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On recursion operators and nonlocal symmetries
of evolution equations1

A. Sergyeyev

Abstract. We consider the recursion operators with nonlocal terms of special form for
evolution systems in (1 + 1) dimensions, and extend them to well-defined operators
on the space of nonlocal symmetries associated with the so-called universal Abelian
coverings over these systems. The extended recursion operators are shown to leave
this space invariant. These results apply, in particular, to the recursion operators of the
majority of known today (1 + 1)-dimensional integrable evolution systems. We also
present some related results and describe the extension of them and of the above results
to (1+1)-dimensional systems of PDEs transformable into the evolutionary form. Some
examples and applications are given.
Keywords and phrases. Nonlocal symmetries, evolution equations, universal Abelian
covering, recursion operators.
MS classification. 35Q53, 35Q55, 35Q58, 37K05, 37K10, 37K45, 37K30.

1. Introduction

The scalar (1+1)-dimensional evolution equation possessing an infinite-dimension-
al commutative Lie algebra of time-independent local generalized (Lie–Bäcklund) sym-
metries is usually either linearizable or integrable via inverse scattering transform, see
e.g. [1] – [5], [8, 9, 12, 14, 18] for the survey of known results and [10] for the general-
ization to (2+1) dimensions. The existence of such algebra is usually proved by exhibit-
ing the recursion operator [12] or master symmetry [2]. But in order to possess the latter

1 Research supported by Grants CEZ:J10/98:192400002 and VS 96003 “Global Analysis” of the Czech
Ministry of Education, Youth and Sports, and by the Grant 201/00/0724 of the Czech Grant Agency.
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the equation in question must have higher order time-dependent symmetries, which usu-
ally turn out to be nonlocal. This fact is one of the main reasons for growing interest in
the study of the whole algebra of time-dependent symmetries of evolution equations [1].
Moreover, for the evolution equations with time-dependent coefficients it is natural to
consider their time-dependent symmetries from the very beginning [3, 7, 15].

Nowadays there seem to exist two basic approaches to the definition of nonlocal
symmetries of PDEs. They are presented in the papers of Fuchssteiner [2, 3] and the
book of Błaszak [1], and references therein, and in the works of Vinogradov et al., see
e.g. [6, 16, 17] and references therein. Our approach is a combination of both.

In the present paper we shall consider the objects called by Vinogradov et al. the
shadows of nonlocal symmetries associated with the so-called universal Abelian cov-
ering (UAC) over the evolution system (1). It was shown by Khor’kova [6] that in the
case of UAC any shadow can be lifted to a nonlocal symmetry over UAC in the sense of
[6, 16]. Moreover, it is easy to see that the nonlocal symmetries in the sense of [6, 16]
with zero shadows are in a sense trivial and hardly represent any practical interest.
Hence, we lose no essential information about the nonlocal symmetries of (1), when we
restrict ourselves to considering just the shadows.

Since most of authors, see e.g. [1, 2, 3, 15] and references therein, call similar objects
just “nonlocal symmetries”, in this paper we shall essentially keep this tradition, calling
the objects of our study “nonlocal UAC symmetries”. This does not lead to any confu-
sion, because nonlocal symmetries in the sense of [6, 16] will not appear in this paper.
The precise definitions and further comments are given in Section 2 below. Note that
our interest in nonlocal UAC symmetries was inspired by the results from [6, 16], where
it was shown that in certain cases it is possible to extend the action of the recursion op-
erator so that its application to these symmetries produces symmetries of the same kind.

In Section 3 we prove two main results of the present paper. The first one states
that a large class of recursion operators for systems (1) can be extended to well-defined
operators, namely to recursion operators in the sense of Guthrie [4], acting on the space
of nonlocal UAC symmetries and leaving this space invariant. The second result states
that under certain conditions, which are satisfied for the majority of known examples,
the repeated application of (extended) recursion operator to weakly nonlocal UAC
symmetries (i.e., to the symmetries that depend only on the nonlocal variables of the
first level, that is, on the integrals of local conserved densities, and are linear in these
variables) again yields weakly nonlocal UAC symmetries. An important consequence
of the latter result is that the hereditary algebras (see e.g. [1] for definition) of
time-dependent symmetries for evolution systems (1) are usually contained in the set of
weakly nonlocal UAC symmetries. Note that our results are in a sense complementary
to Wang’s [18] sufficient conditions of locality of time-independent symmetries,
obtained with usage of recursion operator.

In Section 4 we explain how the results of Section 3 can be transferred from (1+1)-
dimensional evolution systems to arbitrary (1 + 1)-dimensional systems of PDEs trans-
formable into the evolutionary form by the appropriate change of variables. This is
illustrated by the example of sine-Gordon equation. Finally, in Section 5 we discuss
further applications of our results and consider the example of Harry Dym equation.

In Appendices A and B we present two useful technical results: the characterization
of kernel of the total x-derivative in the space of nonlocal UAC functions and the proof
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of the fact that the set of nonlocal UAC symmetries for (1) is a Lie algebra under the so-
called Lie bracket—a natural commutator for nonlocal symmetries (cf. e.g. [1]). Note
that if the hereditary algebra of time-dependent symmetries for (1) is generated by (a
finite or infinite number of) nonlocal UAC symmetries, then by virtue of the latter result
all elements of this algebra are nonlocal UAC symmetries.

