T Fo s JoHtriy
with T&+D©O -— pk+D)
Then it iseasy to see that the equation £7 ™" consists of (k-+r + 1)-jets of integral
sections of M*&+D; infact jk+1y = I‘("“)(r(iﬁ)j"y.
By ther-th order Cartan distribution C'™" ) of an integrable (k + 11)-connecti on
r'&+1 on 7 is meant the Cartan distribution of ther -th prolongation £5*"7® j.e,,

cro ._c N Tr&DO k).

TTK+r +1,K+r
By definition, CT“"™"© = T and Cr'*™"® isaregular n-dimensional distribution
on Tk+DO (Jk7y < I +1g annihilated by the forms w?, . . restricted to
r&+DO (Jk7) together with

— d(Diy.i (Tf..,p) o TP,

j1e kg

ag
> O

y‘.’ .
Ji Jkalaedr
or equivalently spanned by the vector fields TT ® D) (D). Letr > 1. Then

TF(k+1)(r—1) Dik+r+1,k+r o F(k+1)(r).

o Dprwn =

Letk > 0,r > 1. A (k + 1)-connection T'®**D on 7 isintegrableif, and only if, its
r-th order Cartan distribution C™“"™® s completely integrable, and a section y is an
integral section of I'®+D if, and only if, j*++1y isthe integral mapping of CT*“™"®,

A (k 4 1)-connection T®*+D e Sy (m;1.x) iscalled afield of paths of a (k +r + 1)-
connection D&+ +D - gkir 7, Jk+'+1z if on V holds

pkir+d) o pktDr-1) _ pktDd)

By definition, each field of pathsisintegrable, and

r&+e—1
Hr(k+r+1)|r(k+1)(r—l)(v) =C ( )-

Equivalently, if y is an integral section of I'**V then if y is an integral section of a
field of paths T®*+D of &+ +D then it is the integral section (a path) of D ®++D |n
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other words, Hp«:1 defines afoliation of V such that each leaf of this foliation is an
integral section of [*k++D,

Globally speaking, each field of paths represents a (local) order-reduction of the
given equation. In this respect, the problem of finding the integral sections of a given
integrable higher-order connection can be transferred to the problem of looking for and
then solving of itsfields of paths; the transitivity of the relation ‘to be afield of paths of
a higher-order connection’ is evident. In this respect, the method of fields of paths will
be discussed later on.

5. Symmetries and vertical prolongations

Infinitesimal symmetries as the generators of invariant transformations in sense of
[28] are studied in terms of the corresponding decompositions on tangent bundles. The
use of the vertical prolongation VI finds its application within the 2-fibered mani-
fold

Vi 7 23 gk T X,
where alinear connection on 73k, whose integral sections are the symmetriesis found.
Finally, the relations between symmetries for a connection and its field of paths are
derived, again in terms of vertical prolongations.

Let I'®*D be an integrable (k + 1)-connection on 7z, and let ¢® e X' (J%r). Then
there isadirect sum decomposition of itsr -th prolongation

T ¢® o p*kEDO=D — 77 (g 0 £ ®) o TEFDEO-D
FVI®DOD 6y 0 c® 4 (T ¢® o PREDE-Dymerric
where
J" (hpwry 0 £®) o PHHDO=D ¢ grEHe—D,
VIO 6y 0 ¢ e VDD, IRy,
(jré'(k) ° l—w(k+1)(r—l))m<+r,k c Vﬂk%k\]k—t—rn‘

The decomposition represents a contribution to the internal geometry of equations
under consideration, and as such it can be viewed as an internal version of results pre-
sented in terms of the so-called characterizable connections. The bridge between these
points of view is created by fields of paths. For instance, for I'**Y being afield of paths
of T®++ it holds

T Draroj o rHDe-b — Drkirin; © rk+her-1

In what follows, I ®*1 js supposed to be an integrable (k + 1)-connection on 7.
A vector field ¢ e X' (I%r) is called a k-th order symmetry (briefly k-symmetry) of
&+ if ¢ ® and 71c® are T *+D-related, i.e.,

JLe® o Pt — kD ¢ 00,

The set of all k-symmetries of I'**1 js denoted by Sym® (rk+D).
It is evident that any I"®+V-horizontal vector field is ak-symmetry of T®*D which
leads to the fact that avector field ¢ e X' (J%r) isak-symmetry of I'®*D if, and only
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if one of the following equivalent conditions holds:

T wpwin 0 2®) o TEFD = VD 6 gy 0 2@,

Ly e ¢ hroey = 0.

In this arrangement, the k-symmetries of I'“*V arejust the symmetries of the horizontal
distribution Hp 1.

A m-projectable vector field ¢® on J¥x is ak-symmetry of T'®*+Y if and only if,
equivalently £.whr«n = 0 (£ is here the Lie derivative) or the flow of g(k) permutes
the k-jets of integral sections of I'*+D,

Denote by Sym®(r&+b) ¢ sym®(r&+D)y the submodule of y-vertical k-sym-
metries of I'“*Y, by Char(Hp«+1) theideal of characteristic symmetries of Hpury (€.
those lying within Hp«+1) and by Shuf(Hr«+1)) the quotient algebra

Sth(HF<k+1)) = Sym(HF<k+1>)/Char(Hr(k+1>)

of the so-called shuffling symmetries. Recall that while the flow of a characteristic sym-
metry moves integral manifolds along themselves, any shuffling symmetry represents
the whol e class of symmetries whose flow rearrangesthe integral manifoldsin the same
way. Then it holds Hruty = Char(Hpes) and Sym® (DD = ghuf(r&+D),

The structure of higher-order jet prolongations and corresponding projections al-
lowed us to define some other types of symmetries. A vector field ¢ e X (3"n),
0 <r < k—1,iscaled ther-symmetry of [k+D jf 7k=T:O ¢ Sym® (rk+D) The
set of all r-symmetries of I*+D is denoted by Sym™ (I'®*D). Then a 7, -projectable
vector field ¢ on J"x isther-symmetry of I'®*D if, and only if, its flow permutes the
r-jets of integral sections of I'k+1),

Of course, our main concern is with vector fields on Y as generators of invariant
transformations on sections; in this respect, zero-symmetries are referred to briefly as
symmetries. In thiscase, ¢ € X (Y) isasymmetry of an integrable I'*+D if, and only
if, one of the following equivalent conditions holds:

jk+1§ ° F(k+1) — Tl"(k+l) o jk{,

T wrwsn 0 TK¢) o DD = VD 6y o TXE,
Lo (740 Nrees =0,

[Drocni, T¢] = Dracni (¢1) Drocnj,

where Drv; (¢ 1) denotes briefly just Draa; (73 4(¢1)) = 77 {(DXO(¢1)). If in addi-
tion ¢ € Xx(Y), then it is a symmetry of I« if, and only |f its flow permutes the
integral sections of I'k+D),

The symmetries of the Cartan distribution C,, , on J*r are called contact vector
fields. By the well-known Backlund’s theorem, in the case of m = dimz = 1 and if
¢® is contact, then it is the (k — 1)-th prolongation of a contact vector field on Jr.

