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From semisprays to connections, from geometry
of regular O.D.E. in mechanics to geometry of
horizontal Pfaffian P.D.E. on fibered manifolds
(and vice versa)1

A. Vondra

Abstract. The paper sumarizes motivations and interim investigations which have let
to a recently established formalism related to the geometry of higher-order equations
represented by connections on prolongations of a fibered manifold. Then the crucial ideas
and results of the theory are presented.
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1. Motivations

The classical results from the Riemannian and Finslerian geometries characterizing
the extremals of some specific (arc length and (kinetic) energy) lagrangians as geodesics
of canonical (Levi-Civita, Cartan) connections and the role of vector fiels called sprays
as generators of corresponding second-order ordinary differential equations are well-
known for a long time; we can refer to [1], [31], [35], [59], [68], [74] in particular.

The classical underlying structure is here made of a differentiable m-dimensional
manifold M with local coordinates (qσ ). A linear connection on M is defined as a co-
variant derivative ∇ : X (M) × X (M) → X (M) (or equivalently as the corresponding
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parallel lift) on vector fields on M . A geodesics is a curve c : J ⊂ R → M , whose tan-
gent vector field dc/dt : J → T M is parallel with respect to the connection (covariant
derivative vanishes). The corresponding condition is nothing but a system of m linear
second-order ordinary differential equations for the components cσ = qσ ◦ c of c:

(1)
d2cσ

dt2 + �σ
i j

dci

dt

dc j

dt
= 0, σ = 1, . . . , m,

where the functions �σ
i j ∈ F(M) are the well-known Christoffels. A spray is a vector

field on the tangent bundle T M , horizontal with respect to the projection T T M → T M
and compatible with homotheties on T M . A geodesic spray ζ for a linear connection ∇
is defined through the connection mapping and found out to be the only spray defining
just the linear second order differential equations for geodesics of the connection. In
coordinates,

(2) ζ = qσ
(1)

∂

∂qσ + �σ
i j q

i
(1)q

j
(1)

∂

∂qσ
(1)

.

The classical approach, defining very often geometric objects as transformation rules
of local coordinate expressions, survived in investigations of corresponding generaliza-
tions within some mathematical groups; cf. [3], [5], [32], [60], [75].

Another approach allowing more global point of view to the topic was introduced
and then worked out in [7], [8], [13], [19], [33], [34], [69], [76]. The corresponding
results were still intrinsically related to the underlying structures of tangent bundle T M
of a manifold M . The studied connection is no more necessarily linear, being defined as
a horizontal vector distribution in T M or equivalently as (1, 1)-tensor field � on T M
compatible with the so-called almost tangent structure J on T M (inspired by [30]):
� J = C , J� = J , with C being the Liouville vector field on T M . The notion of the
spray is generalized to a vector field called semispray and the relationship between con-
nections and semisprays is studied in details. The relation to an autonomous Lagrangian
L and Hamiltonian formalism is then studied through the Poincare–Cartan 2-form ωL

related to the energy E = ∂L L −L of the lagrangian L in the Euler–Lagrange equation

(3) iζωL = d E .

If L is regular and homogeneous, then there is a unique solution ζL of (3), which is
a spray and the canonical projections of whose integral sections are just the extremals
of L . Consequently, � = −∂ζL J is the unique (linear) connection without torsion whose
paths are precisely the extremals of L .

Afterwards, analogous results were presented also on T k M e.g. in [10], [11], [12],
[14], [22].

These autonomous ideas has been then naturally extended to the time dependent sit-
uation: [9], [20], [21], [22]. First, the underlying structure is here R× T M , to where all
the structures from T M are naturally extended. The crucial tool is again a canonical ver-
tical endomorphism, now defined by S = J −C ⊗dt . A semispray is then a vector field
ζ on R × T M described by Sζ = 0 and Jζ = C . A path of ζ is a curve c in M , such
that ċ := (t, c, dc/dt) is an integral curve of ζ . In addition to autonomous situation, the
so-called dynamical connections are appearing, defining further decompositions of as-
sociated tangent bundles to strong and weak horizontal distributions. Just through these
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distributions, the associated semisprays are defined. Namely, a dynamical connection is
an endomorphism on T (R × T M), such that J� = S� = S, �S = −S, � J = −J .
It can be identified with an f (3, −1) structure, which means that �3 − � = 0. Its path
is the so-called weak horizontal curve in M and it is shown that there is a dynamical
connection � = −∂ζ S with the same paths for any semispray ζ . In a usual way it is pos-
sible to associate uniquely the so-called Lagrange vector field to any regular lagrangian
L on R × T M . Thus a dynamical connection whose paths are just the extremals of L
can be found.

Our approach, introduced in [78–81], was based on a generalization of the notion
of higher-order semisprays to a general fibered manifold π : Y → X with one-
dimensional base X , which had to be reflected in the invariancy of all the concepts
with respect to the changes of fibered coordinates. Thus we defined the semispray dis-
tribution as an horizontal subbundle with respect to the corresponding fibration, and
we applied the properties of (generalized) higher-order connections in order to relate
them with semispray distributions. We also described the conditions for connections on
πr−1,r to be associated to a given connection of order (r + 1) on π in terms of relations
of the corresponding horizontal distributions and consequently the equations. Then we
discussed the whole class of natural dynamical connections on Jrπ canonically associ-
ated to a given connection of order (r +1) on π as a generalization of the corresponding
objects on R× T r M . All the structures were intrinsically related to the geometry of un-
derlying jet bundles. On the other hand, the one-dimensional base allowed to consider a
special class of natural affinors (according to [23] for R×T r M and [72] for Jrπ ), being
in particular generated by volume forms on the base X of the fibered manifold. As the
main sources of the formalism and for the motivations we used [42],[44],[45] and [72].
The crucial definitions and properties of various connections on fibered manifolds were
due to [56],[57]. The obtained results were then applied to a description of the geometry
of regular dynamics, using again [42], [44–45] together with [46], through which the
corresponding approach to the Lagrange and Hamilton formalism in time-dependent
higher-order dynamics by means of the regular lagrangian and its Lepagean equivalent
was applied. Moreover, we used the results of the papers [48], [49], which developed
the Hamilton theory directly from locally variational equations.

2. Interim investigations

All the motivations have lead to an essential requirements: to investigate connec-
tions as equations and to do this in the most general situation, i.e., on a general fibered
manifold with an arbitrary dimensional base. In particular, it meant the study of special
“horizontal” kind of Pfaffian partial differential equations represented by the connec-
tions. The investigations went in two parallel and closely related directions.

First, a theory of natural operators (differential invariants) in sense of [40] and [47]
has been found of particular usefulness when studying certain natural operations be-
tween various connections on prolongations of a fibered manifold in [24], [25]. A more
detailed analysis of the formalism used amounted to the conclusion that there is a gen-
eral framework the problems could be studied within. In [26], a new approach to the
study of connections in 2-fibered manifolds was introduced and the role of naturality
for this situation was discussed.
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Following [36], a 2-fibered manifold is a quintuple Z
ρ−→Y

π−→X , where π : Y → X
and ρ : Z → Y and thus also π ◦ ρ : Z → X are fibered manifolds. Our contribu-
tion rests upon the study of the role of an arbitrary fibered morphism � : Z → J 1π .
The point is that one of the most interesting particular cases of such a morphism is
represented by � = � ◦ρ with � : Y → J 1π being a connection on π . The adopted ap-
proach was used in two particular situations: first, we studied natural relations between
connections in J 1π

π1,0−→Y
π−→X with π : Y → X being a general fibered manifold and

π1,0 : J 1π = J 1Y → Y the canonical affine bundle generated by π . The situation can
be described diagamatically by

(4)

X
π1←−−− J 1π

J 1(π1,0,idX)←−−−−−− J 1π1�idX π1,0

� (π1)1,0

�
X

π←−−− Y
π1,0←−−− J 1π

(π1,0)1,0←−−−− J 1π1,0�idX π

� π1

�
X

idX←−−− X
idX←−−− X.

Within this scheme, an alternative definition of the well-known semiholonomic jets has
been given and the formal curvature map R : J 1π1,0 → π∗

1,0(VπY ⊗ π∗(�2T ∗X)) was
introduced. Among the results, we have shown that all natural operators transforming a
connection � on π and a connection � on π1,0 into a connection � on π1 being of the
zero order in � form a 4-parameter family

(�, �) �→ ka,b
� ◦ � + c (R ◦ j1� ◦ π1,0) + dκ� ◦ �

for all a, b, c, d ∈ R, where R is the formal curvature map, ka,b
� = k�a + bR, �a =

idJ1π + a(� ◦ π1,0 − idJ1π), k� : J 1π1,0 → J 1π is an affine bundle morphism defined
for any fibered morphism � : J 1π → J 1π (and especially for �a) as the composition

J 1π1,0
(π1,0)1,0×id−−−−−−→ J 1π ×Y J 1π1,0

�×id−−−→ J 1π ×Y J 1π1,0
k−−−→ J 1π1,

k is a canonical fibered morphism realizing the ‘derivative of composed sections’;
and κ� is (analogously to formal curvature map) the formal mixed curvature map
κ� : J 1π1,0 → π∗

1,0(VπY ⊗ π∗(�2T ∗X)).