2. Basic definitions and structures

Let us consider a (1 + 1)-dimensional system of evolution equations

(1) ∂u/∂t = F(x, t, u, . . . , un)

for the s-component vector function u = (u1, . . . , us)T . Here u j = ∂ j u/∂x j , u0 ≡ u;
F = (F1, . . . , Fs)T ; T denotes the matrix transposition. As in [11, 14], we make a
blanket assumption that all functions below (F, symmetries G, etc.) are locally analytic
functions of their arguments. This allows, in particular, to avoid the pathologies caused
by the existence of divisors of zero in the ring of C∞-smooth functions.

2.1. Universal Abelian covering. Following [6, 16], describe the construction of
universal Abelian covering over a system of PDEs for the particular case of system (1).

A function f (x, t, u, u1, . . .) is called local (cf. [8, 9, 10]), if a) f depends only on
a finite number of variables uk and b) f is a locally analytic function of its arguments.

The operators of total x- and t-derivatives on the space of local functions are defined
as (cf. e.g. [12, Ch. V])

D(0)
x = ∂/∂x +

s∑
I=1

∞∑
i=0

uI
i+1∂/∂uI

i ,

D(0)
t = ∂/∂t +

s∑
I=1

∞∑
i=0

(D(0)
x )i (F I )∂/∂uI

i .

Let {D(0)
t (ρ(0)

α ) = D(0)
x (σ (0)

α ) | α ∈ I1} be a basis for the space CL(0)
F of nontrivial

local conservation laws for (1) considered modulo trivial ones. Recall that locality
means that ρ(0)

α and σ (0)
α are local functions and nontriviality means that ρ(0)

α 
∈ Im D(0)
x

(i.e., ρ(0)
α cannot be represented as a total x-derivative of a local function).

We introduce [6, 16] nonlocal variables ω(1)
α of the first level as “integrals” of ρ(0)

α .
Namely, we define them for all α ∈ I1 as a solution of the system of PDEs

(2)
∂ω(1)

α /∂x = ρ(0)
α ,

∂ω(1)
α /∂t = σ (0)

α .

It is clear that ω(1)
α are nothing but the potentials for the conserved currents (ρ(0)

α , σ (0)
α ).

Now let us extend the action of operators D(0)
x and D(0)

t to the functions that depend
on ω(1)

α by means of the formulae

D(1)
x = D(0)

x + ∑
α∈I1

ρ(0)
α ∂/∂ω(1)

α , D(1)
t = D(0)

t + ∑
α∈I1

σ (0)
α ∂/∂ω(1)

α

and consider a basis {D(1)
t (ρ(1)

α ) = D(1)
x (σ (1)

α ) | α ∈ I2} in the set CL(1)
F of all nontrivial

(nontriviality now means that ρ(1)
α 
∈ Im D(1)

x ) local conservation laws for the system
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of equations (1), (2). The densities ρ(1)
α and fluxes σ (1)

α may depend not only on x, t, u,
u1, u2, . . ., but on �ω(1) as well, and any given ρ(1)

α or σ (1)
α depends only on a finite

number of ur and of nonlocal variables ω(1)
α . Here �ω(1) denotes the totality of variables

ω(1)
α for α ∈ I1.

We further define the nonlocal variables of second level by means of the relations

∂ω(2)
α /∂x = ρ(1)

α , α ∈ I2,

∂ω(2)
α /∂t = σ (1)

α , α ∈ I2,

extend the action of D(1)
x and D(1)

t to the functions that may depend on ω(2)
α , and so on.

Iterating this procedure infinite number of times, we obtain an infinite-dimensional
covering U over (1), which is called universal Abelian covering (UAC) [6, 16]. More
precisely, the covering constructed in this way is just a representative of the class of
equivalent coverings, and the authors of [6, 16] identify UAC with this class.

Thus, U involves the infinite set of nonlocal variables ω( j)
α defined by the relations

∂ω( j)
α /∂x = ρ( j−1)

α , α ∈ I j , j ∈ N,(3)

∂ω( j)
α /∂t = σ ( j−1)

α , α ∈ I j , j ∈ N.(4)

Here Ik+1, k ≥ 1, is a set of indices such that the conservation laws D(k)
t (ρ(k)

α )

= D(k)
x (σ (k)

α ) for α ∈ Ik+1 form a basis in the set CL(k)
F of all nontrivial local conserva-

tion laws of the form D(k)
t (ρ) = D(k)

x (σ ) for (1) and (3), (4) with j ≤ k. The locality
means that the densities ρ and fluxes σ of conservation laws from CL(k)

F depend only
on x, t, u, u1, . . . and �ω(1), . . . , �ω(k), but not on �ω(m) with m > k, and any given density
or flux depends only on a finite number of ur and of nonlocal variables ω( j)

α . The
nontriviality of a conservation law D(k)

t (ρ) = D(k)
x (σ ) from CL(k)

F means that ρ cannot
be represented in the form D(k)

x ( f ) for some f = f (x, t, �ω(1), . . . , �ω(k), u, u1, . . .).
We employed here the notation

D(k)
x = D(k−1)

x + ∑
α∈Ik

ρ(k−1)
α ∂/∂ω(k)

α , D(k)
t = D(k−1)

t + ∑
α∈Ik

σ (k−1)
α ∂/∂ω(k)

α ,

and the notation �ω(k) for the totality of variables ω(k)
α , α ∈ Ik . We shall also denote by

�ω the totality of variables ω( j)
α for all j and α.

The operators of total derivatives on the space of functions of x, t, �ω, u, u1, . . . are

D ≡ Dx = D(0)
x +

∞∑
j=1

∑
α∈I j

ρ( j−1)
α ∂/∂ω( j)

α ,

Dt = D(0)
t +

∞∑
j=1

∑
α∈I j

σ ( j−1)
α ∂/∂ω( j)

α .