If m > 1, then ¢® is the k-th prolongation of a vector field on Y. In this respect, the
external symmetry of an equation £® ¢ J*7 is a contact vector field on J*z tangent
to £, In other words, its flow preserves both the Cartan distribution and the equation.
The restriction of an external symmetry to £ defines a symmetry of cY and just
the symmetries of the distribution CE* are called the internal symmetries of the equar
tion £X. It can be shown that ¢ e X' (J" ) isther-symmetry of an integrable Ik+D
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if T* T+ O gk € XT*D(IR)) isan internal symmetry of Tk (JKx). In
particular, if ¢ € Xx(Y) issuchthat 7% ¢ o Tk+D ¢ CI™7 thenitsflow acts on the
integral sections of '+ trivially — moves them along themselves. On the other hand,
a wr-vertical symmetry can be viewed as representing the whole class of symmetries
rearranging the integral sectionsin the same way.

The vertical prolongation VT ®+b of M*+D jsa (k + 1)-connection on ( o Tv|v,y)
defined by

vkt o VK = Vk4+1 © VF(k'H),
which is projectable over I'®+D within the 2-fibered manifold

IK(y vy v.id) K

Jk(JT O‘Eylvny) JkT[ X.

In fact, to eliminate the formalism including the v’s, we work with a slight inaccuracy
directly with the izomorphic

gk Tk
Vy It —5 I —— X

Then the following assertion can be easily verified by means of the results obtained
in [26].

Let T®*D pe an integrable (k + 1)-connection on 7 and ¥ a connection on t;x,, :
V, Ik — I, satisfying kpain oW = VI®+D (where k-« isdefined analogously
to Section 2 in Section 6). Then if ¢® e Xyx(J¥r) is an integral section of W, then
{'(k) c glm\(/k)(r‘(k-i-l)).

Let finally T®+D e Sy (my;1.4) beafield of paths of D&+ +D : gkt . ghir+ly
Then one might ask on the relationship between the vertical (zeroth-order) symmetries
of the above connections. First, since each integral section of I'®+1 jsthe integral sec-
tion of T*++1 thenif ¢ € AL (Y) isasymmetry of T *®*+D then ¢ |, ,v) iSasymme-
try of T®+1_ To obtain the well-known result affirming that each vertical symmetry of
an equation isthe symmetry of its prolongation, the relation between the corresponding
vertical prolongations must be clarified. In fact, one can prove that a (k + 1)-connection
&+ jsafield of paths of a (k +r + 1)-connection I+ +D if and only if, V[ ®*D is
afield of paths of VI *++1 Asacorollary, one gets: if ¢ isasymmetry of I ®+D | then
it isasymmetry of T<+D®),

6. Characterizable connections

The most interesting part of the theory is that having to do with the interrelations
between equations represented by connecti on§k91nkvarious fibrations.

In this part, the 2-fibered manifold J%+17 =5 Jk7 ™ X finds the application. The
generalization of the diagramm (4) isthus

N I I (i1, ki) Iy
idxl (ﬂk)ml (ﬂk+1)14ol
(10 X < gkg TR gkl JHOL0 I i1k
idxl ﬂkl 7Tk+1l
X <% x 1 X.
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The canonical map k : Jimy x jk; Itm1kx — Jlmyy 1 does not effect the coordinates
uptoy; i and its equations are

k
4 = DY i DY i A‘
Yiveikai = Zpejoa T Z 27 Tedr s St Y o
£=0

where by
z

o .
Ja ki ? ZTl-~-jk+1k’ s 20 Mg

we denote the induced derivative coordinates on Jim, 1. The first order of business
is to mention the role of the canonical embedding ¢y : J**'r < Jlm, whichisin
coordinates expressed by

(1) Yi=We Y = Yo

If & : Iz — Jlmy isan arbitrary fibered morphism over J¥x, then since the
vertical bundle associated to (k)10 iS Vp, k7 ® mp (T*X), the difference ® — 11 isa
fibered morphism Jk7 — V,, 37 ® 77 (T*X) and thus

Dy =+ al(® —k)

is a fibered morphism J*t1z — J1my over J¥x for any a € R.. The formal curvature
map is then the map

R: Jlnk+1,k — JT|:<+1’k(Vnka7T ® JTQ‘(AZT*X))

defined for each J'J-lkyx € Ilm 1k by

R(jjlkyx) = a1 0 IH(xidy) o Lok o x (1K)
Then
R: IMmeiik — Vnk+1~]k+l77 ® iy 1 (T7X).
Consequently, one can define (for a, b € R) the affine morphism
kijb : \Jlek+l’k — JlnkH

between (7 1k)1.0 and (k1) 1.0 over J¥tir by k3P = ko, + bR.
It is easy to see that regarding a curvature of the connections in question, one gets
that

Rray = —pr, o R ojll‘(k“)
= —pryo fr o D idy) 001k
o T® k7 — Vo, 347 ® 7 (APT*X).

Asto be expected, the same characterization can be presented for a (first-order) connec-
tionI"onm,i.e,

Rr = —pryo oI id) oY = V.Y ® 7 (A?TX),

hence k = 0 is allowed when speaking on the curvature of a (k + 1)-connection on .
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Recall that k,,, : I, 1k — J¥2x isby definition
J11—~(k+1) > k(F(k+l)(Z) J F(k+1)) Jl(F(kH), idx) ol 0 F(k+l)(z).
Therefore, if y € Sy () isan arbitrary section of the (k 4+ 1)-connection I+ then
Ky (3 i, D) = 31T idy) 0 ik 0 T (i)
= 1114205 2y) € 112 (342,
Secondly, for any T**Y, kpan i= Ky, ortetom @ I k1 k = Ikeq reads

1 Kpk+1)

Izx
which means that for an integrable I'“*D holds

kr(k-%—l) o JlF(k+l) _ kzltk o jlr(k-‘rl)\]l(l—w(k-‘rl)’ |d)() ol1k 0 F(k+1)
— F(k—i—l)(l)'

