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Differential invariants of the metric tensor1

J. Šeděnková

Abstract. The problem of finding differential invariants of arbitrary order, depending on
the metric tensor, is solved by the factorization method with respect to a proper subgroup
of the differential group acting in the space of differential invariants. It is shown that
the domain T r

n (Rn∗ � R
n∗) of the differential invariants of order r has the structure of a

trivial principal K r+1
n -bundle, where K r+1

n is a normal subgroup of the differential group
Lr+1

n acting on the T r
n (Rn∗ � R

n∗) from the left. Consequently, any differential invariant
with values in a left GLn(R)-manifold factorizes through the projection of this principal
fiber bundle.
Keywords and phrases. Jet, differential group, differential invariant, metric tensor.
MS classification. 58A20, 53A55.

1. Introduction

In this paper, representing an extension of the author’s preprint [13], we apply the
factorization method with respect to a subgroup of differential group, which was used
for the first time by Krupka in [7]. It is not a sole method for finding differential in-
variants, but it allows exact formulation of the problem of finding invariants for general
group actions. Using factorization method, we present here complete results; in partic-
ular, we find a basis of invariants in our case.

Let X be an n-dimensional smooth manifold, and MetX be the bundle of metrics
on X , i.e. the bundle of second order regular symmetric covariant tensors on X . The
type fiber of MetX is the left L1

n-manifold R
n∗ � R

n∗, where R
n∗ is dual vector space

to the vector space R
n . Let T r

n (Rn∗ � R
n∗) be the prolongation of the left L1

n-manifold

1 Research supported by Grants CEZ:J10/98:192400002, VS 96003 and FRVŠ 1467/2000 of the Czech
Ministry of Education, Youth and Sports,and by the Grant 201/00/0724 of the Czech Grant Agency.
This paper is in final form and no part of it will be published elsewhere.
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R
n∗ � R

n∗. T r
n (Rn∗ � R

n∗) is the set of r -jets with source at the 0 ∈ R
n and target in the

R
n∗ � R

n∗ with natural structure of the left Lr+1
n -manifold. Then the r -jet prolongation

Jr MetX of MetX has the structure of a fiber bundle with type fiber T r
n (Rn∗ � R

n∗)
associated with bundle of r -frames over X .

Let Lr
n be the r -th differential group. The general theory tells that each r -order dif-

ferential invariant of the metric tensor is an Lr
n-equivariant mapping defined on the type

fiber T r
n (Rn∗ � R

n∗) of a fiber bundle Jr MetX .
At this paper we describe the quotient space of the action of K r+1

n on the
T r

n (Rn∗ � R
n∗). As a consequence, we get the well known result that every differential

invariant of the metric tensor depends only on the metric tensor, the curvature tensor of
the Levi-Civita connection and the covariant derivatives of the curvature tensor.

2. Basic structures

Let Lr
n be the r -th differential group with the canonical global coordinate system(

ai
j , ai

j1 j2
, . . . , ai

j1 j2... jr

)
, 1 ≤ i, j ≤ n, 1 ≤ j1 · · · ≤ jk ≤ n, 1 ≤ k ≤ r.

Lr
n is the group of invertible r -jets with source and target at the origin 0 ∈ R

n . The
coordinate functions ai

j1... jk
are defined by

(1) ai
j1... jk (A) = D j1 D j2 · · · D jk αi (0),

where A ∈ Lr
n , A = Jr

0 α.
In this paper we will also use the second coordinate system(

bi
j , bi

j1 j2
, . . . , bi

j1 j2... jr

)
, 1 ≤ i, j ≤ n, 1 ≤ j1 ≤ · · · ≤ jk ≤ n, 1 ≤ k ≤ r,

with the coordinates bi
j1 j2... jk

, defined by

(2) bi
j1... jk (A) = ai

j1... jk (A−1) = D j1 D j2 · · · D jk α
−1
i (0),

where A ∈ Lr
n , A = Jr

0 α. It is known that the functions ai
j , bk

l satisfy the identity

(3) ai
kbk

j = δi
j ,

where δi
j denotes the Kronecker symbol.

Let T r
n (Rn∗ � R

n∗) be the r -th prolongation of the left L1
n-manifold R

n∗ � R
n∗.

T r
n (Rn∗ � R

n∗) is the set of r -jets with source at the 0 ∈ R
n and target in the R

n∗ � R
n∗

with the natural structure of the left Lr+1
n -manifold.