The relations D(k)
t (ρ(k)

α ) = D(k)
x (σ (k)

α ) imply the compatibility of (3) and (4). In turn,
the consequence of the latter and of the equality [D(0)

x , D(0)
t ] = 0 are the relations

[D(k)
x , D(k)

t ] = 0, k = 1, 2, . . . ,

[Dx , Dt ] = 0.

We shall say (cf. [8, 10, 11]) that a function f = f (x, t, �ω, u, u1, . . .) is a nonlocal
UAC function, if a) f depends only on a finite number of variables ω( j)

α and uk and b) f
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is a locally analytic function of its arguments. We shall call f a nonlocal UAC function
of level k, if f is a nonlocal UAC function independent of ω( j)

α for j > k.
Since the kernel of D in the space of nonlocal UAC functions is exhausted by func-

tions of t (see Appendix A for the proof), it is easy to verify that our definition (cf. [9])
of nontriviality of a conservation law is in fact equivalent to the standard one [12, 16].

Let us stress that ρ(k−1)
α are defined up to the addition of the terms from Im D(k−1)

x ,
and σ (k−1)

α are defined up to the addition of the terms from ker D(k−1)
x , i.e., they should

be considered as equivalence classes modulo Im D(k−1)
x and ker D(k−1)

x , respectively.
This means, in particular, that the nonlocal variables ω(k)

α are defined up to the addition
of arbitrary nonlocal UAC functions of level k − 1.

Making different choices of representatives in these equivalence classes yields
different coverings over (1), but these coverings are equivalent in the sense of defi-
nition from [16, Ch. 6], and in the sequel we shall assume that we deal with a fixed
representative of the respective equivalence class, because constantly operating with
the whole class in the explicit computations is extremely inconvenient. However, the
results obtained below are obviously independent of this choice, and thus hold true for
the whole class of equivalent coverings, which result from the above construction.

2.2. Nonlocal UAC symmetries. We shall call (cf. [1, 11, 12, 16]) an s-component
nonlocal UAC vector function G a nonlocal UAC symmetry of (1), if the evolution
system ∂u/∂τ = G is compatible with (1), i.e., ∂2u/∂t∂τ = ∂2u/∂τ∂t , where the
derivatives with respect to t and τ are computed with usage of (1), (4) and ∂u/∂τ = G,
respectively. We shall denote the set of all nonlocal UAC symmetries of (1) by NSF(U).
If ∂G/∂ �ω = 0, then G is called (local) generalized (or higher local, or just local)
symmetry of (1), see e.g. [8, 10, 12]. With G being a nonlocal UAC vector function,
the compatibility condition for (1) and ∂u/∂τ = G takes the form

(5) Dt(G) = F′[G],

where F′ = ∑n
i=0 ∂F/∂ui Di .

Let us mention that nonlocal UAC symmetries are nothing but a particular case of
general nonlocal symmetries, considered e.g. in [1, 2]. Indeed, the determining equa-
tions for the latter, given in [1, 2], are nothing but the compatibility conditions for (1)
and uτ = G, and these conditions reduce to (5), if G is a nonlocal UAC vector function.

The set NSF(U) of nonlocal UAC symmetries is interesting and important. In
particular, our results imply that for nearly all known examples the action of the
recursion operator is well defined on NSF(U) and leaves it invariant. Hence, NSF(U)

contains all elements of the hereditary algebra (see [1, 2, 3] for its precise definition) of
time-dependent symmetries for (1), if they are generated (cf. e.g. [1]) by means of the
repeated application of the recursion operator to the scaling symmetry of (1) and to a
time-independent local generalized symmetry of (1) (e.g. to F, if ∂F/∂t = 0). Note that
NSF(U) is a Lie algebra with respect to the so-called Lie bracket (see Appendix B below
for the proof). Therefore, if the hereditary algebra for (1) is generated by (a finite or infi-
nite number of) nonlocal UAC symmetries, then all its elements are nonlocal UAC sym-
metries. Note that there also exist (see e.g. [8, 15]) integrable systems (1) that possess
only a finite number of local generalized symmetries, but have infinite hierarchies of
nonlocal symmetries, and these nonlocal symmetries turn out to be nonlocal UAC ones.
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To avoid possible confusion, let us stress that the definition of nonlocal symmetries
used in [6, 16] is different from the ours, but by Theorem 3.1 from [6] we always can
recover from G ∈ NSF(U) the nonlocal symmetry in the sense of [6, 16].

3. On the action of recursion operators

In this section we prove for the case of systems (1) and recursion operators of the
form (7) the conjecture of Khor’kova [6] stating that for any (1+1)-dimensional system
of PDEs its recursion operator R can be extended to a well-defined operator R̃ on the
space NSF(U) of nonlocal UAC symmetries and leaves this space invariant.

In complete analogy with the case of local functions, see e.g. [12, Ch. V, §5.3], we

call the operator B† =
q∑

i=0
(−D)i ◦ bT

i a formal adjoint of B =
q∑

i=0
bi Di . Here bi are

some r × r matrix-valued nonlocal UAC functions, T denotes the matrix transposition
and ◦ stands for the composition of operators.

An s-component nonlocal UAC vector function γ is called a cosymmetry [1, 18]
of (1), if it satisfies the equation

(6) Dt(γ) + (F′)†[γ] = 0.