I (x,idx) oty o T*HD(Z),

On the other hand, let 8 : J*"'7x — J'm 1, be a connection on my,1k, and
o : Iy — Il be afibered morphism over J¥z. Then

b b =
EZ,E = k% o . Jk+17'[ d Jlﬂk+1

is a connection on my 1 for an arbitrary a,b € R. In particular, a (local) connection
I'®*1 can be considered representing both the morphism ® = ¢1x o T**Y o 7, 1 and
the section of my1 k. Then denoting by Y« g = kras o E, the following assertion
can be presented.
Let T®*+D be an integral section of a connection E on my, 1 x. Then y isan integral
section of I'®*V if, and only if, T ®+D o jky istheintegral section of Trwi z.
For an arbitrary connection E on .1« andb € R,
PP =300 =Ko & 3 > T
is a semiholonomic connection on .1, which can be decomposed to the (k + 2)-
connection
l-‘(EKJFZ) ‘= S F&ngZ),
and to a certain multiple of the composition R o E of the formal curvature R with E.
Then aconnection E on nk+1 « iscalled characterizable, if Ro E = 0. The (k + 2)-
connection F( 2 =k, o E isthen called the characteristic connection of E. Accord-
ingly, the horizontal digtribution Hp e is called the characteristic distribution of &
and the maximal-dimensional mtegral manifolds of the characteristic distribution (i.e.
(k + 1)-jets of integral sections of I'*™?) are the characteristics of &
A (k + 2)-connection I'*+2 on 7 isthe characteristic connection of aconnection £
on w11k if, and only if, one of the following equivalent conditions holds:

k
o _ 20e e A .
Fjl'“jk+1i - J1 Jkeal +Z el Fejgejerar Yrooor s
=0

Drwa = Da + 3 DB
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_ J1 J/z
hg — hpwio = Z DZ Jl Qs

Hrxa = Hz N C

TTk+1,k*

A class of characterizable connections on . 1 x With the same characteristic (k+2)-
connection on r is generated by the class of ¢ -admissible deformations on my 1 k.
More precisely, if we call any such & associated to I'“*?, then for each soldering form

¢ 37 S v

k+1 * * 1k
7Tk+lk‘] T ®7Tk-i-1,l<(T J 7[)

satisfying locally

k
o olq---Iy _
Pt e + Z(pll Jk+1)»yr1 Tl T 0,
£=0

hz + ¢ isthe horizontal form of another connection on 7y 1 « associated to I'*+2,

Let us again consider 7 : R x M — R. There is an interesting submanifold
of Jm, 1k having to do with the relations between the autonomous and the time-
dependent situations. Namely, there is a canonical inclusion

R x Jl k+1k s Jl”k+1,ks
defined by
(X, j;.w(k-i-l)) — j(]).(’y)r(k—‘rl)

for I &V being defined by w*+D (see Section 4). In this respect, the restriction of the
morphism

k,, : Imgak — R x T*2M

1,k
to the above submanifold generates the morphism
k(k+l) Jl_[k+1 k _, Tk+2m

over THIM,
Accordingly, a connection A on t,,
of the particular type

kLK can be considered as a connection on i,

—idg x A I R x T'M > R x J't k+lk

Hrr(l)

with the components ¢, ;) = 0and E ), € F (Tk+M). The corresponding hori-
zontal distribution is

0 - (M)
hE:a®dt+;D ®dq(|)—|dTR+hA’

and the integral sections can be identified with the semisprays on T*M (for k > 1)
or the vector fieldson M (for k = 0). Just the case of k = 0 might be of particular
importance due to the fact that A represents a (generally non-linear) connection on
v : TM — M with integral sections being the vector fields on M whose covariant
derivative with respect to A vanishes, i.e., those parallel with respect to A.
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The deformations of connections on 7,1 k are the soldering forms on i1 x; alocal
expression of any such a1 k-vertical endomorphismon R x TK+IM is

) , LS
¢ =7 ®| Py dt + > @i g, | -
Ue+1) i—0

Nevertheless, there is adistinguished subfamily of the above soldering forms created by
the natural soldering formson my 1 k-

Recall first the family of natural vector-valued one-forms on R x T*M, which is
expressed by

K 2%
K K
Z Ci Ji( )4 Z Ci Ci(_)k ® dt + Coky1ltkm + Cxs2lR,
i—1 i=kt1

wherec¢ € F(R), l1xy and

w k—i+1 5

Ji = Z Jaqg—®dq6_l)

j=1 (i+j-1
(fori =1, ..., k) aretheunique natural (1, 1)-tensor fieldson TKM,
0
IR = — ®dt,
R ot &®

and

k—i+l
i+j-0 ]
ch=3 G—Dr %0 59
= - Ai+j-1

(fori =1, ..., k) are the absolute (generalized Liouville) vector fields on T*M. Con-
sequently, any such natural soldering form is expressed by

o= 1350 + L,CHY @ dt
for fi, f, € F(R), i€,
Phry = K+ D200, @y = 18]

and the rest of the components vanishes identically. As a consequence we get that all
natural (1 x-admissible deformations on i1 « are of the form

K+1
p="1 (J:i)
with
1
(k+1) J(k+1) Cliﬁl) ® dt

+1 — “k+1 (k+ 1)|
and f € F(R). In coordinates,

ad
i1 = 50— © (dg° — g7 dt).
Oet-1)
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7. Themethod of characteristics

In fact, the construction generalizes that of the associated semispray to a given dy-
namical connection and it resultsin the method of characteristicsfor E. Asregards both
the name and the meaning, the approach is quite near to the ideas dealing with Pfaffian
systems in [67] and particularly [73]. Reaping the benefit of the fact that each integral
section of Z isthe field of paths of I'®+2 | the integral ‘surfaces of & are foliated by
(k + 1)-jets of integral “curves’ of I'**? (= characteristics). The relation between the
equations studied can be roughly (and non-geometrically) expressed as follows (sup-
pose k = 0): if the equationsfor E are given by

dy’ = E7 dx! + E7, dy*,

then those for its characteristic '@ are
A

dy” dx! - dy

dx! ”@4_ % dx]

[1]

¥ =

E be a characterizable connection on .1k, and T'%"? be its characteristic
(k + 2) connectlon on 7. Then each integral section &+ of = is afield of paths
of T2 _Since Hru:a (2) = CT™ (2) ¢ T,r &+ (V) for each z € T**+D(V), onecan
say that F(k“) isan ‘integral including manifold’ of Hp«:2.

Since each field of pthS|S|ntegrabIe if E ischaracterizable and integrable, then its
characteristic connection I'%*2 isintegrable, aswell. In fact, the maximal integral man-
ifolds of Hg (integral sections of E) arefoliated by the characteristics, whose equations
are

ak+2 o ak+l v
_ r-*(T r v
axit .. gxIkigyt Sipejeai | X2V 0o oxX1 ... gxkL

k k+1.,v 041 %
+ Earl ‘I yv a y a y
Z ji k1 T GX L gxTeL | gy, 8X”3Xi ’

£=0

In other words, under the integrability conditions, the looking for solutions of the
first-order system represented by E can be transferred to the looking for the solutions
of the above (k + 2)-th order system —the integral sections of E are “pieced together”
by characterigtics.

Moreover, knowing an r -dimensional integral submanifold M, of Hg, the charac-
teristics can be applied when constructing an integral submanifold M-, of dimension
> r containing M, — this task is the well-known Cauchy initial problem. Clearly, the
case when M, initself isfoliated by characteristics must be eliminated, in such a case
Msr = M. In thisrespect, apoint z € M, can be called characteristic (with respect
to B) if .M, D Hpw2 (2), and the Cauchy problem is solvable just around the non-
characteristic points of M, . It is evident that the integrability of Z is not necessary for
the integrability of I'*"?. Nevertheless, the above method of characteristics can be ap-
plied, aswell.