Secondly, we worked with a 2-fibered manifold VπY
ρ−→Y

π−→X , where π is again
a fibered manifold and ρ = τY |Vπ Y : VπY → Y its vertical bundle. Here, the situation
is the following

(5)

X
π1←−−− J 1Y

J 1(τY ,idX)←−−−−− J 1(π ◦ τY )
ν1−−−→ Vπ1 J 1π�idX

�π1,0 (π◦τY )1,0

�
X

π←−−− Y
τY←−−− VπY

(τY )1,0←−−− J 1τY�idX π

� (π◦τY )

�
X

idX←−−− X
idX←−−− X ,
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where by ν1 we denote the canonical isomorphism between J 1(π ◦ τY |Vπ Y ) and the sub-
bundle Vπ1 J 1π of π1-vertical vectors on J 1π . Here, all natural operators transforming
a connection � on π and a connection � on τY : VπY → Y into the connection � on
π ◦ τY : VπY → X being of the zero order in � form a 2–parameter family

(�, �) �→ k�a
�,�

◦ � + b D(k� ◦ �,V�)

for all a, b ∈ R, where we refer to [26] for the details. Notice here only that V� is the
vertical prolongation of the connection �, defined (following [37]) by V � = ν1 ◦ V�,
being thus a connection on (π ◦ τY ). This has been effectively used for finding a linear
connection on τY : VπY → Y whose integral sections are just the symmetries of �.

The usefulness of such considerations for a description of the geometry of first and
second-order differential equations systems represented by these connections became
apparent in [54] and [82].

In [54], two dual indirect integration methods were discussed, both transferring the
given integration problem to that of solving related connections. In case of the first-order
system represented by a connection � on π1,0, the method of characteristics means
that the uniquely determined 2-connection �(2) : J 1π → J 2π , called characteristic
to �, was solved. More specifically, a connection � on π1,0 is called characterizable if
R ◦� = 0, where R is the formal curvature map. If � is characterizable and H� its hor-
izontal distribution, then a 2-connection �(2) : J 1π → J 2π (within the framework of
(4) as a special type of a connection on π1) is called the characteristic connection of �,
if its horizontal distribution H�(2) is related to H� and the canonical Cartan distribution
Cπ1,0 by H�(2) = H� ∩ Cπ1,0 . The distribution H�(2) of the characteristic connection �(2)

of � is called the characteristic distribution of � and the integral manifolds of H�(2)

of maximal dimension are called the characteristics of the connection �. Clearly, the
maximal integral manifolds of H� (integral sections of �) are foliated by the maximal
integral manifolds of the characteristic distribution (characteristics, 1-jet prolongations
of integral sections of the characteristic connection). Accordingly, integral sections of
� are “glued together” from the characteristics.

Conversely, the method of fields of paths for the second-order system represented by
�(2) was introduced. First, we have shown that if � is an integrable characterizable con-
nection on π1,0 and �(2) its characteristic 2-connection on π , then �(2) is integrable, and
each integral section of �(2) is locally embedded in a field of paths �, which is an inte-
gral section of �. A connection � : Y ⊃ V → J 1π is a field of paths of �(2) if and only
if �(V ) is foliated by first jets of integral sections of �(2), i.e., if H�(2) |�(V ) ≡ C�

π1,0
.

Then a local connection � on π1,0 is called an integral of �(2) if � is integrable and
�(2) is its characteristic connection. We have shown that the existence of integrals of an
integrable 2-connection is a direct consequence of the integrability property, and that
one can construct an integral of �(2) by means of a set of independent first integrals
of H�(2) . This procedure generalized the well-known Hamilton–Jacobi theory of calcu-
lus of variations in the sense of [49], [50] (and afterwards [53]), to non-variational and
partial differential equations.

The complementary constructions (in the sense of decompositions generated by a
connection in question) were introduced in [82], having to do with symmetries of corre-
sponding equations. Here, the vertical prolongations of first and second-order connec-
tions in the sense of [36], [37], [40], [61], and [88] appeared to be of importance, and
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certain related “strong horizontal” concepts (reduced connections) were established,
following the ideas of [88].

The application of the above formalism for the first and second order ordinary dif-
ferential equations was presented in [83].

3. Higher-order equations represented by connections

A natural requirement was to generalize the whole theory to the higher-order situ-
ation, i.e., to higher order connections and equations. This has been done in [84], the
material of which has been prepared for publication in [85] (for O.D.E.) and [86]. In
what follows, we thus work with standard framework and notation of jet prolongations
of a fibered manifold π : Y → X , according to [72]. Following the aim of this paper
and space limitations, we do not give precise description of all notions we work with
and we refer to the above mentioned papers for full details.

First, the equations represented by higher-order connections are described, following
and combining the ideas and formalism of [2], [6], [29], [62], [63], [67], [72], [77].

By a k-th order differential equation on a fibered manifold π : Y → X is meant a
fibered submanifold E (k) of πk : J kπ → X such that

π−1
k,k−1 ◦ πk,k−1

(
E (k)

) �= E (k).

A solution of E (k) is a section γ ∈ SU (π) such that j kγ ⊂ E (k). Equations are frequently
defined by fibered morphisms. Thus if � : J kπ → Y ′ is a fibered morphism of constant
rank between πk and π ′ over X , the corresponding differential operator is the mapping
D� : Sloc(π) → Sloc(π

′) defined by D�(γ )(x) = (�◦ j kγ )(x), and for any ψ ∈ SU (π ′)
satisfying ψ(U ) ⊂ Im�, the k-th order differential equation determined by � and ψ is

E (k)
�,ψ = kerψ � = {

j k
x γ ; �( j k

x γ ) = ψ(x)
} ⊂ J kπ.

Accordingly, a solution of E (k)
�,ψ is γ ∈ SV (π) such that D�(γ ) = ψ |V , which in

coordinates means a system of P.D.E.

�σ

(
xi , γ λ(xi ),

∂γ λ

∂x j (xi ), . . . ,
∂kγ λ

∂x j1 · · · ∂x jk
(xi )

)
= ψσ(xi ),

where σ = 1, . . . , dim π ′. The Cartan distribution of the k-th order equation E (k) ⊂
J kπ is the intersection

CE (k) = Cπk,k−1 ∩ TE (k),

carrying the most important information on the equation.
The equation of order (k + 1) represented by a (k + 1)-connection �(k+1) : J kπ →

J k+1π on π is the submanifold

E�(k+1) = �(k+1)(J kπ) ⊂ J k+1π,

realizing (generally nonlinear) system of P.D.E. in normal form, i.e., explicitly solved
with respect to the highest derivatives:

(6)
∂k+1γ σ

∂x j1 · · · ∂x jk+1
= �σ

j1··· jk+1

(
xi , γ λ, . . . ,

∂kγ λ

∂x j1 · · · ∂x jk

)
.
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A section γ ∈ Sloc(π) is called the integral section (path) of �(k+1) if it is the solution
of E�(k+1)

; i.e., if j k+1γ = �(k+1) ◦ j kγ . Evidently,

E�(k+1) ≡ E (k+1)

∇
�(k+1) ,0

,

which corresponds to the characterization of integral sections as those γ ∈ Sloc(π)

whose covariant derivative ∇�(k+1) (γ ) := ∇�(k+1) ◦ j k+1γ vanishes. On the other hand,
a (k + 1)-connection �(k+1) represents a Pfaffian system

(7)

ωσ = 0
...

ωσ
j1··· jk−1

= 0

ω�(k+1)σ
j1··· jk = 0


≡



dyσ = yσ
i dxi

...

dyσ
j1··· jk−1

= yσ
j1··· jk−1i dxi

dyσ
j1··· jk = �σ

j1··· jk i dxi ,

hence γ ∈ SU (π) is an integral section of �(k+1) if, and only if, j kγ (U ) is an integral
manifold of H�(k+1) , i.e., for each x ∈ U it holds Tx jkγ (TxU ) ⊂ H�(k+1) ( j k

x γ ). In terms
of h�(k+1) it means

h�(k+1) | j kγ ≡ T jkγ ◦ T πk : Tjk
x γ J kπ → Tjk

x γ J kπ.

A (k + 1)-connection �(k+1) on π is integrable if, and only if, one of the following
equivalent conditions holds:

– For an arbitrary y ∈ Y , there is a unique integral section of �(k+1) passing
through it.