Let Q be an arbitrary L1
n-manifold. Let

(4) π r+1,1
n : Lr+1

n → L1
n, π r+1,1

n

(
bi

j , bi
j1 j2

, . . . , bi
j1 j2... jr

) = (bi
j )

be the canonical projection homomorphism of differential groups. A mapping

(5) F : T r
n (Rn∗ � R

n∗) → Q

is called the r-th order differential invariant of the metric tensor, if it satisfies the con-
dition

(6) F(A · Jr
0 f ) = π r+1,1(A) · F(Jr

0 f )
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for each Jr
0 f ∈ T r

n (Rn∗ � R
n∗), A ∈ Lr+1

n .
Let K r+1

n be the kernel of the homomorphism π r+1,1
n , K r+1

n is a normal subgroup in
the Lr+1

n consisting of elements with the coordinates(
δi

j , bi
j1 j2

, . . . , bi
j1 j2... jr

)
.

We can restrict the action of Lr+1
n to the subgroup K r+1

n and construct the quotient space
T r

n (Rn∗ � R
n∗)/K r+1

n .
Let us consider the quotient space T r

n (Rn∗ � R
n∗)/K r+1

n . We define the left action of
L1

n (which is isomorphic to the Lr+1
n /K r+1

n ) on T r
n (Rn∗ � R

n∗)/K r+1
n by the expression

(7) J 1
0 α · [w]K r+1

n
= [

ιr+1(J 1
0 α) · w

]
K r+1

n
,

where J 1
0 α ∈ L1

n, [w]K r+1
n

∈ T r
n (Rn∗ � R

n∗)/K r+1
n and ιr+1 is the homomorphism

(8) ιr+1 : L1
n → Lr+1

n , ιr+1(bi
j ) = (bi

j , 0, 0, . . . , 0).

Formula (7) defines the left action of L1
n on T r

n (Rn∗ � R
n∗)/K r+1

n .

Lemma 1. Let Q be a left L1
n-manifold, let

π : T r
n (Rn∗ � R

n∗) → T r
n (Rn∗ � R

n∗)/K r+1
n

be the canonical projection onto the orbit space. Then every differential invariant

F : T r
n (Rn∗ � R

n∗) → Q

is of the form

(9) F = f ◦ π,

where

f : T r
n (Rn∗ � R

n∗)/K r+1
n → Q

is a uniquely determined L1
n-equivariant mapping.

Proof. Let F :T r
n (Rn∗ � R

n∗)→Q be a differential invariant, let w∈T r
n (Rn∗ � R

n∗).
We can construct a mapping f : T r

n (Rn∗ � R
n∗)/K r+1

n → Q by

(10) f
(
[w]K r+1

n

) = F(w)

(it follows from (9)). Now we must verify that the f is well defined. It is defined on
the whole T r

n (Rn∗ � R
n∗)/K r+1

n , because π is a surjection. We must show that the f is
independent on the choice of representative. Let [w1]K r+1

n
= [w2]K r+1

n
. Then there exists

B ∈ K r+1
n such that w1 = B · w2 and

f
(
[w1]K r+1

n

) = F(w1) = F(B · w2) = π r+1,1(B) · F(w2)

= π r+1,1(B) f
(
[w2]K r+1

n

) = f
(
[w2]K r+1

n

)
(the last equality is satisfied because π r+1,1(B) = J 1

0 id for each B ∈ K r+1
n ).

Now we prove the uniqueness of the f . Suppose that there exist two different map-
pings which satisfy (9)

F = f1 ◦ π, F = f2 ◦ π.
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Then f1([w]K r+1
n

) = f2([w]K r+1
n

) for each w ∈ T r
n (Rn∗ � R

n∗) and f1 = f2 on the set

π
(
T r

n (Rn∗ � R
n∗)

) = T r
n (Rn∗ � R

n∗)/K r+1
n ,

i.e. f1 = f2.
Now we must prove that the f is a L1

n-equivariant mapping.
Let A ∈ L1

n, w ∈ T r
n (Rn∗ � R

n∗). Then

f
(

A · [w]K r+1
n

) = f
([

ι1,r+1(A)w
]

K r+1
n

)
= F

(
ι1,r+1(A)w

)
= π r+1,1

(
ι1,r+1(A)

) · F(w) = A · F(w) = A · f
(
[w]K r+1

n

)
and the f is a L1

n-equivariant mapping.
If we replace the T r

n (Rn∗ � R
n∗) by an arbitrary Lr+1

n -manifold P , this lemma will
be conserved (you can find the proof for example in [2]).