The relation between the characterizability of connections on i1k and the integra-
bility of (k + 1)-connections on 7 is hidden within the following construction.
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Let T ®+D pea (k 4+ 1)-connection on r. The formal mixed I"®+V-curvature map is
the map

.1l k 2
Kk - TGk = Tk (Vg 37 ® g (AT X))

defined for each jjlky x € Jtm, 1« by means of the F-N bracket as

ieren (i, 20 = Ge(Ew), s =y 1GEYD).

_The motivation of the definition is similar to that of formal curvature map; namely,
if T®*+D jsanother (k + 1)-connection on x, then

K(F(k+1), F(k+l)) = Pry 0 Kpk+d ojlﬁ(kJ“l)
= [hrwen — e, Nfen] @ 37 — Vi, 347 @ 7 (A2T*X)
is the so-called mixed curvature of the pair ' ®*2 and I'®*D, Since
¢ = hrosy — ey

is a soldering form on 7y, the mixed curvature k (T®+D | 1 k+D)y s nothing but the ¢-
torsion 7, of T **Y. Moreover, we have

LoD ety Rracn — Riwen — % [¢. ¢]

K (
and thus e.g. also

i (DD Py (D Ty — 2(Rpwen — Rsgrn).
Clearly,

Kpk+y = §F<k+1> —R- %7(}(“1)
With Rran i= Ro jIT*D o (1401 and ke being defined analogously to iy
by

o~ . 1 _ . k h _ h h _ h . k

KF(kJrl)(Jj)‘((yX) = (X(ny)v [ rk+b x o Hpk+D) )(](ny))

Let now E be aconnection on 1 k. Then

Kr(k+l)’5 = Krk+D O O Jk+1n — 7T|:+l’k(vnk+1_k\]kn ® n;(AZT*X))
represents a “ curvature-like” term generated by I'“*Y and , where

ﬁﬁkﬂ) o8 =Rojirkd, k41K

does not depend on E and it vanishes if, and only if, I *+D isintegrable, R o E does
not depend on I'**+Y and it vanishes if, and only if, E is characterizable, and finally
Krasn o B integrates T+ and E together: if T+ is an integral section of E, then
Krken 0 B o T = Fhuuy o jIT®HD = 0, In particular, if E is characterizable with
theintegral section I'®*V, then kw1 z = 0.

Owing to the dimension of the base, each connection E on w1k : R x T*M —
R x T*M is characterizable and a semispray connection I'“*? : R x T¥t1M — R x
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Tk+2M isthe characteristic (k+2)-connection of Z if, and only if, for the corresponding
semispray D2 on R x TKIM holds

k
Dr(k+2) = Dgo + Z Dﬂ;q();-;-l)»
i=0

which means
o —~o (i)
k12 = B + Z B di 41y

The above semispray Dr«+2 can be called characteristic to E, as well. Thus we have
the diagram

31 F(k‘*'l),'d
Rx Tk 20 R g Tk —— Rx T*2M = R x TK2M
Tr(k-u) Tr(k+2) ktl’kT idek&“ﬁUT
rk+1) )
RxTKkM —— RxTYM ——  Jlggg < Rx IS
which in particular defines the characteristic semispray on TK*M for a connection A
on /5™ in the autonomous case.

The eguations for characteristics are then
dk+2co Y ) dk+lcv
dik+2 = Skt t,c, ..., dtk+1

k+1v i+1
+Z:U(|) d +C dH_C)L
(k+Dr Tt dtk+l dt|+1

and with respect to the above genera ideas, the looking for the solutions of the first-
order PD.E. system can be transferred to the looking for the solutions of the (k + 2)-th
order O.D.E. system.

8. The method of fields of paths. Part |

A dua method of fields of paths can be introduced, as well. Here the integral of an
integrable I'*2 is an integrable E on my1x Whose characteristic connection is just
I'&+2) The existence of such an integral allows the order-reduction of I'**? to (local)
integral sections of E. In this respect, the existence of both local and global integralsis
discussed.

Actualy, if E isan integrable characterizable connection on 71 k associated to the
(k+ 2)-connection I'**2 on 7, then each integral section of I'®+2 js|ocally embedded
inafield of paths I'*+1 which istheintegral section of E. Accordingly, the problem of
the looking for the solutions of the (k 4 2)-th order system represented by I'*+2 can be
transferred to the looking for an integrable and characterizable connection E on i1«
associated to I'®+2) and after this to the solving of the corresponding (k + 1)-th order
fields of paths. As already mentioned, if I'® is afield of paths of '+ which is the
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field of paths of I'®+2 | then I'® is afield of paths of I'“*? and the procedure can be
repeated.

Let M2 be an integrable (k + 2)-connection on 7. A (generally local) integrable
connection E on 1 x associated to I'®+2) js called an integral of M'&+2),

Denoting here by E .1, the integral of I'“*2), the following diagram can be pre-
sented:

ik+1 (k+2)
jlrty r
X L2 gktly

idxl ﬂk+l.kl r‘(k+2)T

ik (k+1)
1"y r
X —— Jkﬂ _—>

idxl ﬂk.k—ll r‘(k+1)T

ik—1 (k) =
ity _ r Bk
X —5 Jelp — 5 Jkg 2 Jlnk,k_l

J k+27.[

Ek+1)
Iy 5 Ik

ity 1 re 2 E@ 1
X — Jn —— Jn —— Jm

idxl ﬂl.ol p(z)T

X 5 v Iy i

o el

id id
X X X

J]'T[l’o

J/ m

X — X

Natural question on the existence of integrals for a given (k + 2)-connection may be
considered both locally and globally. The former case can be answered in terms of first
integrals.

Notice first that each first integral of a characterizable E is the first integra of its
characteristic T'®*2_ The converse is not true in general, nevertheless, the following
assertion holds.

Let I'®*2 be an integrable (k + 2)-connection on  and {a?, ..., ak}, where K =
dim 41k, beaset of independent first integrals of I'“*2), defined on some open subset
W c Iz, If the matrix

dat
8y11~--ik+1

isregular on W, then thereis an integral E of I'**2 on W, defined by
Hz = anih{da’, ..., dd‘}.

It should be noticed that if I'®+2) isintegrable, then the existence of a set of indepen-
dent first integrals satisfying the above condition is due to the horizontality of Hyx:2 .

The problem of global integrals is much more complicated. In fact, two questions
appear in terms of the above considerations. First, whether there exist transformations,
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alowing a global assignment I'®t2 — =, and secondly, what conditions force E to
be the integral of I'*+2? Especially the first question represents an open problem for
dmX > 1andk > 1. For k = 0, the following assertion can be presented, reformul at-
ing the corresponding result of [25]. It should be stressed that all concepts involved are
global.