Nearly all known today recursion operators for systems (1) have the form (cf. [18])

(7) R =
k∑

i=0

ai Di +
p∑

j=1

G j ⊗ D−1 ◦ γ j ,

where ai are s × s matrix-valued local functions, and G j and γ j are local symmetries
and cosymmetries of (1), respectively.

Note that the action of recursion operators of the form (7) is initially defined only
on local generalized symmetries (see e.g. [12]), but the formula (7) together with the
subsequent definition of D−1 enable us to construct an extension R̃ of R to the space
NSF(U). However, it is not clear a priori whether R̃ is a well-defined operator on
NSF(U) and whether R̃(G) is a nonlocal UAC symmetry of (1), provided so is G.

Let us mention the following result of Wang [18]. Suppose that R (7), with G j and
γ j being arbitrary s-component time-independent local vector functions, is a recursion
operator for (1), both R and system (1) are homogeneous with respect to a scaling of
x, t and u, and ∂F/∂t = 0 and ∂R/∂t = 0. Then under minor restrictions on F and R

the functions G j and γ j indeed are symmetries and cosymmetries for (1), respectively.
Obviously, this result remains valid when ai , G j and γ j are nonlocal UAC functions.

In order to proceed, we should agree how to interpret the action of D−1. For our
purposes it suffices to adopt the following definition, which is a particular case of the
general construction of Guthrie [4]:

Definition 1. Let P be a nonlocal UAC function such that Dt(P) = D(Q) for some
nonlocal UAC function Q (i.e., P is a conserved density).

Then we shall understand under R = D−1(P) a solution of the system

(8)
D(R) = P,

Dt(R) = Q.
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The existence of nonlocal UAC solution R of (8), provided Dt(P) = D(Q), is one
of the fundamental properties of universal Abelian covering, proved in [6]. Note that
according to the above definition we have ω( j)

α = D−1(ρ( j−1)
α ), as it would be natural

to expect. As we show in Appendix A, the kernel of D in the space of nonlocal UAC
functions is exhausted by functions of t , whence it is immediate that the solution R
of (8) for given P and Q is unique up to the addition of an arbitrary constant. So,
the “integral” D−1(P), defined above, is not an integral of P itself, but rather of a
conservation law Dt(P) = D(Q). It is also clear that the integrals D−1(P) evaluated
for different Q in general will differ by a function of t .

In order to prove that we can extend the action of R to any nonlocal UAC symmetry
H of (1), we have to show that for any H ∈ NSF(U) we have Dt(γ j H) = D(ζ j ) for
some nonlocal UAC functions ζ j . Indeed, then the integrals D−1(γ j H), interpreted in
the sense of the above definition with Q = ζ j , are nonlocal UAC functions defined up
to the addition of arbitrary constants. Note that the expressions like ab stand here and
below for the scalar product of s-component vectors a and b.

By (5) and (6) we have Dt(H) = F′[H] and Dt(γ j ) = −(F′)†[γ j ], whence

(9) Dt(γ j H) = −(F′)†[γ j ]H + γ j F
′[H].

There is an obvious generalization (cf. e.g. [12, Ch. V, §5.3]) of the well-known
Lagrange identity from theory of ordinary differential equations, namely

(10) �f B(�g) − B†( �f )�g = D(η), η =
q∑

i=1

i−1∑
j=0

(−D) j (bT
i

�f )Di− j−1(�g),

valid for any differential operator B =
q∑

i=0
bi Di and for any r -component nonlocal UAC

vector functions �f and �g, provided bi are r × r matrix-valued nonlocal UAC functions.
Using (10) for B = F′, �f = γ j , �g = H, we conclude (cf. [5]) that Dt(γ j H) indeed

can be represented in the form D(ζ j ) for the nonlocal UAC function

(11) ζ j =
n∑

i=1

i−1∑
m=0

(−D)m((∂F/∂ui )
T γ j )Di−m−1(H).

Hence, for P = γ j H we can always make a ‘canonical’ choice Q = ζ j while
computing D−1(P) according to Definition 1. With this choice and the above definition
of D−1, the recursion operator R (7) is, in essence, replaced by a new operator R̃, which
is easily seen to be a recursion operator in the sense of Guthrie [4].

Many important properties and definitions (for instance, that of hereditarity) can be
readily transferred from R to R̃. The operator R̃ is free [4] of the pathologies caused by
naı̈ve definition of D−1, cf. [13] for an alternative way of overcoming these difficulties.
In particular, it is easy to see that R̃ always maps nonlocal UAC symmetries to nonlocal
UAC symmetries (cf. [4]), because R satisfies the equation [Dt − F′, R] = 0 [12].

Thus, we have proved

Proposition 2. Any recursion operator R (7) for (1), with ai being s × s matrix-
valued nonlocal UAC functions, and G j and γ j being nonlocal UAC symmetries and
cosymmetries for (1), respectively, can be extended to a well-defined operator R̃ that
acts on the whole space NSF(U) of nonlocal UAC symmetries for (1) and leaves this
space invariant.
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Now let us consider what happens if ai , G j , γ j are local and we apply R̃ to a local
generalized symmetry H of (1). The above reasoning indeed holds true. Moreover, we
see that γ j H are local conserved densities for (1) and the respective ζ j are local as
well. Hence, the application of R̃ to local generalized symmetries of (1) yields nonlocal
UAC symmetries of the form (cf. [6] and [16, Ch. 6])

(12) H = H0 +
∑
α∈IH

Hαω
(1)
α ,

where H0 and Hα are s-component local vector functions, and IH is a finite subset of I1.
We shall call an r -component nonlocal UAC vector function weakly nonlocal

UAC vector function, if it can be represented in the form (12) with H0 and Hα being
r -component local vector functions. We shall denote by WNLSF(U) the set of all
weakly nonlocal UAC symmetries for (1). For the majority of integrable systems (1)
their master symmetries are s-component weakly nonlocal UAC vector functions.