– The horizontal distribution H�(k+1) is completely integrable.
– [D�(k+1)i , D�(k+1) p] = 0 for all i, p.
– The connection �(k+1) is flat, i.e., R�(k+1) = 0.
– J 1(�(k+1), idX) ◦ ι1,k ◦ �(k+1) ∈ Jk+2π .
– The components of �(k+1) satisfy D�(k+1)i (�

σ
j1... jk p) = D�(k+1) p(�

σ
j1··· jk i ) for arbi-

trary i, p = 1, . . . , n.
Denote by

C�(k+1)

:= Cπk+1,k ∩ T �(k+1)(J kπ)

the Cartan distribution of the equation represented by �(k+1). Clearly, it is a regular n-
dimensional distribution on the submanifold �(k+1)(J kπ) ⊂ J k+1π , annihilated by the
forms ωσ

j1··· j�
(� = 0, . . . , k − 1) together with dyσ

j1··· jk
− �σ

j1··· jk i dxi and dyσ
j1··· jk+1

−
d�σ

j1··· jk+1
, or equivalently spanned by the vector fields

T �(k+1) (D�(k+1)i )

= ∂

∂xi +
k−1∑
�=0

yσ
j1... j�i

∂

∂yσ
j1··· j�

+ �σ
j1··· jk i

∂

∂yσ
j1··· jk

+ D�(k+1) p(�
σ
j1··· jk i )

∂

∂yσ
j1... jk p

.

Then it is easy to prove that a (k + 1)-connection �(k+1) on π is integrable if, and only
if, the distribution C�(k+1)

is completely integrable, and a section γ is an integral section
of �(k+1) if, and only if, j k+1γ is the integral mapping of C�(k+1)

.
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In accordance with the above general situation, a (k + 1)-connection �(k+1) on π :
R × M → R is a section �(k+1) : R × T k M → R × T k+1 M of idR × τ

k+1,k
M . Any

(k + 1)-connection is characterized by its horizontal form h�(k+1) = D�(k+1) ⊗ dt , where
the absolute derivative

(8) D�(k+1) = ∂

∂t
+

k−1∑
i=0

qσ
(i+1)

∂

∂qσ
(i)

+ �σ
(k+1)

∂

∂qσ
(k)

is the so-called semispray on R × T k M , defining the one-dimensional πk-horizontal
semispray distribution H�(k+1) . Due to the product structure and analogously to the first-
order case, �(k+1) can be represented by the vector field

w(k+1) =
k−1∑
i=0

qσ
(i+1)

∂

∂qσ
(i)

+ �σ
(k+1)

∂

∂qσ
(k)

along pr2 : R × TkM → TkM, which is nothing but a time-dependent semispray
on T k M ; in the autonomous situation, a semispray on T k M is a section of τ

k+1,k
M :

T k+1 M → T k M .
The (k+1)-th order (generally nonlinear) system of O.D.E. represented by a (k + 1)-

connection �(k+1) on π : R × M → R can be described both globally as the
((k + 1) m + 1)-dimensional submanifold

�(k+1)(R × T k M) ⊂ R × T k+1 M

of R × T k+1 M and locally by

(9)
dk+1cσ

dtk+1 = �σ
(k+1)

(
t, cλ, . . . ,

dkcλ

dtk

)
;

the Pfaffian version of which is

dqσ = qσ
(1) dt, . . . , dqσ

(k−1) = dqσ
(k) dt, dqσ

(k) = �σ
(k+1) dt.

The integral sections of �(k+1) are thus the ‘graphs’ of the geodesics of the above semis-
pray w(k+1) in the sense that w(k+1) ◦ j k+1γ = c(k+1).

4. Prolongations and fields of paths

The r-th jet prolongation of the equations is studied. In general, the prolongation
of an equation carries the information on the equation together with a given number of
“consequences”, obtained by differentiating the original equation. In case of connec-
tions, the construction of the prolongation in terms of the prolongations of correspond-
ing morphisms results in a very transparent characterization, which follows the defini-
tion of a field of paths as a local lower-order connection representing an order-reduction
of the initial equations.

Let E (k) ⊂ J kπ be a k-th order equation on π . The r-th prolongation of E (k) is the
subset

E (k)(r) = JrE (k) ∩ J k+rπ



From semisprays to connections 183

with JrE (k) ⊂ Jrπk . For the equation E (k)
�,ψ defined by a fibered morphism (�, ψ),

E (k)(r)
�,ψ = {

j k+r
x γ ; Jr (�, idX) ◦ ιr,k(j

k+r
x γ ) = jrxψ

} ⊂ J k+rπ

is again a differential equation, now of the (k + r)-th order. In fact, E (k)(r)
�,ψ represents

the family of P.D.E. obtained by differentiating the original equations 0, 1, . . . , r times
with respect to the independent variables.

Let k ≥ 0 and �(k+1) : J kπ → J k+1π be an integrable (k + 1)-connection on π .
The r-th prolongation of the equation E�(k+1) ⊂ J k+1π represented by �(k+1) is defined
to be the submanifold

E�(k+1)(r) = Im�(k+1)(r) ⊂ Jk+r+1π,

where �(k+1)(r) is the last term of the sequence of sections(
�(k+1)(0), �(k+1)(1), . . . , �(k+1)(r)

)
recurrently defined for each � = 1, . . . , r by

�(k+1)(�) := J 1
(
�(k+1)(�−1), idX

) ◦ ι1,k ◦ �(k+1) : Jkπ → Jk+�+1π

with �(k+1)(0) := �(k+1).
Then it is easy to see that the equation E�(k+1)(r) consists of (k +r +1)-jets of integral

sections of �(k+1); in fact j k+r+1γ = �(k+1)(r) ◦ j kγ .
By the r-th order Cartan distribution C�(k+1)(r) of an integrable (k + 1)-connection

�(k+1) on π is meant the Cartan distribution of the r -th prolongation E�(k+1)(r), i.e.,

C�(k+1)(r) := Cπk+r+1,k+r ∩ T �(k+1)(r)(J kπ).

By definition, C�(k+1)(0) = C�(k+1)

, and C�(k+1)(r) is a regular n-dimensional distribution
on �(k+1)(r)(J kπ) ⊂ J k+r+1π annihilated by the forms ωσ , . . . , ωσ

j1··· jk+1
restricted to

�(k+1)(r)(J kπ) together with

dyσ
j1··· jk+1i1...ir

− d
(
Di1...ir (�

σ
j1··· jk+1

)
) ◦ �(k+1)(r−1),

or equivalently spanned by the vector fields T �(k+1)(r)(D�(k+1)i ). Let r ≥ 1. Then

T �(k+1)(r−1) ◦ D�(k+1)i = Dk+r+1,k+r
i ◦ �(k+1)(r).

Let k ≥ 0, r ≥ 1. A (k + 1)-connection �(k+1) on π is integrable if, and only if, its
r -th order Cartan distribution C�(k+1)(r) is completely integrable, and a section γ is an
integral section of �(k+1) if, and only if, j k+r+1γ is the integral mapping of C�(k+1)(r).

A (k + 1)-connection �(k+1) ∈ SV (πk+1,k) is called a field of paths of a (k + r + 1)-
connection �(k+r+1) : J k+rπ → J k+r+1π if on V holds

�(k+r+1) ◦ �(k+1)(r−1) = �(k+1)(r).

By definition, each field of paths is integrable, and

H�(k+r+1) |�(k+1)(r−1)(V ) ≡ C�(k+1)(r−1).

Equivalently, if γ is an integral section of �(k+1), then if γ is an integral section of a
field of paths �(k+1) of �(k+r+1), then it is the integral section (a path) of �(k+r+1). In
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other words, H�(k+1) defines a foliation of V such that each leaf of this foliation is an
integral section of �(k+r+1).

Globally speaking, each field of paths represents a (local) order-reduction of the
given equation. In this respect, the problem of finding the integral sections of a given
integrable higher-order connection can be transferred to the problem of looking for and
then solving of its fields of paths; the transitivity of the relation ‘to be a field of paths of
a higher-order connection’ is evident. In this respect, the method of fields of paths will
be discussed later on.

5. Symmetries and vertical prolongations

Infinitesimal symmetries as the generators of invariant transformations in sense of
[28] are studied in terms of the corresponding decompositions on tangent bundles. The
use of the vertical prolongation V�(k+1) finds its application within the 2-fibered mani-
fold

Vπk J kπ
τJkπ−→J kπ

πk−→X,

where a linear connection on τJ kπ whose integral sections are the symmetries is found.
Finally, the relations between symmetries for a connection and its field of paths are
derived, again in terms of vertical prolongations.

Let �(k+1) be an integrable (k + 1)-connection on π , and let ζ (k) ∈ X (J kπ). Then
there is a direct sum decomposition of its r -th prolongation

J rζ (k) ◦ �(k+1)(r−1) = J r (h�(k+1) ◦ ζ (k)) ◦ �(k+1)(r−1)

+ V �(k+1)(r−1) ◦ v�(k+1) ◦ ζ (k) + (J rζ (k) ◦ �(k+1)(r−1))πk+r,k ,

where

J r (h�(k+1) ◦ ζ (k)) ◦ �(k+1)(r−1) ∈ C�(k+1)(r−1),

V �(k+1)(r−1) ◦ v�(k+1) ◦ ζ (k) ∈ V �(k+1)(r−1)(Vπk J kπ),

(J rζ (k) ◦ �(k+1)(r−1))πk+r,k ∈ Vπk+r,k J k+rπ.