Let '@ be a 2-connection on = and A alinear connection on X. Then thereis a
connection E2 = g2 o j1I'® on 71 o associated to I'?, being determined in virtue of a
natural fibered morphism g2 : 37,1 — J'my o over Itz whichislocally expressed by

7, = L8 + 87 A% + a8 (Al — A,
Z =Y~ ilyj
for an arbitrary a € R. It appearsthat the presence of alinear connection on the base X
is essentia, it cannot be omitted. If 7 : TX — V,, TX ® A?T*X,
9 _ _
T:A!‘j—k ®dx' A dx!,
X

is the classical torsion of A, then its contraction is a one-form 7 = 7; dx' on X with
T, = Af,— A It can be shown that thelinear connection A on X canonically generates
the soldering form of type T on 71,0, Which locally reads

0
S =7

Y i
v ® (dy” —yj dx?),

hence, itistrivial if, and only if, A is symmetric (torsion free).
As a consequence, the connection E2 can be written in the form
A
L_Aa —_— L_JO + a SA,

where the components of E4 are

-0 1 (arlk )
i, = A B
2 Vi

(7 =m0\ A

with ', being the components of I'®.

Recall finally that the family of connections on 1o associated to I'® can be ob-
tained by means of (1 o-admissible deformations on 1 o, where (1 o = idy,, .

On the other hand, thereis a construction of global associated connectionsfor k > 0,
but with dim X = 1, established in [81]. In this situation, the role of alinear connection
is played by avolume form on X, as we present at the very and of this section.

Let us now again consider = : R x M — R. Here, the role of another natural
(1, 1)-tensor field appears; namely,

1 1
hEO — 5 |:hr(k+2) =+ | —+ m (kUF(k+2) — 2£Dr(k+2) qk+l))j|

is the horizontal form of aconnection Z¢ on 1 x associated to I'**+? where

Sik+1) J(k+l) C:EkJrl) ® dt,
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S Efla ( dt).
3qg)® di_1 — ai)

i=1

The components of Eq are then

zo() i+1 E)F(k+2) 0 K
Skt = oK
k+2 8q(|+1)
k
= _ =o (i)
B+ = Tl = 2 Bt Qi 1)-

i=0
Accordingly, the family of all connections on my 1 naturally associated to a (k + 2)-
connection '“*? on 7 : R x M — R isdefined by
K+1
hz = hg, + S50

with f € F(R).

Let usfinally recall theresult of [81]. Lex : Y — X bean arbitrary fibered manifold
over one-dimensional base X endowed by avolume form Q = w dt. By [72], thereisa
naturally defined vector-valued one-form

k . . i
jri+1\dew 9 o o
Sg<+1> _ E: ( _ >__07®(dq(i>—qa+1> dt)

jHi=1 ! dt’ aq(j+i+1)

on J*t17 wherei, j are non-negative integers and d°»/dt® = w. Then

1 1 2
hg, = > |:hr<k+2) + 1+ K12 <kv1—~(k+2) - LD, 412 $<+1)):|

is the horizontal form of a (global) connection Eq on my, 1, associated to I'k+2),
Clearly, the above hz, correspondsto © = dt and §% = s+

On the other hand the result can be related to the most general situation of =, for
k = 0and dim X = 1. The “strong horizontal components’ of Eq are then

o 1 M dol,
AT — &
301(1) dt
with the quantity A(t) = —(dw/dt)(1/w) being transformed in the same way like the
component of alinear connection on X. Conseguently, there is a geometric interpreta-

tion of 24 in this situation; namely, it isjust Eq for an arbitrary volume form © on X
which istheintegral section (i.e. A* o Q = j1Q) of the dual connection A* on 3.

1]

9. The method of fields of paths: part 11

The generalization of methods of fields of paths was completely motivated by [50].
The background is the 2-fibered manifold J%+ 7 <5 Jkz 5 X, If D&+ +D s g
(k +r + 1)-connection on 7, then the method gives a (k + 1)-connection '™V on 7
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representing the order-reduction of the equations represented by I+ all forr > 2.
In fact, this is obtained by means of looking for the prolongation of I ®+D which isa
section of ik (ajet field). In this respect, the connections on .,  are studied, as
well, which results in the definition of the my ., x-integral of <+ +1),

The corresponding diagram generalizing (10), is now

I (Thgr koidx)
X (m)1 Il keekl®) g 17Tk+r
idxl (ﬂk)l,ol (ﬂk+r)1,ol
(12 X < gk Tketrk gk 7 (The1,k)1,0 NI

idxl ”kl ”k+rl
id id
X X X

X <~ X.

The map k: \]17Tk X gk Jlﬂk_H,k — \]17Tk+r, deflned fOI’ '(// S 8|OC(7T|() and @ €
Sioc(Tkirk), IMyr C Domg, by

k(g ¥, ij09) = ix(@ o ¥),
locally does not effect the coordinates
Xla yaa ceey yi...ij, yia ey yi]kJ ]

and

k
=77 . E ofiTe yh )
y?l"'jk+lli = Zjjjisai + Zjikpar i
=0

k
o _ 50 ofq--rg A
Vit = Bint T D 2 et Wosri
{=0

with Z's being the induced coordinates on Jmy . . Clearly, thereis anatural candidate
for a morphism between ., x and (i) 1.0 over J*7; namely, denote by

_ . oqk+r 1
Do =11k 0 Mkyrk1 s I T = Ik

the composition, whose coordinate expression coincides with (11). Then the affine mor-
phism ke, 1 I ik — I, defines an affine subbundle A, .., C J'mi, consist-
ing of the points z € J'my,, satisfying

1 -
L1,k © Tktr k+1 © (Mitr)1,0(2) = I (g ks, 10x) (2).

Such elements are called my k-semiholonomic jets; the local expression is again
just (11). Thusthereisa canonical inclusion

Jk+r+ln C j‘k+r+1n C Ank%k’

which corresponds to the associated vector bundle

ﬂ”kﬂ.k =V,

”k“’k‘]k—‘rrﬂ ® my (T™X) C Vg I ® iy (TTX).

k+r
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Remark here that the study of invariant subspaces of the above nature has been pre-
sented in [27], obtained by means of the methods of natural operators.

Notice now some properties of the sections of .k, caled jet fields; again, we
work with global sections for the simplicity only, the same applies (under appropriate
restrictions) for the local ones.

A section y € Sy () is called an integral section (or a path) of ajet field ¢ €
S(myyr k) if it isasolution of the equation £¢ = ¢(J*n) c I 7 e, if po jXy =
j¥"y on U. In this respect, ¢ is called integrable if there is an integral section of ¢
through each point of Y. In coordinates, the equations of ¢ are

Yivein = Phin - Yiedeor = Pl
with the components of ¢ being functions on J*x.