Note that if H is a local generalized symmetry of (1) and

(13) γ j H = D(ξ j ),

where ξ j are local functions, then by the above D−1(γ j H) can differ from ξ j only by a
function of t . Hence, D−1(γ j H) is a local function, and thus R̃(H) is a local generalized
symmetry for (1). In other words, the application of R̃ to local generalized symmetries
of (1) satisfying (13) again yields local generalized symmetries of (1). Below we shall
assume (obviously without loss of generality) that G j in (7) are linearly independent.
Then it is easy to see that the conditions (13) for j = 1, . . . , p are equivalent to the re-
quirement that R̃(H) is a local generalized symmetry, provided so is H. Let us mention
that Theorems 6–8 and 6–9 of Wang [18] provide an easy way to verify the conditions
(13) for large families of time-independent local generalized symmetries of (1).

Since F and the coefficients of D(1)
t are independent of ω( j)

α for all α and j , it is
immediate that for any nonlocal UAC symmetry G of level one for (1) the quantities
∂G/∂ω(1)

α satisfy the determining equation (5) and hence also are nonlocal UAC
symmetries of level one for (1). In particular, for any H of the form (12) the quantities
Hα = ∂H/∂ω(1)

α are in fact local generalized symmetries of (1).
Using this result, let us show that H̃ = R̃(H) ∈ WNLSF(U) for any H of the

form (12), provided R̃(Hα) are local generalized symmetries of (1) (or, equivalently,
γ j Hα = D(ξ j,α) for all j = 1, . . . , p and all α ∈ IH , where ξ j,α are local functions).

As Di (ω(1)
α ) = Di−1(ρ(0)

α ) are local functions for i ≥ 1, it is clear that R̃(H) ∈
WNLSF(U), if there exist scalar weakly nonlocal UAC functions R j such that

D(R j ) = γ j H,(14)

Dt(R j ) = ζ j ,(15)

where ζ j are given by (11). Indeed, then R̃(H) is a weakly nonlocal UAC vector func-
tion, and by Proposition 2 R̃(H) ∈ NSF(U), hence R̃(H) ∈ WNLSF(U).

Let R̃ j = R j − ∑
α∈IH

ξ j,αω
(1)
α . Using (14), (15), we obtain

D(R̃ j ) = γ j H0 − ∑
α∈IH

ξ j,αρ
(0)
α ≡ ψ j ,

Dt(R̃ j ) = ζ j − ∑
α∈IH

Dt(ξ j,αω
(1)
α ) ≡ χ j .
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It is clear that ψ j are local functions and that Dt(ψ j ) = D(χ j ). If we show that χ j are
local as well, then D−1(ψ j ) obviously are linear combinations of ω(1)

α (modulo local
functions), so R̃ j are weakly nonlocal UAC functions, and the result follows.

As χ j may depend on the nonlocal variables of the first level ω(1)
α at most, we only

have to check that ∂χ j/∂ω(1)
α = 0, i.e., ∂ζ j/∂ω(1)

α = Dt(ξ j,α). Obviously, the only
nonlocal terms in ζ j are

∑
α∈IH

( n∑
i=1

i−1∑
m=0

(−D)m((∂F/∂ui )
T γ j )Di−m−1(Hα)

)
ω(1)

α .

Hence, in order to prove our result it remains to show that

ζ j,α ≡
n∑

i=1

i−1∑
m=0

(−D)m((∂F/∂ui )
T γ j )Di−m−1(Hα) = Dt(ξ j,α).

Comparing this equality with (11) and bearing in mind that Hα are local generalized
symmetries of (1), we see that

D(ζ j,α) = Dt(γ j Hα) = Dt(D(ξ j,α)) = D(Dt(ξ j,α)).

Using Proposition 5 from Appendix A, we find

ζ j,α = c j,α(t) + Dt(ξ j,α),

where c j,α(t) is arbitrary function of t .
But it is clear that the function ξ j,α, determined from the relation D(ξ j,α) = γ j Hα, is

defined only up to the addition of arbitrary element of ker D, i.e., an arbitrary function

b j,α(t) of t . Hence, replacing ξ j,α by ξ j,α −
t∫

t0

c j,α(τ )dτ , we can assume without loss of

generality that c j,α(t) = 0, and thus ζ j,α = Dt(ξ j,α), as required.
Thus, we have proved the following result, generalizing Proposition 4.1 from [6]:

Proposition 3. Let (1) have a recursion operator R (7), where ai ,G j ,γ j are lo-
cal. Then for any H ∈ WNLSF(U) the quantity R̃(H) is well defined and R̃(H) ∈
WNLSF(U), provided R̃(∂H/∂ω(1)

α ) are well-defined local generalized symmetries
of (1) for all α ∈ I1.

If H = R̃(G) for some local generalized symmetry G, then Hα in (12) are linear
combinations of the symmetries G j that enter into R. We can easily see that the
coefficients H̃α = ∂H̃/∂ω(1)

α at ω(1)
α in the representation (12) for H̃ = R̃2(G) are

linear combinations of R̃(Hα) and of G j , and hence are in fact linear combinations of
G j and R̃(G j ) only. Thus, H̃ ∈ WNLSF(U), provided R̃(G j ) are well-defined local
generalized symmetries of (1). This is equivalent (cf. above) to the requirement that
γ jR̃(Gi ) = D(ξi, j ), where ξi, j are local functions, for all i, j = 1, . . . , p.