The decomposition represents a contribution to the internal geometry of equations
under consideration, and as such it can be viewed as an internal version of results pre-
sented in terms of the so-called characterizable connections. The bridge between these
points of view is created by fields of paths. For instance, for �(k+1) being a field of paths
of �(k+r+1) it holds

J r D�(k+1)i ◦ �(k+1)(r−1) = D�(k+r+1)i ◦ �(k+1)(r−1).

In what follows, �(k+1) is supposed to be an integrable (k + 1)-connection on π .
A vector field ζ (k) ∈ X (J kπ) is called a k-th order symmetry (briefly k-symmetry) of
�(k+1) if ζ (k) and J 1ζ (k) are �(k+1)-related, i.e.,

J 1ζ (k) ◦ �(k+1) = T �(k+1) ◦ ζ (k).

The set of all k-symmetries of �(k+1) is denoted by Sym(k)(�(k+1)).
It is evident that any �(k+1)-horizontal vector field is a k-symmetry of �(k+1), which

leads to the fact that a vector field ζ (k) ∈ X (J kπ) is a k-symmetry of �(k+1) if, and only
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if one of the following equivalent conditions holds:

J 1(v�(k+1) ◦ ζ (k)) ◦ �(k+1) = V �(k+1) ◦ v�(k+1) ◦ ζ (k),

Lv
�(k+1) (ζ

(k))h�(k+1) = 0.

In this arrangement, the k-symmetries of �(k+1) are just the symmetries of the horizontal
distribution H�(k+1) .

A πk-projectable vector field ζ (k) on J kπ is a k-symmetry of �(k+1) if, and only if,
equivalently Lζ (k)h�(k+1) = 0 (L is here the Lie derivative) or the flow of ζ (k) permutes
the k-jets of integral sections of �(k+1).

Denote by Sym(k)
v (�(k+1)) ⊂ Sym(k)(�(k+1)) the submodule of πk-vertical k-sym-

metries of �(k+1), by Char(H�(k+1) ) the ideal of characteristic symmetries of H�(k+1) (e.i.
those lying within H�(k+1)) and by Shuf(H�(k+1) ) the quotient algebra

Shuf(H�(k+1) ) = Sym(H�(k+1) )/Char(H�(k+1) )

of the so-called shuffling symmetries. Recall that while the flow of a characteristic sym-
metry moves integral manifolds along themselves, any shuffling symmetry represents
the whole class of symmetries whose flow rearranges the integral manifolds in the same
way. Then it holds H�(k+1)

∼= Char(H�(k+1) ) and Sym(k)
v (�(k+1)) ∼= Shuf(�(k+1)).

The structure of higher-order jet prolongations and corresponding projections al-
lowed us to define some other types of symmetries. A vector field ζ (r) ∈ X (Jrπ),
0 ≤ r ≤ k − 1, is called the r-symmetry of �(k+1) if J k−rζ (r) ∈ Sym(k)(�(k+1)). The
set of all r -symmetries of �(k+1) is denoted by Sym(r)(�(k+1)). Then a πr -projectable
vector field ζ (r) on Jrπ is the r -symmetry of �(k+1) if, and only if, its flow permutes the
r -jets of integral sections of �(k+1).

Of course, our main concern is with vector fields on Y as generators of invariant
transformations on sections; in this respect, zero-symmetries are referred to briefly as
symmetries. In this case, ζ ∈ X (Y ) is a symmetry of an integrable �(k+1) if, and only
if, one of the following equivalent conditions holds:

J k+1ζ ◦ �(k+1) = T �(k+1) ◦ J kζ,

J 1(v�(k+1) ◦ J kζ ) ◦ �(k+1) = V �(k+1) ◦ v�(k+1) ◦ J kζ,

Lv
�(k+1) (J kζ )h�(k+1) = 0,

[D�(k+1)i ,J kζ ] = D�(k+1)i (ζ
j ) D�(k+1) j ,

where D�(k+1)i (ζ
j ) denotes briefly just D�(k+1)i (π

∗
k,0(ζ

j )) ≡ π∗
k,1(D1,0(ζ j )). If in addi-

tion ζ ∈ XX (Y ), then it is a symmetry of �(k+1) if, and only if, its flow permutes the
integral sections of �(k+1).

The symmetries of the Cartan distribution Cπk,k−1 on J kπ are called contact vector
fields. By the well-known Bäcklund’s theorem, in the case of m = dim π = 1 and if
ζ (k) is contact, then it is the (k − 1)-th prolongation of a contact vector field on J 1π .
If m > 1, then ζ (k) is the k-th prolongation of a vector field on Y . In this respect, the
external symmetry of an equation E (k) ⊂ J kπ is a contact vector field on J kπ tangent
to E (k). In other words, its flow preserves both the Cartan distribution and the equation.
The restriction of an external symmetry to E (k) defines a symmetry of CE (k)

and just
the symmetries of the distribution CE (k)

are called the internal symmetries of the equa-
tion E (k). It can be shown that ζ (r) ∈ X (Jrπ) is the r -symmetry of an integrable �(k+1)
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if J k−r+1ζ (r)|�(k+1)(J kπ) ∈ X (�(k+1)(J kπ)) is an internal symmetry of �(k+1)(J kπ). In
particular, if ζ ∈ XX (Y ) is such that J k+1ζ ◦ �(k+1) ∈ C�(k+1)

, then its flow acts on the
integral sections of �(k+1) trivially – moves them along themselves. On the other hand,
a π -vertical symmetry can be viewed as representing the whole class of symmetries
rearranging the integral sections in the same way.

The vertical prolongation V�(k+1) of �(k+1) is a (k + 1)-connection on (π ◦ τY |Vπ Y )
defined by

V �(k+1) ◦ νk = νk+1 ◦ V�(k+1),

which is projectable over �(k+1) within the 2-fibered manifold

J k(π ◦ τY |Vπ Y )
J k (τY |Vπ Y ,idx)−−−−−−−→ J kπ

πk−−−→ X.

In fact, to eliminate the formalism including the ν’s, we work with a slight inaccuracy
directly with the izomorphic

Vπk J kπ
τJkπ−−−→ J kπ

πk−−−→ X.

Then the following assertion can be easily verified by means of the results obtained
in [26].

Let �(k+1) be an integrable (k + 1)-connection on π and � a connection on τJ kπ :
Vπk J kπ → J kπ , satisfying k�(k+1) ◦� = V�(k+1), (where k�(k+1) is defined analogously
to Section 2 in Section 6). Then if ζ (k) ∈ XX (J kπ) is an integral section of �, then
ζ (k) ∈ Sym(k)

v (�(k+1)).
Let finally �(k+1) ∈ SV (πk+1,k) be a field of paths of �(k+r+1) : J k+rπ → J k+r+1π .

Then one might ask on the relationship between the vertical (zeroth-order) symmetries
of the above connections. First, since each integral section of �(k+1) is the integral sec-
tion of �(k+r+1), then if ζ ∈ X v

X (Y ) is a symmetry of �(k+r+1), then ζ |πk,0(V ) is a symme-
try of �(k+1). To obtain the well-known result affirming that each vertical symmetry of
an equation is the symmetry of its prolongation, the relation between the corresponding
vertical prolongations must be clarified. In fact, one can prove that a (k + 1)-connection
�(k+1) is a field of paths of a (k + r + 1)-connection �(k+r+1) if, and only if, V�(k+1) is
a field of paths of V�(k+r+1). As a corollary, one gets: if ζ is a symmetry of �(k+1), then
it is a symmetry of �(k+1)(r).

6. Characterizable connections

The most interesting part of the theory is that having to do with the interrelations
between equations represented by connections on various fibrations.

In this part, the 2-fibered manifold J k+1π
πk+1,k−→ J kπ

πk−→X finds the application. The
generalization of the diagramm (4) is thus

(10)

X
(πk )1←−−− J 1πk

J 1(πk+1,k ,idX)←−−−−−−− J 1πk+1

idX

� (πk )1,0

� (πk+1)1,0

�
X

πk←−−− J kπ
πk+1,k←−−− J k+1π

(πk+1,k )1,0←−−−−− J 1πk+1,k

idX

� πk

� πk+1

�
X

idX←−−− X
idX←−−− X.
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The canonical map k : J 1πk ×J kπ J 1πk+1,k → J 1πk+1 does not effect the coordinates
up to yσ

j1··· jk ; i and its equations are

yσ
j1··· jk+1; i = zσ

j1··· jk+1i +
k∑

�=0

zσr1 · · · r� j1 · · · jk+1λ yλ
r1···r�; i

,

where by

zσ
j1··· jk+1i , zσ

j1··· jk+1λ
, . . . , zσ i1 · · · ik j1··· jk+1λ

we denote the induced derivative coordinates on J 1πk+1,k . The first order of business
is to mention the role of the canonical embedding ι1,k : J k+1π ↪→ J 1πk , which is in
coordinates expressed by

(11) yσ
;i = yσ

i , . . . , yσ
j1··· jk ; i = yσ

j1··· jk i .