For an arbitrary jet field ¢ € S(my.r k), thereisadistinguished associated projection;
namely, by [t = ., 100 weget a (k+1)-connection I'**Y on rr; in coordinates,

4 -
ik = Pl

Then one can show that ajet field ¢ € S(mcir k) isintegrableif, and only if, Y is
integrableand ¢ = T+H=b,
Asfor higher- order connections, there is an n-dimensional . _;-horizontal distri-
bution H, on J¥+' 17 naturally associated with ¢. In fact,
H, = span{D,i, i=1,...,n},

where the generators D,; are defined by D,i = D™ ™16 g o my .y 1, i€, locally

RN S i
= Jl o ayll “Je 1=k el ayjl-"jz

As to be expected, a section y € Sy () is an integral section of ¢ if, and only if,
j**"~1y(U) isanintegral manifold of H,.

It must be remarked that due to the horizontality, H, is involutive (= completely
integrable) if, and only if, [Dyi, Dyp] = O for dl i, p. It should be stressed that this
condition is not equivalent with the integrability of ¢ in the above presented sense.
Nevertheless, the integral section of ¢ could be definedto be v € Sy (k1) such that
¥ (U) isan integral manifold of H,. Of course, now the equations must be considered
on Jme, 1.

Adding sections and connections, the diagram (12) turns out to be of the form

ity I (p,idx)

X Jimy Imyr NES
idxl E(MT Z(k+r)T kq)oT
(14) X L) Ik AN JK+T 7 —E> J17Tk+r,k

o | | mer |

X idx X idx X,
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where by X, we denote a connection on ;. Asregards X k., it can be called my i -
semiholonomic, if

. 1k
B 1 I = A
which means just

k+r 9
Yy, 7 —.
Z Jield ayn ‘Je 5;1 Bt ayimje
In this respect, if ¢ € S(mkyrk) iSajet field, then ¢ can be identified with a (specia
type of) .- —1.k—1-Semiholonomic connection on my .y _1.

Our main concern is with connections on my,,x, i.e 8 : J*'7 — Jlm k. The
point isthat theintegral sections (if any) of aconnection E on i x are (local) jet fields
from S (4 k) satisfying jlo = E o ¢.

A connection E on myyr k IS called characterizable, if the connection k¢, o E is
holonomic. The connection T&H+Y = k4 o E iscalled characteristic to E.

One can see that kg, o E iS i k-Semiholonomic for an arbitrary E; it is semiholo-
nomic if, and only if,

k
_ 7-1(7 ,:arl Iy
y11~-~jk+1i = Y1kl +Z“J1 Jk+1)»yr1 Tei
=0
k
o _ mor1Te
Yitjgrai = 11 kr -1l + Z S k- 1>»yf1 Teio
£=0

and it is holonomic if, moreover, the functions

k
o —
IjJ'l-..J'kJrri - J1 ki +Z

¢=0

orq-ry
i1 Jk+r)~yf1 Tei

(]

are totally symmetric. Then we can seethat a (k 4 r + 1)-connection "+ on 7 is
the characteristic connection of aconnection E on my, k if, and only if, Hrar+1y C Hg
or, equivalently,

Dr«+r+vj = Dgi + Z DJl ”yfl el
£=0

The motivation of the above constructions is the following. Let £ be a charac-
terizable connection on 7y, and TET*P its characteristic connection. Let ¢
Sioc(k4r k) beanintegral section of E and Fg‘“) the (k + 1& -connection on 7, defined
by T+ = iy 109, Then T+ isafield of pathsof IS and ¢ r;k+1)<f b,

As usually, the situation may be described diagrammati cal ly:

3 (p,idx)
\]k+17T —X) \]k+r+lﬂ f— \]k+r+17T

Fé}kﬂ)T F(EI‘(+r+1)T k%T

0 g
e —— I 2 Ilm
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In this arrangement, the following definition appears very naturally; again, any connec-
tion E on my, x Whose characteristic connection is the given '+ is called associ-
ated to it.

Let T®+"+D pe an integrable (k + r + 1)-connection on 7. A (generally local) in-
tegrable connection E on my x associated to '+ s called the my ., k-integral of
r&+r+1)

In other words, a second version of the method of fields of paths was presented.
In contradiction to Section 8, now we are not looking for fields of paths directly, but
through their prolongations. It is evident that the crucial problem is again that of the
existence of ., k-integrals. In this respect, the following assertion can be proved.

Let P ®++D pe an integrable (k + r + 1)-connection onr and {al, ..., ak}, where
K = dimm .k, be aset of independent first integrals of I'**'+Y defined on some
open W C J* 7 If the matrix

gat
A B < i ) ’
ayil»--jz

where¢ =k+1,...,k+r,isregular on W, then Hz = anih{dal, . .., da¥} definesan
Tkar k-integral of T+ +D on W,

For an application (and in fact the motivation) of the above considerations, we refer
to [85], dealing with the particular case of one-dimensional base X (and thus O.D.E.)
and generalizing the Hamilton-Jacobi method from variational analysis studied in [50]
and [53].

References

[1] R. Abraham, J.E. Marsden, Foundations of Mechanics, Benjamin/Cummings Publ.
Comp., Reading, 1978.

[2] D.V. Alekseevskil, A.M. Vinogradov, V.V. Lychagin, Fundamental Ideas and Concepts
of Differential Geometry, Itogi nauki i tekhniki, Sovremennye problemy matematiki 28,
VINITI, 1988, Moscow, (Russian).

[3] M. Anastasiei, H. Kawaguchi, A geometrical theory of the time dependent L agrangians,
I. Non-linear connections, Tensor, N.S. 48 (1989) 273-282; 1I. M-connections, Tensor,
N.S. 48 (1989) 283-293; 111. Applications, Tensor, N.S. 49 (1990) 296-304.

[4] V.I. Arnol’d, Additional Parts of the Theory of Ordinary Differential Equations, Nauka,
1978, Moscow, (Russian).

[5] V.. Bliznikas, R.V. Vosylius, Non-holonomic connections, Liet. matem. rink. 27 (1)
(1987) 15-27 (Russian).

[6] H. Cartan, Calcul différentiel formes différentielles, Mir, 1971, Moscow, trandl. to Rus-
sian.

[7] M. Crampin, On the differential geometry of the Euler—Lagrange equations and the
inverse problem of Lagrangian dynamics, J. Phys. A: Math. Gen. 14 (1981) 2567-2575.

[8] M. Crampin, Alternative Lagrangiansin particle dynamics, Proc. Conf. Diff. Geom. and
Its Appl., Brno, 1986, 1-12.

[9] M. Crampin, G.E. Prince, G. Thompson, A geometrical version of the Helmholtz condi-
tionsin time dependent Lagrangian dynamics, J. Phys. A. Math. Gen. 17 (1984) 1437—
1447.

[10] M. Crampin, W. Sarlet, F. Cantrijn, Higher-order differential equationsand higher-order
lagrangian mechanics, Math. Proc. Cambridge Philos. Soc. 99 (1986) 565-587.