Iterating this reasoning, we conclude that R̃(Q) can be represented in the form
(12) for any nonlocal UAC symmetry Q obtained by the repeated application of the
recursion operator R̃ to local generalized symmetries, provided γ jR̃

d(Gi ) = D(ξi, j,d),
where ξi, j,d are local functions, for all i, j = 1, . . . , p and all d = 0, 1, 2, 3, . . .. These
conditions are equivalent (see above) to the requirement that R̃d(Gi ) are well-defined
local generalized symmetries of (1) for all i = 1, . . . , p and d = 1, 2, 3, . . ..
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In particular, if these conditions are satisfied, then for any (time-dependent) local
generalized symmetry G of (1) we have R̃ j (G) ∈ WNLSF(U) for all j = 1, 2, . . ..
Hence, if the hereditary algebra (see e.g. [1] for its definition) of time-dependent sym-
metries for (1) is generated by the repeated application of the extension R̃ of a recursion
operator R (7) to some local generalized symmetries of (1), and ai , G j and γ j are local
and satisfy the above conditions, then all elements of this algebra belong to WNLSF(U).

4. Generalization to non-evolution systems

The above results can be applied to any (1 + 1)-dimensional systems of PDEs trans-
formable into the evolutionary form (1) by the appropriate change of variables. This set
includes, in particular, all systems transformable into Cauchy–Kovalevskaya form

(16) ∂rI u I

∂trI
= �I

(
x, t, u1, . . . , uq, . . . , ∂α+βu J /∂tα∂xβ, . . .

)
, I = 1, . . . , q,

where �I may depend only on x, t, u1, . . . , uq and{
∂α+βu J /∂tα∂xβ |α ≤ rJ − 1, β ≤ k

}
, J = 1, . . . , q.

The system (16) can be further transformed into an evolution system of the form (1)
by introducing new dependent variables v I

α = ∂αuI /∂tα for α = 1, . . . , rI − 1. Indeed,
combining the variables u1, . . . , uq and v I

α into a single vector v, we see that (16)
together with the equations

∂αuI /∂tα = v I
α, α = 1, . . . , rI − 1, I = 1, . . . , q,

forms the evolution system of exactly the same form as (1):

(17) ∂v/∂t = K(x, t, v, ∂v/∂x, ∂2v/∂x2, . . . , ∂kv/∂xk).

The class of systems of PDEs transformable into the form (16) and hence into the
evolutionary form (17) is very large. In particular, it includes [12, Ch. 2] all analytic
locally solvable (1 + 1)-dimensional systems of PDEs possessing at least one nonchar-
acteristic direction. The majority of known examples of non-evolutionary integrable
(1 + 1)-dimensional systems are indeed transformable into the form (16) by the (appro-
priate modification of) above change of variables.

Hence, Khor’kova’s conjecture stating that the (extended) recursion operators
are well defined on nonlocal UAC symmetries holds true not only for the evolution
systems (1) with the recursion operators (7), but also for any systems transformable into
Cauchy–Kovalevskaya form (16) and then into (17), provided the recursion operator
for transformed system (17) has the form (7). Indeed, making the inverse change of
variables we can readily see that the (extended) recursion operator of original system is
also well defined on its nonlocal UAC symmetries.

For instance, it is well known that the sine-Gordon equation uξη = sin u can be
transformed into utt − uxx = sin u by setting x = ξ − η, t = ξ + η. Then, introducing
a new dependent variable v = ut , we obtain the evolution system (see e.g. [18] and
references therein), equivalent to the SG equation:

(18) ut = v, vt = uxx + sin u.



On recursion operators and nonlocal symmetries 169

The recursion operator R for (18) is (see e.g. [18]) of the form (7), so by Propo-
sition 2 the action of R̃ on nonlocal UAC symmetries of (18) is well defined and
leaves the space of these symmetries invariant. Returning to the original variables,
we conclude that the same is true for the recursion operator (rewritten as a recursion
operator in the sense of Guthrie [4]) of SG equation, so we recover the result of
Khor’kova [6], initially obtained by straightforward computation.

5. Applications

Consider, for instance, the well known integrable Harry Dym equation ut = u3u3.
Its recursion operator (see e.g. [18]) R = u2 D2 − uu1 D + uu2 + u3u3 D−1 ◦ u−2 indeed
has the form (7), and u−2 is a cosymmetry and u3u3 is an (obvious) symmetry for
this equation. Using (11), we find that Dt(u−2G) = D(D2(uG) − 3u1 D(G)) for any
nonlocal UAC symmetry G of HD equation, and hence D−1(u−2G) is a nonlocal UAC
function. Thus, by Proposition 2 the extension R̃ of the above R is well defined on the
space of nonlocal UAC symmetries of HD equation and leaves this space invariant.