If � : J k+1π → J 1πk is an arbitrary fibered morphism over J kπ , then since the
vertical bundle associated to (πk)1,0 is Vπk J kπ ⊗ π∗

k (T ∗X), the difference � − ι1,k is a
fibered morphism J kπ → Vπk J kπ ⊗ π∗

k (T ∗X) and thus

�a := ι1,k + a(� − ι1,k)

is a fibered morphism J k+1π → J 1πk over J kπ for any a ∈ R. The formal curvature
map is then the map

R : J 1πk+1,k → π∗
k+1,k

(
Vπk J kπ ⊗ π∗

k (�2T ∗X)
)

defined for each j1
j k
x γ

χ ∈ J 1πk+1,k by

R( j1
j k
x γ

χ) = rk+1 ◦ J 1(χ, idX) ◦ ι1,k ◦ χ(jkxγ ).

Then

R : J 1πk+1,k → Vπk+1 J k+1π ⊗ π∗
k+1(T ∗X).

Consequently, one can define (for a, b ∈ R) the affine morphism

ka,b
� : J 1πk+1,k → J 1πk+1

between (πk+1,k)1,0 and (πk+1)1,0 over J k+1π by ka,b
� = k�a + bR.

It is easy to see that regarding a curvature of the connections in question, one gets
that

R�(k+1) = −pr2 ◦ R ◦ j1�(k+1)

= −pr2 ◦ rk+1 ◦ J1(�(k+1), idX) ◦ ι1,k

◦ �(k+1) : J kπ → Vπk,k−1 J kπ ⊗ π∗
k (�2T ∗X).

As to be expected, the same characterization can be presented for a (first-order) connec-
tion � on π , i.e.,

R� = −pr2 ◦ r1 ◦ J1(�, idX) ◦ � : Y → VπY ⊗ π∗(�2T∗X),

hence k = 0 is allowed when speaking on the curvature of a (k + 1)-connection on π .
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Recall that kι1,k : J 1πk+1,k → Ĵ k+2π is by definition

j1
z �(k+1) �→ k(�(k+1)(z), j1

z �(k+1)) = J 1(�(k+1), idX) ◦ ι1,k ◦ �(k+1)(z).

Therefore, if γ ∈ SU (π) is an arbitrary section of the (k + 1)-connection �(k+1), then

kι1,k ( j1
j k
x γ

�(k+1)) = J 1(�(k+1), idX) ◦ ι1,k ◦ �(k+1)(jkxγ )

= ι1,k+1( j k+2
x γ ) ∈ ι1,k+1(J k+2π).

Secondly, for any �(k+1),k�(k+1) := kι1,k◦�(k+1)◦πk+1,k
: J 1πk+1,k → J 1πk+1 reads

j1
z χ

k
�(k+1)−−−−→ J 1(χ, idX) ◦ ι1,k ◦ �(k+1)(z),

which means that for an integrable �(k+1) holds

k�(k+1) ◦ j1�(k+1) = kι1,k ◦ j1�(k+1) J 1(�(k+1), idX) ◦ ι1,k ◦ �(k+1)

= �(k+1)(1).

On the other hand, let � : J k+1π → J 1πk+1,k be a connection on πk+1,k , and
� : J k+1π → J 1πk be a fibered morphism over J kπ . Then

�
a,b
�,� := ka,b

� ◦ � : J k+1π → J 1πk+1

is a connection on πk+1 for an arbitrary a, b ∈ R. In particular, a (local) connection
�(k+1) can be considered representing both the morphism � = ι1,k ◦ �(k+1) ◦ πk+1,k and
the section of πk+1,k . Then denoting by ��(k+1),� = k�(k+1) ◦ �, the following assertion
can be presented.

Let �(k+1) be an integral section of a connection � on πk+1,k . Then γ is an integral
section of �(k+1) if, and only if, �(k+1) ◦ j kγ is the integral section of ��(k+1),�.

For an arbitrary connection � on πk+1,k and b ∈ R,

�̂
(k+2)
�,b := �

0,b
ι1,k ,�

= k0,b
ι1,k

◦ � : J k+1π → Ĵ k+2π

is a semiholonomic connection on πk+1, which can be decomposed to the (k + 2)-
connection

�
(k+2)
� := sk+1 ◦ �̂

(k+2)
�,b ,

and to a certain multiple of the composition R ◦ � of the formal curvature R with �.
Then a connection � on πk+1,k is called characterizable, if R ◦ � = 0. The (k + 2)-

connection �
(k+2)
� = kι1,k ◦� is then called the characteristic connection of �. Accord-

ingly, the horizontal distribution H
�

(k+2)
�

is called the characteristic distribution of �

and the maximal-dimensional integral manifolds of the characteristic distribution (i.e.
(k + 1)-jets of integral sections of �

(k+2)
� ) are the characteristics of �.

A (k + 2)-connection �(k+2) on π is the characteristic connection of a connection �

on πk+1,k if, and only if, one of the following equivalent conditions holds:

�σ
j1··· jk+1i = �σ

j1··· jk+1i +
k∑

�=0

�σr1 · · · r� j1··· jk+1λ
yλ

r1···r�i ;

D�(k+2)i = D�i +
k∑

�=0

D j1··· j�
�λ yλ

j1··· j�i ;
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h� − h�(k+2) =
k∑

�=0

D j1··· j�
�λ ⊗ ωλ

j1··· j�;

H�(k+2) = H� ∩ Cπk+1,k .

A class of characterizable connections on πk+1,k with the same characteristic (k+2)-
connection on π is generated by the class of ι1,k-admissible deformations on πk+1,k .
More precisely, if we call any such � associated to �(k+2), then for each soldering form

ϕ : J k+1π → Vπk+1,k J k+1π ⊗ π∗
k+1,k(T ∗J kπ)

satisfying locally

ϕσ
j1··· jk+1i +

k∑
�=0

ϕ
σr1···r�

j1··· jk+1λ
yλ

r1···r�i = 0,

h� + ϕ is the horizontal form of another connection on πk+1,k associated to �(k+2).
Let us again consider π : R × M → R. There is an interesting submanifold

of J 1πk+1,k having to do with the relations between the autonomous and the time-
dependent situations. Namely, there is a canonical inclusion

R × J 1τ
k+1,k
M ↪→ J 1πk+1,k,

defined by

(x, j1
y w

(k+1)) �−→ j1
(x,y)�

(k+1)

for �(k+1) being defined by w(k+1) (see Section 4). In this respect, the restriction of the
morphism

kι1,k : J 1πk+1,k → R × T k+2 M

to the above submanifold generates the morphism

k(k+1)
M : J 1τ

k+1,k
M → T k+2 M

over T k+1 M .
Accordingly, a connection � on τ

k+1,k
M can be considered as a connection on πk+1,k

of the particular type

� = idR × � : R × Tk+1M → R × J1τ
k+1,k
M

with the components �σ
(k+1) = 0 and �

σ(i)
(k+1)λ ∈ F(T k+1 M). The corresponding hori-

zontal distribution is

h� = ∂

∂t
⊗ dt +

k∑
i=0

D(i)
�λ ⊗ dqλ

(i) = idTR + h�,

and the integral sections can be identified with the semisprays on T k M (for k ≥ 1)
or the vector fields on M (for k = 0). Just the case of k = 0 might be of particular
importance due to the fact that � represents a (generally non-linear) connection on
τM : T M → M with integral sections being the vector fields on M whose covariant
derivative with respect to � vanishes, i.e., those parallel with respect to �.
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The deformations of connections on πk+1,k are the soldering forms on πk+1,k ; a local
expression of any such a πk+1,k-vertical endomorphism on R × T k+1 M is

ϕ = ∂

∂qσ
(k+1)

⊗
(

ϕσ
(k+1) dt +

k∑
i=0

ϕ
σ(i)
(k+1)λ dqλ

(i)

)
.

Nevertheless, there is a distinguished subfamily of the above soldering forms created by
the natural soldering forms on πk+1,k .

Recall first the family of natural vector-valued one-forms on R × T k M , which is
expressed by

k∑
i=1

ci J (k)
i +

2k∑
i=k+1

ci C
(k)
i−k ⊗ dt + c2k+1 IT k M + c2k+2 IR,

where ci ∈ F(R), IT k M and

J (k)
i =

k−i+1∑
j=1

j
∂

∂qσ
(i+ j−1)

⊗ dqσ
( j−1)

(for i = 1, . . . , k) are the unique natural (1, 1)-tensor fields on T k M ,

IR = ∂

∂t
⊗ dt,

and

C (k)
i =

k−i+1∑
j=1

(i + j − 1)!