From semisprays to connections 201

[11] L.C. deAndres, M. de Ledn, PR. Rodrigues, Connections on tangent bundles of higher
order, Demonstratio Math. 22 (3) (1989) 607—632.

[12] L.C. de Andres, M. de Ledn, PR. Rodrigues, Connections on tangent bundles of higher
order associated to regular Lagrangians, Geom. Dedicata 39 (1991) 12-18.

[13] A. Dekrét, Vector fields and connections on TM, Casopis Pést. Mat. 115 (1990) 360—
367.

[14] A. Dekrét, Ordinary differential equations and connections, Proc. Conf. Diff. Geom.
and Its Appl., Brno,1989, 27-32.

[15] M. de Lebn, J. C. Marrero, Time-dependent linear Lagrangians: the inverse problem,
symmetries and constants of motion, International Symposium on Hamiltonian Systems
and Celestian mechanics, Guanagjnato, Mexico, 1991, Advanced Series in Nonlinear
Dynamics, 4, World Scientific, Singapore 1993, 55-83.

[16] M. de Lebn, D. Martin de Diego, Non-autonomous submersive second order differen-
tial equations and Lie symmetries, Internacional Journal of Theoretical Physisc 33 (8)
(1994) 1759-1781.

[17] M. de Lebn, D. Martin de Diego, Symmetries and constants of the motion for higher
order Lagrangian systems, J. Math. Phys. 36 (8) (1995) 4138-4161.

[18] M. de Lebn, D. Martin de Diego, Symmetries and constants of the motion for higher
order Lagrangian systems. I1: the non-autonomous case, Extracta Mathematicae 9 (2)
(1994) 111-134.

[19] M. deLedn, PR. Rodrigues, Generalized Classical Mechanicsand Field Theory, North-
Holland Mathematical Studies 112, North-Holland, 1985, Amsterdam.

[20] M. de Ledbn, PR. Rodrigues, Higher order almost tangent geometry and non-
autonomous Lagrangian dynamics, Supp. Rend. Circolo Mat. Palermo 16 (1987) 157—
171

[21] M. de Lebn, PR. Rodrigues, Dynamical connections and non-autonomous Lagrangian
systems, Ann. Fac. Sci. Toulouse 1X (1988) 171-181.

[22] M. deLebn, PR. Rodrigues, Methods of Differential Geometry in Analytical Mechanics,
North-Holland Mathematics Studies 158, North-Holland, 1989, Amsterdam.

[23] M. Doupovec, |. Kol&f, Natura affinors on time-dependent Weil bundles, Arch Math.
(Brno) 27 (1991) 205-209.

[24] M. Doupovec, A. Vondra, On certain natural transformations between connections,
Proc. Conf. Diff. Geom. and Its Appl., Opava, 1992 (Silesian University, Opava, 1993)
273-279.

[25] M. Doupovec, A. Vondra, Some natural operations between connections on fibered
manifolds, Rendiconti del Circolo Matematico di Palermo, Serie Il - Suppl. 39 (1996)
73-84.

[26] M. Doupovec, A. Vondra, Natural relations between connectionsin 2-fibred manifolds,
New Developments in Differential Geometry, edited by L. Tammasi and J. Szenthe,
Kluwer Academic Publishers, Dordrecht (1996) 113-130.

[27] M. Doupovec, A. Vondra, Invariant subspaces in higher-order jet prolongations of a
fibered manifold, Czechoslovak Math. J. 50 (125) (2000) 209-220.

[28] S.V. Duzhin, V.V. Lychagin, Symmetries of distributions and quadrature of ordinary
differential equations, Acta Appl. Math. 24 (1991) 29-57.

[29] H. Goldschmidt, Integrability criteria for systems of non-linear differential equations,
J. Differential Geom. 1 (1969) 269-307.

[30] J. Grifone, Structure presque-tangente et connexions, | (11), Ann. Inst. Fourier, Grenoble
22 (3,4) (1972) 287-334 (291-338).

[31] D. Gromoall, W. Klingenberg, W. Meyer, Riemanische Geometrie im Grossen, Springer,
Berlin, 1968.

[32] H. Kawaguchi, The d-connections in Lagrange geometry, Proc. Conf. Diff. Geom. and
Its Appl., Brno, 1989, 230-235.

[33] J. Klein, Geometry of sprays. Lagrangian case. Principle of least curvature Proc.
IUTAM—SIMM Symposium on Modern Developments in Analytical Mechanics,
Torino, Volume |-Geometrical Dynamics (1982) 177-196.



202 A. Vondra

[34] J. Klein, Almost symplectic structures in dynamics, Proc. Conf. Diff. Geom. and Its
Appl., Brno, 1986, 79-91.

[35] S. Kobayashi, K. Nomidzu, Foundations of Differential Geometry, |, Nauka, Moscow,
1981, Russian.

[36] I. Kol&f, Connections in 2-fibred manifolds, Arch. Math. (Brno) 17 (1981) 23-30.

[37] |. KolaF, Some natural operations with connections, J. Nat. Acad. Math. 5 (1987) 127-
141.

[38] I. Kol&éF, M. Modugno, On the algebraic structure on the jet prolongation of fibred man-
ifolds, Czechoslovak Math. J. 40 (115) (1990) 601-611.

[39] I. KolaF, M. Modugno, Torsions of connections on some natural bundles, Diff. Geom.
Appl. 2 (1992) 1-16.

[40] I. Kol&f, PW. Michor, J. Slovék, Natural operationsin differential geometry, Springer,
1993.

[41] I. Kol&F, J. Slovéak, Prolongations of vector fieldsto jet bundles, Proc. Winter School on
Geometry and Physics, Srni, 1989; Suppl. Rendiconti Circolo Mat. Palermo, Seriell 21
(1989) 103-111.

[42] D. Krupka, Some geometrical aspects of variational problems on fibred manifolds, Folia
Fac. Sci. Natur. Univ. Purk. Brun. Phys. X1V (1973) 1-65

[43] D. Krupka, On the higher-order Hamilton theory in fibered spaces, Geometrical Meth-
odsin Physics, Proc. Conf. Diff. Geom. and Its Appl., Nové Mésto na Moravé, 1983, J.
E. Purkyné Univ., Brno, 1984, 167-183

[44] D. Krupka, Geometry of Lagrangian structures 1, Arch. Math. (Brno) 22 (1986) 159—
174; Geometry of Lagrangian structures 2, Arch. Math. (Brno) 22 (1986) 211-228.

[45] D. Krupka, Regular lagrangians and Lepagean forms, Proc. Conf. Diff. Geom. and Its
Appl., Brno, 1986, 111-148.

[46] D. Krupka, J. Musilova, Hamilton extremals in higher order mechanics, Arch. Math.
(Brno) 22 (1984) 21-31.

[47] D. Krupka, J. JanySka, Lectures on differential invariants, Folia Fac. Sci. Natur. Univ.
Purk. Brun. Phys., 1990, Brno.