It is possible to give a lot of other examples where Proposition 2 ensures that the (ex-
tended) recursion operators are well defined on the space of nonlocal UAC symmetries
and leave it invariant. This fact often allows to draw a number of useful conclusions. For
instance, provided the hereditary algebra [1, 2] of time-dependent symmetries is gen-
erated by the repeated application of the extension R̃ of a recursion operator R of the
form (7) to some local generalized symmetries, all elements of this algebra are nothing
but nonlocal UAC symmetries. Moreover, if R̃k(G j ) are well-defined local generalized
symmetries for all k ∈ N and j = 1, . . . , p, then by Proposition 3 all elements of this
algebra are weakly nonlocal UAC symmetries, that is, they depend only on the nonlocal
variables ω(1)

α , i.e., on the “integrals” of nontrivial local conserved densities for (1), and
are linear in ω(1)

α . The hereditary algebra contains time-dependent symmetries of arbi-
trarily high order, hence their directional derivatives are formal symmetries of arbitrarily
high order (see e.g. [10] for definition of formal symmetry) for (1). Thus, the evolution
systems (1) possessing the hereditary algebra have time-dependent formal symmetries
of arbitrarily high (and hence of infinite) order, and the coefficients of these formal
symmetries are usually nonlocal (more precisely, weakly nonlocal) UAC functions.

To conclude, let us mention that it would be very interesting to generalize the results
of the present paper to the evolution equations with constraints, introduced in [11].
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Appendix A: On the structure of ker D

The aim of this appendix is to prove that the kernel of operator D in the space
NLF(U) of nonlocal UAC functions consists solely of functions of t , cf. [11].
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Let A0 be the algebra of all scalar local functions under the standard mulplication.
We shall call an algebra A of scalar nonlocal UAC functions (under standard multi-

plication) admissible, if it has the following properties:

• for any locally analytic function h(y1, . . . , yp) and any a j ∈ A we have
h(a1, . . . , ap) ∈ A;

• A is closed under the action of D and Dt ;
• A is obtained from the algebra A0 by means of a finite sequence of extensions.

The third property means that there exists a finite chain of admissible algebras A0,A1,

A2, . . . ,Am = A such that A j is generated by the elements of A j−1 and just one new
nonlocal variable ζ j = D−1(η j ), where η j ∈ A j−1 is such that η j 
∈ Im D|A j−1 and
Dt(η j ) ∈ Im D|A j−1 .

Consider a nonlocal UAC function f . It may depend only on a finite number m of
variables ω( j)

α , and it is easy to see that there exists a minimal (i.e., obtained from A0

by means of the minimal possible number of extensions) admissible algebra K of scalar
nonlocal UAC functions which contains f .

It is clear that in order to prove that f ∈ ker D implies that f depends on t only it
suffices to prove that ker D|K consists solely of functions of t .

In order to proceed, we shall need the following

Lemma 4. Let A be an admissible algebra, ker D|A consist solely of functions of t ,
and Ã be the extension of A obtained by adding the nonlocal variable ζ = D−1(γ ),
where γ ∈ A is such that γ 
∈ Im D|A and Dt(γ ) ∈ Im D|A.

Then Ã is admissible and ker D|Ã also consists solely of functions of t .

Remark 1. The conditions γ 
∈ Im D|A and Dt(γ ) ∈ Im D|A imply that γ is a
linear combination of ρ( j)

α (modulo the terms from Im D|A).

Remark 2. This lemma is a natural generalization of Proposition 1.1 from [11] to the
case of time-dependent nonlocal UAC functions, and its proof relies on the same ideas.

Proof of the lemma. The admissibility of Ã is obvious from the above, so it remains
to describe ker D|Ã. By definition, the elements of A may depend only on a finite num-
ber of nonlocal variables ζ1, . . . , ζm .

Let B0 ⊂ A be the algebra of all locally analytic functions of x, t, u, u1, . . . , up,

ζ1, . . . , ζm , where p is the minimal number such that B0 contains γ and D(ζi ) for
i = 1, . . . , m. It is straightforward to check that such p does exist.

Consider the following chain of subalgebras of A:

B j+1 = {h ∈ B j | D|A(h) = gγ, g ∈ B j }, j = 0, 1, 2, . . . .

Any locally analytic function of elements of B j obviously belongs to B j .
As B0 is generated by s(p + 1) + m + 2 elements x, t, uI , uI

1, . . . , uI
p, ζ1, . . . , ζm ,

where I = 1, . . . , s, we conclude that B j+1 = B j for j ≥ s(p + 1) + m + 2 (cf.
[11]). Indeed, by construction B j+1 ⊂ B j , and hence the functional dimension d j+1

of B j+1 does not exceed that of B j . If these dimensions coincide, then we have
B j+1 = B j , and otherwise d j+1 ≤ d j − 1. Since d0 = s(p + 1) + m + 2, it is clear that
d ≡ ds(p+1)+m+2 ≤ 1 provided B j+1 
= B j for j = 0, . . . , s(p + 1) + m + 1. On the
other hand, d ≥ 1, because in any case Bs(p+1)+m+2 contains the algebra of functions
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of t , and the result follows. Thus, Bs(p+1)+m+2 is the algebra of all locally analytic
functions of some its elements z1, . . . , zd , i.e., it is generated by z1, . . . , zd .

Let f = f (x, t, u, . . . , uq, ζ1, . . . , ζm, ζ ) ∈ ker D|Ã, ∂ f/∂ζ 
= 0. Differentiating
the equality D( f ) = 0 with respect to u j , j > p, we readily obtain ∂ f/∂u j = 0 for
j > p. Therefore, f ∈ B0 for any fixed value of ζ .

We have

(19) D( f ) = D|A( f ) + γ ∂ f/∂ζ = 0.

But (19) implies that f ∈ B1 for any fixed value of ζ . Then, again by virtue of (19), we
have f ∈ B2 for any fixed ζ , and so on.