( j − 1)!
qσ

( j)

∂

∂qσ
(i+ j−1)

(for i = 1, . . . , k) are the absolute (generalized Liouville) vector fields on T k M . Con-
sequently, any such natural soldering form is expressed by

ϕ = f1 J (k+1)

k+1 + f2C (k+1)

k+1 ⊗ dt

for f1, f2 ∈ F(R), i.e.,

ϕσ
(k+1) = (k + 1)! f2qσ

(1), ϕσ
(k+1)λ = f1δ

σ
λ

and the rest of the components vanishes identically. As a consequence we get that all
natural ι1,k-admissible deformations on πk+1,k are of the form

ϕ = f S(k+1)

k+1

with

S(k+1)

k+1 = J (k+1)

k+1 − 1

(k + 1)!
C (k+1)

k+1 ⊗ dt

and f ∈ F(R). In coordinates,

S(k+1)

k+1 = ∂

∂qσ
(k+1)

⊗ (
dqσ − qσ

(1) dt
)
.
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7. The method of characteristics

In fact, the construction generalizes that of the associated semispray to a given dy-
namical connection and it results in the method of characteristics for �. As regards both
the name and the meaning, the approach is quite near to the ideas dealing with Pfaffian
systems in [67] and particularly [73]. Reaping the benefit of the fact that each integral
section of � is the field of paths of �(k+2), the integral ‘surfaces’ of � are foliated by
(k + 1)-jets of integral “curves” of �(k+2) (= characteristics). The relation between the
equations studied can be roughly (and non-geometrically) expressed as follows (sup-
pose k = 0): if the equations for � are given by

dyσ
i = �σ

i j dx j + �σ
iλ dyλ,

then those for its characteristic �(2) are

yσ
i j = dyσ

i

dx j = �σ
i j

dx j

dx j + �σ
iλ

dyλ

dx j = �σ
i j + �σ

iλyλ
j .

Let � be a characterizable connection on πk+1,k , and �
(k+2)
� be its characteristic

(k + 2)-connection on π . Then each integral section �(k+1) of � is a field of paths
of �

(k+2)
� . Since H�(k+2) (z) ≡ C�(k+1)

(z) ⊂ Tz�
(k+1)(V ) for each z ∈ �(k+1)(V ), one can

say that �(k+1) is an ‘integral including manifold’ of H�(k+2) .
Since each field of paths is integrable, if � is characterizable and integrable, then its

characteristic connection �
(k+2)
� is integrable, as well. In fact, the maximal integral man-

ifolds of H� (integral sections of �) are foliated by the characteristics, whose equations
are

∂k+2γ σ

∂x j1 · · · ∂x jk+1∂xi = �σ
j1··· jk+1i

(
xr , γ ν, . . . ,

∂k+1γ ν

∂xr1 · · · ∂xrk+1

)

+
k∑

�=0

�
σr1···r�

j1··· jk+1λ

(
xr , γ ν, . . . ,

∂k+1γ ν

∂xr1 · · · ∂xrk+1

)
∂�+1γ λ

∂xr1 · · · ∂xr�∂xi .

In other words, under the integrability conditions, the looking for solutions of the
first-order system represented by � can be transferred to the looking for the solutions
of the above (k + 2)-th order system – the integral sections of � are “pieced together”
by characteristics.

Moreover, knowing an r -dimensional integral submanifold Mr of H�, the charac-
teristics can be applied when constructing an integral submanifold M≥r of dimension
≥ r containing Mr – this task is the well-known Cauchy initial problem. Clearly, the
case when Mr in itself is foliated by characteristics must be eliminated, in such a case
M≥r ≡ Mr . In this respect, a point z ∈ Mr can be called characteristic (with respect
to �) if Tz Mr ⊃ H

�
(k+2)
�

(z), and the Cauchy problem is solvable just around the non-
characteristic points of Mr . It is evident that the integrability of � is not necessary for
the integrability of �

(k+2)
� . Nevertheless, the above method of characteristics can be ap-

plied, as well.
The relation between the characterizability of connections on πk+1,k and the integra-

bility of (k + 1)-connections on π is hidden within the following construction.
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Let �(k+1) be a (k + 1)-connection on π . The formal mixed �(k+1)-curvature map is
the map

κ�(k+1) : J 1πk+1,k → π∗
k+1,k(Vπk,k−1 J kπ ⊗ π∗

k (�2T ∗X))

defined for each j1
j k
x γ

χ ∈ J 1πk+1,k by means of the F-N bracket as

κ�(k+1) ( j1
j k
x γ

χ) = (χ( j k
x γ ), [h�(k+1) − hχ , hχ ]( j k

x γ )).

The motivation of the definition is similar to that of formal curvature map; namely,
if �̃(k+1) is another (k + 1)-connection on π , then

κ(�̃(k+1), �(k+1)) := pr2 ◦ κ�(k+1) ◦ j1�̃(k+1)

= [h�(k+1) − h�̃(k+1) , h�̃(k+1)] : J kπ → Vπk,k−1 J kπ ⊗ π∗
k (�2T ∗X)

is the so-called mixed curvature of the pair �(k+1) and �̃(k+1). Since

ϕ = h�(k+1) − h�̃(k+1)

is a soldering form on πk , the mixed curvature κ(�̃(k+1), �(k+1)) is nothing but the ϕ-
torsion τϕ of �̃(k+1). Moreover, we have

κ(�̃(k+1), �(k+1)) = R�(k+1) − R�̃(k+1) − 1
2 [ϕ, ϕ]

and thus e.g. also

κ(�̃(k+1), �(k+1)) − κ(�(k+1), �̃(k+1)) = 2(R�(k+1) − R�̃(k+1) ).

Clearly,

κ�(k+1) = R̂�(k+1) − R − 1
2 κ̂�(k+1)

with R̂�(k+1) := R ◦ j1�(k+1) ◦ (πk+1,k)1 and κ̂�(k+1) being defined analogously to κ�(k+1)

by

κ̂�(k+1) ( j1
j k
x γ

χ) = (
χ( j k

x γ ), [h�(k+1) − hχ , h�(k+1) − hχ ]( j k
x γ )

)
.

Let now � be a connection on πk+1,k . Then

κ�(k+1),� = κ�(k+1) ◦ � : J k+1π → π∗
k+1,k(Vπk+1,k J kπ ⊗ π∗

k (�2T ∗X))

represents a “curvature-like” term generated by �(k+1) and �, where

R̂�(k+1) ◦ � = R ◦ j1�(k+1) ◦ πk+1,k

does not depend on � and it vanishes if, and only if, �(k+1) is integrable, R ◦ � does
not depend on �(k+1) and it vanishes if, and only if, � is characterizable, and finally
κ̂�(k+1) ◦ � integrates �(k+1) and � together: if �(k+1) is an integral section of �, then
κ̂�(k+1) ◦ � ◦ �(k+1) = κ̂�(k+1) ◦ j1�(k+1) = 0. In particular, if � is characterizable with
the integral section �(k+1), then κ�(k+1),� = 0.

Owing to the dimension of the base, each connection � on πk+1,k : R × T k+1 M →
R × T k M is characterizable and a semispray connection �(k+2) : R × T k+1 M → R ×
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T k+2 M is the characteristic (k+2)-connection of � if, and only if, for the corresponding
semispray D�(k+2) on R × T k+1 M holds

D�(k+2) = D�0 +
k∑

i=0

D(i)
�λqλ

(i+1),

which means

�σ
(k+2) = �σ

(k+1) +
k∑

i=0

�
σ(i)
(k+1)λqλ

(i+1).

The above semispray D�(k+2) can be called characteristic to �, as well. Thus we have
the diagram

R × T k+1 M
J 1(�(k+1),idR)−−−−−−−−→ R × T k+2 M R × T k+2 M = R × T k+2 M��(k+1)

��(k+2) kι1,k

� idR×k(k+1)
M

�
R × T k M

�(k+1)−−−→ R × T k+1 M
�−−−→ J 1πk+1,k ←↩ R × J 1τ

k+1,k
M ,

which in particular defines the characteristic semispray on T k+1 M for a connection �

on τ
k+1,k
M in the autonomous case.

The equations for characteristics are then

dk+2cσ

dtk+2 = �σ
(k+1)

(
t, cν, . . . ,

dk+1cν

dtk+1

)

+
k∑

i=0

�
σ(i)
(k+1)λ

(
t, cν, . . . ,

dk+1cν

dtk+1

)
di+1cλ

dti+1

and with respect to the above general ideas, the looking for the solutions of the first-
order P.D.E. system can be transferred to the looking for the solutions of the (k + 2)-th
order O.D.E. system.

8. The method of fields of paths: Part I

A dual method of fields of paths can be introduced, as well. Here the integral of an
integrable �(k+2) is an integrable � on πk+1,k whose characteristic connection is just
�(k+2). The existence of such an integral allows the order-reduction of �(k+2) to (local)
integral sections of �. In this respect, the existence of both local and global integrals is
discussed.

Actually, if � is an integrable characterizable connection on πk+1,k associated to the
(k +2)-connection �(k+2) on π , then each integral section of �(k+2) is locally embedded
in a field of paths �(k+1) which is the integral section of �. Accordingly, the problem of
the looking for the solutions of the (k + 2)-th order system represented by �(k+2) can be
transferred to the looking for an integrable and characterizable connection � on πk+1,k

associated to �(k+2), and after this to the solving of the corresponding (k + 1)-th order
fields of paths. As already mentioned, if �(k) is a field of paths of �(k+1) which is the
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field of paths of �(k+2), then �(k) is a field of paths of �(k+2), and the procedure can be
repeated.

Let �(k+2) be an integrable (k + 2)-connection on π . A (generally local) integrable
connection � on πk+1,k associated to �(k+2) is called an integral of �(k+2).