[48] O. Krupkova, Lepagean 2-formsin higher order Hamiltonian mechanics. |. Regularity,
Arch. Math. (Brno) 22 (1986) 97-120; Lepagean 2-forms in higher order Hamiltonian
mechanics. I1. Inverse problem, Arch. Math. (Brno) 23 (1987) 155-170.

[49] O. Krupkova, Hamilton—Jacobi distributions, preprint, Brno, 1990.

[50] O. Krupkova, Variational analysis on fibered manifolds over one-dimensional bases,
Ph.D. Thesis, Dept. of Mathematics, Silesian Univ. at Opava, Czechoslovakia, 1992,
1-67.

[51] O. Krupkova, Variational metrics on R x TM and the geometry of nonconservative
mechanics, Math. Slovaca 44 (3) (1994) 315-335.

[52] O.Krupkova, Symmetriesand first integrals of time-dependent higher-order constrained
systems, J. Geom. Phys. 18 (1996) 38-58.

[53] O.Krupkova, The Geometry of Ordinary Variational Equations, Lecture Notesin Math-
ematics 1678, Springer-Verlag, 1997, 251 pp.

[54] O. Krupkova, A. Vondra, On someintegration methods for connections on fibered man-
ifolds, Proc. Conf. Diff. Geom. and Its Appl., Opava, 1992, Silesian University, Opava
(1993) 89-101.

[55] V.Lychagin, Lectureson Geometry of Differential Equations, Universita“LaSapienza’,
1992, Roma.

[56] L. Mangiarotti, M. Modugno, Fibred Spaces, Jet Spaces and Connectionsfor Field The-
ories, Proceedings of International Meeting “Geometry and Physics’, Florence, 1982
(1983) Pitagora Editrice, Bologna, 135-165.

[57] L.Mangiarotti, M. Modugno, Connections and differential calculus on fibred manifolds.
Aplications to field theory, Istituto di Matematica Applicata “G. Sansone”, Firense
(1989) 1-147.

[58] E. Massa, E. Pagani, Jet bundle geometry, dynamical connections, and the inverse prob-
lem of Lagrangian mechanics, Ann. Inst. Henri Poincaré: Phys. Theor. 61 (1994) 17-62.



From semisprays to connections 203

[59] M. Matsumoto, Foundations of Finsler geometry and special Finsler spaces, Kaiseisha
Press, Shikagen, 1986.

[60] R. Miron, Metrical Finsler structures and metrical Finsler connections, J. Math. Kyoto
Univ. 23 (2) (1983) 219-224. .

[61] M. Modugno, Jet involution and prolongation of connections, Casopis Pést. Mat. 114
(4) (1989) 356-365.

[62] PJ. Olver, Aplications of Lie Groups to Differential Equations, Springer, 1986.

[63] J.F. Pommaret, Systems of Partial Differential Equations and Lie Pseudogroups, Mir,
1983, Moscow, trand. to Russian.

[64] M.M. Postnikov, Lectures on Geometry |V. Differencial Geometry, Nauka, 1988,
Moscow, Russian.

[65] G.E. Prince, Toward a classification of dynamical symmetries in classica mechanics,
Bull. Austral. Math. Soc. 27 (1983) 53-71.

[66] G.E.Prince, A complete classification of dynamical symmetriesin classical mechanics,
Bull. Austral. Math. Soc. 32 (1985) 299-308.

[67] PK. Rashevskil, Geometrical Theory of Partial Differential Equations, OGIZ, 1947,
Moscow, Russian.

[68] H.Rund, The differential geometry of Finder spaces, Springer, Berlin, 1959.

[69] W. Sarlet, F. Cantrijn, M. Crampin, A new look at second—order equations and La
grangian machanics, J. Phys. A: Math. Gen. 17 (1984) 1999-2009.

[70] W. Sarlet, Symmetries and alternative Lagrangians in higher-order mechanics, Physics
Lett. A 108 (1) (1985) 14-18.

[71] W. Sarlet, A. Vandecasteele, F. Cantrijn, E. Martinez, Derivations of forms along a map:
the framework for time-dependent second-order equations, Diff. Geom. Appl. 5 (1995)
171-203.

[72] D.J. Saunders, The Geometry of Jet Bundles, Cambridge University Press, 1989, Lon-
don Mathematical Society Lecture Note Series 142, Cambridge.

[73] V.V. Stepanov, Course on Differential Equations, Moscow, 1950, Russian.

[74] S. Sternberg, Lectures on Differential Geometry, Prentice—Hall, 1965, New York.

[75] J. Szenthe. Lagrangians and sprays, Annales Univ. Sci. Budapest 35 (1992) 1-5.

[76] G. Thompson, Second—order equation fields and the inverse problem of Lagrangian
dynamics, J. Math. Phys. 28 (112) (1987) 2851-2857.

[77] A.M. Vinogradov, |.S. Krasil’shchik, V.V. Lychagin, Introduction to the Geometry of
Nonlinear Differential Equations, Nauka, 1986, Moscow, Russian.

[78] A. Vondra, Semisprays, connections and regular equations in higher order mechanics,
In Proc. Conf. Diff. Geom. and Its Appl., Brno 1989, (1990) Word Scientific 276-287
Singapore.

[79] A. Vondra, On some connections related to the geometry of regular higher-order dy-
namics, Sbornik VA, fadaB 2 (1992) 7-18.

[80] A. Vondra, Sprays and homogeneous connectionson R x T M, Arch. Math. (Brno) 28
(1992) 163-173.

[81] A. Vondra, Natural dynamical connections, Czechoslovak Math. J. 41 (1991) 724—730.

[82] A.Vondra, Symmetries of connections on fibered manifolds, Arch. Math. (Brno) 30 (2)
(1994) 97-115.

[83] A. Vondra, Geometry of second-order connections and ordinary differential equations,
Mathematica Bohemica 120 (2) (1995) 145-167.

[84] A. Vondra, Towards a geometry of higher-order differential equations represented by
connections on fibered manifolds, Thesis, Military Academy, Brno, 199, pp. 114.

[85] A. Vondra, Prolongations and fields of paths for higher-order O.D.E. represented by
connections on afibered manifold, Extracta Mathematicae 11 (1) (1996) 229-242.

[86] A. Vondra, Higher-order differential equations represented by connections on prolon-
gations of afibered manifold, to appear in Extracta Mathematical, 2000.

[87] C.von Westenholz, Differential Formsin Mathematical Physics, North-Holland, 1981,
Amsterdam, revised edition.



204 A. Vondra

[88] R.V. Vosylius, The contravariant theory of the differential prolongation on a space with
aconnection, VINITI, Itogi nauki i tekhniki, Problemy geometrii (14), Moscow (1983),
101-176 Russian.

Alexandr Vondra

Mathematical Institute

Silesian University in Opava
BezruCovo nam. 13, 746 01 Opava
Czech Republic

E-mail: Alexandr.Vondra@math.du.cz

Received 10 December 1999