Thus, f ∈ Bs(p+1)+m+2 for any fixed value of ζ and D|A( f ) 
= 0. Hence, the opera-
tor D|Bs(p+1)+m+2 is nonzero and D|Bs(p+1)+m+2 = γ X , where X is a nonzero vector field
on the space of variables z1, . . . , zd .

Let w ∈ Bs(p+1)+m+2 be a solution of equation X (w) = 1. Then D|A(w) = γ , what
contradicts the assumption that γ 
∈ Im D|A. The contradiction proves the lemma. �

The desired result about ker D|K readily follows, if we successively apply the above
lemma for A = A0 and Ã = A1, then for A = A1 and Ã = A2, and so on, until we
see that ker D|Am , Am = K, consists solely of functions of t .

Our reasoning applies to any nonlocal UAC function f , so we have proved

Proposition 5. The kernel of the operator D in the space NLF(U) of nonlocal UAC
functions consists solely of functions of t .

From this result it is immediate that the intersection ker D ∩ ker Dt in the space of
nonlocal UAC functions consists solely of constants, and hence by Proposition 1.4 from
[16, Ch. 6,§1] universal Abelian covering over (1) is locally irreducible.

Let us stress that the above proposition is not valid for the functions that depend on
the infinite number of variables u j and ω(k)

α at once.
Indeed, consider the well-known Burgers equation ut = u2 + uu1, whose only non-

trivial local conserved density is u (see e.g. [16] for proof). Let ψ = ψ(x, t, u, u1, . . .)

be an arbitrary infinitely differentiable local function. Then it is straightforward to check

that the function � =
∞∑
j=0

ϒ j (ψ)ω j

j!
, where ω = D−1(u) and ϒ = −(1/u)D, belongs

to ker D. It is clear that � depends on an infinite number of variables u j = ∂ j u/∂x j ,
j = 0, 1, 2, . . ., provided D(ψ) 
= 0.

Appendix B: Lie algebra structure of NSF(U)

In this appendix we prove that the set NSF(U) is a Lie algebra with respect to the
so-called Lie bracket (see e.g. [1]), defined as

(20) [G, H] = H′[G] − G′[H].

We employed here the notation f ′[H] = (d f (x, t, u + εH, u1 + εD(H), . . .)/dε)|ε=0

for the directional derivative of any (smooth nonlocal) function f along H, see e.g. [1].
The bracket (20) is obviously skew-symmetric. It satisfies the Jacobi identity by virtue
of properties of the directional derivative, see e.g. [1] and references therein.
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If f is a local function, then f ′[H] =
∞∑

i=0

∂ f

∂ui
Di (H) is a well-defined nonlocal UAC

function for any s-component nonlocal UAC vector function H, and f ′ =
∞∑

i=0

∂ f

∂ui
Di is

a differential operator, cf. e.g. [8]–[14].
If f is a nonlocal UAC function, then we have

(21) f ′[H] =
∞∑

k=0

∂ f

∂uk
Dk(H) +

∞∑
j=1

∑
α∈I j

∂ f

∂ω( j)
α

ω′( j)
α [H].

Hence, in order to show that f ′[H] is a nonlocal UAC function for any H ∈ NSF(U),
we should define ω′( j)

α [H] and show that ω′( j)
α [H] are nonlocal UAC functions.

From now on we assume that the integration constants arising while comput-
ing D−1 according to Definition 1 are chosen so that for any constant c we have
R̃ ≡ D−1(P̃) = cR ≡ cD−1(P), where P̃ = cP (and Q̃ = cQ).

Using the interpretation of ω( j)
α as D−1(ρ( j−1)

α ), given above (cf. [1, 2, 11]), we set
ω′( j)

α [H] = D−1(ρ ′( j−1)
α [H]). The quantities ρ ′( j−1)

α [H] can be computed inductively.
Indeed, ρ(0)

α are local functions, so we know the formula for ρ ′(0)
α [H] (see above), and

hence we can evaluate ω′(1)
α [H]. Next, as ρ(1)

α involve only ω(1)
α and local variables

x, t, u, u1, . . ., we can find ρ ′(1)
α [H], using (21). Then we find ρ ′(2)

α [H], and so on.
According to our definition of D−1, in order to guarantee that D−1(ρ ′( j)

α [H]) are well
defined we have to show that there exist nonlocal UAC functions ζ ( j)

α such that

(22) Dt(ρ
′( j)
α [H]) = D(ζ ( j)

α ).

As Dt(ρ
( j)
α ) = D(σ ( j)

α ), we have (Dt(ρ
( j)
α ))′[H] = (D(σ ( j)

α ))′[H]. Since H ∈ NSF(U),
we readily obtain from (5) that (Dt(ρ

( j)
α ))′[H] = Dt(ρ

′( j)
α [H]). It is also easy to see that

(D(σ ( j)
α ))′[H] = D(σ ′( j)

α [H]). Hence, Dt(ρ
′( j)
α [H]) = D(σ ′( j)

α [H]), and (22) holds, if
we take σ ′( j)

α [H] for ζ ( j)
α . Using this result, we always can make a ‘canonical’ choice

Q = σ ′( j)
α [H] while computing D−1(P) for P = ρ ′( j)

α [H] according to Definition 1,
and thus get rid of possible pathologies.

It is clear from the above that if G, H ∈ NSF(U), then G′[H] and H′[G] are nonlocal
UAC vector functions, and thus [G, H] is a nonlocal UAC vector function. Using (5) for
G and H, we can easily show that [G, H] ∈ NSF(U), so we have proved the following

Proposition 6. The set NSF(U) is a Lie algebra under the commutator (20).
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