Denoting here by �(�+1) the integral of �(�+2), the following diagram can be pre-
sented:

X
jk+1γ−−−→ J k+1π

�(k+2)−−−→ J k+2π

idX

� πk+1,k

� �(k+2)

�
X

jkγ−−−→ J kπ
�(k+1)−−−→ J k+1π

�(k+1)−−−→ J 1πk+1,k

idX

� πk,k−1

� �(k+1)

�
X

jk−1γ−−−→ J k−1π
�(k)−−−→ J kπ

�(k)−−−→ J 1πk,k−1

...
...

...
...

...
...

...
...

X
j1γ−−−→ J 1π

�(2)−−−→ J 2π
�(2)−−−→ J 1π2,1

idX

� π1,0

� �(2)

�
X

γ−−−→ Y
�−−−→ J 1π

�−−−→ J 1π1,0

idX

� π

� π1

�
X

idX−−−→ X
idX−−−→ X.

Natural question on the existence of integrals for a given (k + 2)-connection may be
considered both locally and globally. The former case can be answered in terms of first
integrals.

Notice first that each first integral of a characterizable � is the first integral of its
characteristic �(k+2). The converse is not true in general, nevertheless, the following
assertion holds.

Let �(k+2) be an integrable (k + 2)-connection on π and {a1, . . . , aK }, where K =
dim πk+1,k , be a set of independent first integrals of �(k+2), defined on some open subset
W ⊂ J k+1π . If the matrix

A =
(

∂aL

∂yσ
j1··· jk+1

)
is regular on W , then there is an integral � of �(k+2) on W , defined by

H� = anih
{
da1, . . . , daK

}
.

It should be noticed that if �(k+2) is integrable, then the existence of a set of indepen-
dent first integrals satisfying the above condition is due to the horizontality of H�(k+2) .

The problem of global integrals is much more complicated. In fact, two questions
appear in terms of the above considerations. First, whether there exist transformations,
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allowing a global assignment �(k+2) �→ �, and secondly, what conditions force � to
be the integral of �(k+2)? Especially the first question represents an open problem for
dim X > 1 and k ≥ 1. For k = 0, the following assertion can be presented, reformulat-
ing the corresponding result of [25]. It should be stressed that all concepts involved are
global.

Let �(2) be a 2-connection on π and � a linear connection on X . Then there is a
connection ��

a = g�
a ◦ j1�(2) on π1,0 associated to �(2), being determined in virtue of a

natural fibered morphism g�
a : J 1π2,1 → J 1π1,0 over J 1π which is locally expressed by

zσ
iλ = 1

2(z
σk
ikλ + δσ

λ �k
ki ) + aδσ

λ (�k
ik − �k

ki ),

zσ
i j = yσ

i j − zσ
iλyλ

j

for an arbitrary a ∈ R. It appears that the presence of a linear connection on the base X
is essential, it cannot be omitted. If T : T X → VτX T X ⊗ �2T ∗X ,

T = �k
i j

∂

∂xk ⊗ dxi ∧ dx j ,

is the classical torsion of �, then its contraction is a one-form T̂ = Ti dxi on X with
Ti = �k

ik −�k
ki . It can be shown that the linear connection � on X canonically generates

the soldering form of type T̂ on π1,0, which locally reads

S� = Ti
∂

∂yσ
i

⊗ (dyσ − yσ
j dx j ),

hence, it is trivial if, and only if, � is symmetric (torsion free).
As a consequence, the connection ��

a can be written in the form

��
a = ��

0 + a S�,

where the components of ��
0 are

�σ
iλ = 1

2

(
∂�σ

ik

∂yλ
k

+ δσ
λ �k

ki

)
,

�σ
i j = �σ

i j − �σ
iλyλ

j ,

with �σ
i j being the components of �(2).

Recall finally that the family of connections on π1,0 associated to �(2) can be ob-
tained by means of ι1,0-admissible deformations on π1,0, where ι1,0 ≡ idJ1π .

On the other hand, there is a construction of global associated connections for k ≥ 0,
but with dim X = 1, established in [81]. In this situation, the role of a linear connection
is played by a volume form on X , as we present at the very and of this section.

Let us now again consider π : R × M → R. Here, the role of another natural
(1, 1)-tensor field appears; namely,

h�0 = 1

2

[
h�(k+2) + I + 1

k + 2

(
kv�(k+2) − 2LD

�(k+2)
S(k+1)

1

)]
is the horizontal form of a connection �0 on πk+1,k associated to �(k+2), where

S(k+1)

1 = J (k+1)

1 − C (k+1)

1 ⊗ dt,
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i.e.,

S(k+1)

1 =
k+1∑
i=1

i
∂

∂qσ
(i)

⊗ (dqσ
(i−1) − qσ

(i) dt).

The components of �0 are then

�
σ(i)
(k+1)λ = i + 1

k + 2

∂�σ
(k+2)

∂qλ
(i+1)

, i = 0, . . . k,

�σ
(k+1) = �σ

(k+2) −
k∑

i=0

�
σ(i)
(k+1)λ qλ

(i+1).

Accordingly, the family of all connections on πk+1,k naturally associated to a (k + 2)-
connection �(k+2) on π : R × M → R is defined by

h� = h�0 + f S(k+1)

k+1

with f ∈ F(R).
Let us finally recall the result of [81]. Le π : Y → X be an arbitrary fibered manifold

over one-dimensional base X endowed by a volume form # = ω dt . By [72], there is a
naturally defined vector-valued one-form

S(k+1)
# =

k∑
j+i=1

(
j + i + 1

i

)
d jω

dt j

∂

∂qσ
( j+i+1)

⊗ (
dqσ

(i) − qσ
(i+1) dt

)
on J k+1π , where i, j are non-negative integers and d0ω/dt0 ≡ ω. Then

h�#
= 1

2

[
h�(k+2) + I + 1

k + 2

(
kv�(k+2) − 2

ω
LD

�(k+2)
S(k+1)

#

)]
is the horizontal form of a (global) connection �# on πk+1,k , associated to �(k+2).
Clearly, the above h�0 corresponds to # = dt and S(k+1)

dt ≡ S(k+1)

1 .
On the other hand, the result can be related to the most general situation of π , for

k = 0 and dim X = 1. The “strong horizontal components” of �# are then

�σ
λ = 1

2

(
∂�σ

(2)

∂qλ
(1)

− dω

dt

1

ω
δσ
λ

)
with the quantity �(t) = −(dω/dt)(1/ω) being transformed in the same way like the
component of a linear connection on X . Consequently, there is a geometric interpreta-
tion of ��

0 in this situation; namely, it is just �# for an arbitrary volume form # on X
which is the integral section (i.e. �∗ ◦ # = j1#) of the dual connection �∗ on τ ∗

X .

9. The method of fields of paths: part II

The generalization of methods of fields of paths was completely motivated by [50].
The background is the 2-fibered manifold J k+rπ

πk+r,k−→ J kπ
πk−→X . If �(k+r+1) is a

(k + r + 1)-connection on π , then the method gives a (k + 1)-connection �(k+1) on π
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representing the order-reduction of the equations represented by �(k+r+1), all for r ≥ 2.
In fact, this is obtained by means of looking for the prolongation of �(k+1), which is a
section of πk+r,k (a jet field). In this respect, the connections on πk+r,k are studied, as
well, which results in the definition of the πk+r,k-integral of �(k+r+1).

The corresponding diagram generalizing (10), is now

(12)

X
(πk )1←−−− J 1πk

J 1(πk+r,k ,idX)←−−−−−−− J 1πk+r

idX

� (πk )1,0

� (πk+r )1,0

�
X

πk←−−− J kπ
πk+r,k←−−− J k+rπ

(πk+r,k )1,0←−−−−− J 1πk+r,k

idX

� πk

� πk+r

�
X

idX←−−− X
idX←−−− X.

The map k : J 1πk ×J kπ J 1πk+r,k → J 1πk+r , defined for ψ ∈ Sloc(πk) and ϕ ∈
Sloc(πk+r,k), Im ψ ⊂ Dom ϕ, by

k( j1
x ψ, j1

ψ(x)ϕ) = j1
x (ϕ ◦ ψ),

locally does not effect the coordinates

xi , yσ , . . . , yσ
j1··· jk+1

, yσ
;i , . . . , yσ

j1... jk ;i ,

and

k :



yσ
j1··· jk+1; i = zσ

j1··· jk+1i +
k∑

�=0

zσr1···r�

j1... jk+1λ
yλ

r1...r�; i

...

yσ
j1... jk+r ; i = zσ

j1... jk+r i +
k∑

�=0

zσr1···r�

j1... jk+r λ
yλ

r1...r�; i

with z’s being the induced coordinates on J 1πk+r,k . Clearly, there is a natural candidate
for a morphism between πk+r,k and (πk)1,0 over J kπ ; namely, denote by

�0 = ι1,k ◦ πk+r,k+1 : J k+rπ → J 1πk

the composition, whose coordinate expression coincides with (11). Then the affine mor-
phism k�0 : J 1πk+r,k → J 1πk+r defines an affine subbundle Aπk+r,k ⊂ J 1πk+r consist-
ing of the points z ∈ J 1πk+r satisfying

ι1,k ◦ πk+r,k+1 ◦ (πk+r )1,0(z) = J 1(πk+r,k, idX)(z).

Such elements are called πk+r,k-semiholonomic jets; the local expression is again
just (11). Thus there is a canonical inclusion

J k+r+1π ⊂ Ĵ k+r+1π ⊂ Aπk+r,k ,

which corresponds to the associated vector bundle

Aπk+r,k = Vπk+r,k J k+rπ ⊗ π∗
k+r (T ∗X) ⊂ Vπk+r J k+rπ ⊗ π∗

k+r (T ∗X).
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Remark here that the study of invariant subspaces of the above nature has been pre-
sented in [27], obtained by means of the methods of natural operators.

Notice now some properties of the sections of πk+r,k , called jet fields; again, we
work with global sections for the simplicity only, the same applies (under appropriate
restrictions) for the local ones.

A section γ ∈ SU (π) is called an integral section (or a path) of a jet field ϕ ∈
S(πk+r,k) if it is a solution of the equation Eϕ = ϕ(J kπ) ⊂ J k+rπ , i.e., if ϕ ◦ j kγ =
j k+rγ on U . In this respect, ϕ is called integrable if there is an integral section of ϕ

through each point of Y . In coordinates, the equations of ϕ are

yσ
j1··· jk+1

= ϕσ
j1··· jk+1

, . . . , yσ
j1··· jk+r

= ϕσ
j1··· jk+r

with the components of ϕ being functions on J kπ .
For an arbitrary jet field ϕ ∈ S(πk+r,k), there is a distinguished associated projection;

namely, by �(k+1)
ϕ = πk+r,k+1◦ϕ we get a (k+1)-connection �(k+1)

ϕ on π ; in coordinates,

�σ
j1··· jk+1

= ϕσ
j1··· jk+1

.

Then one can show that a jet field ϕ ∈ S(πk+r,k) is integrable if, and only if, �(k+1)
ϕ is

integrable and ϕ = �(k+1)(r−1)
ϕ .

As for higher-order connections, there is an n-dimensional πk+r−1-horizontal distri-
bution Hϕ on J k+r−1π naturally associated with ϕ. In fact,

Hϕ = span{Dϕi, i = 1, . . . , n},
where the generators Dϕi are defined by Dϕi = Dk+r,k+r−1

i ◦ ϕ ◦ πk+r−1,k , i.e., locally

(13) Dϕi = ∂

∂xi +
k−1∑
�=0

yσ
j1... j�i

∂

∂yσ
j1··· j�

+
k+r−1∑
�=k

ϕσ
j1... j� i

∂

∂yσ
j1··· j�

.

As to be expected, a section γ ∈ SU (π) is an integral section of ϕ if, and only if,
j k+r−1γ (U ) is an integral manifold of Hϕ .

It must be remarked that due to the horizontality, Hϕ is involutive (= completely
integrable) if, and only if, [Dϕi , Dϕp] = 0 for all i, p. It should be stressed that this
condition is not equivalent with the integrability of ϕ in the above presented sense.
Nevertheless, the integral section of ϕ could be defined to be ψ ∈ SU (πk+r−1) such that
ψ(U ) is an integral manifold of Hϕ . Of course, now the equations must be considered
on J 1πk+r−1.

Adding sections and connections, the diagram (12) turns out to be of the form

(14)

X
j1ψ−−−→ J 1πk

J 1(ϕ,idX)−−−−−→ J 1πk+r J 1πk+r

idX

� �(k)

� �(k+r)

� k�0

�
X

ψ−−−→ J kπ
ϕ−−−→ J k+rπ

�−−−→ J 1πk+r,k

idX

� πk

� πk+r

�
X

idX−−−→ X
idX−−−→ X,
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where by �(�) we denote a connection on π�. As regards �(k+r), it can be called πk+r,k-
semiholonomic, if

�(k+r) : J k+rπ → Aπk+r,k ,

which means just

D�i = ∂

∂xi +
k∑

�=0

yσ
j1... j�i

∂

∂yσ
j1··· j�

+
k+r∑

�=k+1

�σ
j1... j�; i

∂

∂yσ
j1··· j�

.

In this respect, if ϕ ∈ S(πk+r,k) is a jet field, then ϕ can be identified with a (special
type of) πk+r−1,k−1-semiholonomic connection on πk+r−1.

Our main concern is with connections on πk+r,k , i.e. � : J k+rπ → J 1πk+r,k . The
point is that the integral sections (if any) of a connection � on πk+r,k are (local) jet fields
from S(πk+r,k) satisfying j1ϕ = � ◦ ϕ.

A connection � on πk+r,k is called characterizable, if the connection k�0 ◦ � is
holonomic. The connection �

(k+r+1)
� = k�0 ◦ � is called characteristic to �.

One can see that k�0 ◦ � is πk+r,k-semiholonomic for an arbitrary �; it is semiholo-
nomic if, and only if,

yσ
j1··· jk+1i = �σ

j1··· jk+1i +
k∑

�=0

�
σr1···r�

j1··· jk+1λ
yλ

r1...r� i

...

yσ
j1... jk+r−1i = �σ

j1··· jk+r−1i +
k∑

�=0

�
σr1···r�

j1··· jk+r−1λ
yλ

r1...r� i ,

and it is holonomic if, moreover, the functions

�σ
j1... jk+r i = �σ

j1... jk+r i +
k∑

�=0

�
σr1···r�

j1... jk+r λ
yλ

r1...r� i

are totally symmetric. Then we can see that a (k + r + 1)-connection �(k+r+1) on π is
the characteristic connection of a connection � on πk+r,k if, and only if, H�(k+r+1) ⊂ H�

or, equivalently,

D�(k+r+1)i = D�i +
k∑

�=0

D j1··· j�
�λ yλ

j1... j�i .

The motivation of the above constructions is the following. Let � be a charac-
terizable connection on πk+r,k , and �

(k+r+1)
� its characteristic connection. Let ϕ ∈

Sloc(πk+r,k) be an integral section of � and �(k+1)
ϕ the (k + 1)-connection on π , defined

by �(k+1)
ϕ = πk+r,k+1 ◦ϕ. Then �(k+1)

ϕ is a field of paths of �
(k+r+1)
� and ϕ = �(k+1)(r−1)

ϕ .
As usually, the situation may be described diagrammatically:

J k+1π
J 1(ϕ,idX)−−−−−→ J k+r+1π J k+r+1π

�
(k+1)
ϕ

� �
(k+r+1)
�

� k�0

�
J kπ

ϕ−−−→ J k+rπ
�−−−→ J 1πk+r,k .
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In this arrangement, the following definition appears very naturally; again, any connec-
tion � on πk+r,k whose characteristic connection is the given �(k+r+1) is called associ-
ated to it.

Let �(k+r+1) be an integrable (k + r + 1)-connection on π . A (generally local) in-
tegrable connection � on πk+r,k associated to �(k+r+1) is called the πk+r,k-integral of
�(k+r+1).

In other words, a second version of the method of fields of paths was presented.
In contradiction to Section 8, now we are not looking for fields of paths directly, but
through their prolongations. It is evident that the crucial problem is again that of the
existence of πk+r,k-integrals. In this respect, the following assertion can be proved.

Let �(k+r+1) be an integrable (k + r + 1)-connection on π and {a1, . . . , aK }, where
K = dim πk+r,k , be a set of independent first integrals of �(k+r+1), defined on some
open W ⊂ J k+rπ . If the matrix

A =
(

∂aL

∂yσ
j1... j�

)
,

where � = k + 1, . . . , k + r , is regular on W , then H� = anih{da1, . . . , daK} defines an
πk+r,k-integral of �(k+r+1) on W .

For an application (and in fact the motivation) of the above considerations, we refer
to [85], dealing with the particular case of one-dimensional base X (and thus O.D.E.)
and generalizing the Hamilton–Jacobi method from variational analysis studied in [50]
and [53].
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[48] O. Krupková, Lepagean 2-forms in higher order Hamiltonian mechanics. I. Regularity,
Arch. Math. (Brno) 22 (1986) 97–120; Lepagean 2-forms in higher order Hamiltonian
mechanics. II. Inverse problem, Arch. Math. (Brno) 23 (1987) 155–170.

[49] O. Krupková, Hamilton–Jacobi distributions, preprint, Brno, 1990.
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1992, Roma.

[56] L. Mangiarotti, M. Modugno, Fibred Spaces, Jet Spaces and Connections for Field The-
ories, Proceedings of International Meeting “Geometry and Physics”, Florence, 1982
(1983) Pitagora Editrice, Bologna, 135–165.

[57] L. Mangiarotti, M. Modugno, Connections and differential calculus on fibred manifolds.
Aplications to field theory, Istituto di Matematica Applicata “G. Sansone”, Firense
(1989) 1–147.

[58] E. Massa, E. Pagani, Jet bundle geometry, dynamical connections, and the inverse prob-
lem of Lagrangian mechanics, Ann. Inst. Henri Poincaré: Phys. Theor. 61 (1994) 17–62.
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