3. The action of L1
n on R

n∗ � R
n∗

Let us consider R
n∗ � R

n∗, the space of symmetric covariant second-order tensors
on the R

n . Denote by ei the canonical basis of R
n and ei the dual basis of R

n∗. Each
element g ∈ R

n∗ � R
n∗ is then uniquely written in the form

g = gi j (g) ei � e j ,

where 1 ≤ i ≤ j ≤ n.The system of functions

(gi j ), 1 ≤ i ≤ j ≤ n,

define a global coordinate system on the R
n∗ � R

n∗.
Let L1

n be the 1-st differential group with the canonical global coordinate system

(bi
j ), 1 ≤ i, j ≤ n,

with the coordinates bi
j defined by

bi
j (A) = D jα

−1
i (0),

where A ∈ L1
n , A = J 1

0 α. It is evident that the group L1
n can be identified with the

general linear group GLn(R).
Let us consider the left L1

n-manifold R
n∗ � R

n∗. The standard left action of L1
n on

R
n∗ � R

n∗ is introduced as follows. If g ∈ R
n∗ � R

n∗ and J 1
0 α ∈ L1

n then in the coordi-
nates

gi j (J 1
0 α · g) = bp

i (J 1
0 α) bq

j (J 1
0 α) gpq(g).

If we use the notation with a bar ḡi j = gi j (J 1
0 α · g) without a bar gi j = gi j (g), and

bp
i = bp

i (J 1
0 α) we can rewrite the last expression in the form

(11) ḡi j = bp
i bq

j gpq .

The action of L1
n on R

n∗ � R
n∗ is given by formula (11).
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4. The action of L3
n on T 2

n (Rn∗ � R
n∗)

Now we will study the special case r = 2 in detail (we will find the second order
differential invariants of the metric tensor). In this section we will explicitly express the
action of L3

n on T 2
n (Rn∗ � R

n∗).
Let T 2

n (Rn∗ � R
n∗) be the second prolongation of the R

n∗ � R
n∗.

Let Q ∈ T 2
n (Rn∗ � R

n∗) be a 2-jet and f be a mapping from a neighborhood of the
0 ∈ R

n to the R
n∗ � R

n∗ such that Q = J 2
0 f . There exists a canonical global coordinate

system

(gi j , gi j,k, gi j,kl), 1 ≤ i ≤ j ≤ n, 1 ≤ k ≤ l ≤ n,

on the T 2
n (Rn∗ � R

n∗), defined by

(12)

gi j (Q) = gi j ( f (0)),

gi j,k(Q) = Dk(gi j f )(0),

gi j,kl(Q) = Dk Dl(gi j f )(0).

If we prolong the left action of L1
n on R

n∗ � R
n∗, we obtain the left action of L3

n
on T 2

n (Rn∗ � R
n∗). Let J 3

0 α ∈ L3
n , J 2

0 f ∈ T 2
n (Rn∗ � R

n∗), then

J 3
0 α · J 2

0 f = J 2
0 �,

where � is a mapping from a neighborhood of the 0 ∈ R
n to the R

n∗ � R
n∗ defined by

(13) �(x) = J 1
0

(
txαt−α−1(x)

) · f
(
α−1(x)

)
,

where tx denotes the translation of R
n , which transfer the point x ∈ R

n to the point
0 ∈ R

n and dot means the action of L1
n on R

n∗ � R
n∗. We express the formula (13) in

the coordinates

gi j
(
�(x)

) = Di
(
txαt−α−1(x)

)−1
p

(0)D j
(
txαt−α−1(x)

)−1
q

(0)gpq
(

f α−1(x)
)
.

It is easy to show that it is the same as gi j (�(x)) = Diα
−1
p (0)D jα

−1
q (0)gpq( f α−1(x)).

Now we can calculate. From now on we will denote for short

bp
i = bp

i (J 1
0 α),

ḡi j = gi j (J 2
0 �), ḡi j,k = gi j,k(J 2

0 �), ḡi j,kl = gi j,kl(J 2
0 �),

gi j = gi j (J 2
0 f ), gi j,k = gi j,k(J 2

0 f ), gi j,kl = gi j,kl(J 2
0 f ).

In the coordinates the left action of L3
n on T 2

n (Rn∗ � R
n∗) is given by

(14)

ḡi j = bp
i bq

j gpq,

ḡi j,k = bp
i bq

j b
r
k gpq,r + (

bp
ki b

q
j + bp

i bq
k j

)
gpq,

ḡi j,kl = bp
i bq

j b
r
kbs

l gpq,rs + (
bp

li b
q
j b

r
k + bp

i bq
l j b

r
k + bp

i bq
j b

r
lk + bp

ki b
q
j b

r
l

+ bp
i bq

k j b
r
l

)
gpq,r + (

bp
lki b

q
j + bp

ki b
q
l j + bp

li b
q
k j + bp

i bq
lk j

)
gpq .

Let K 3
n be the kernel of the homomorphism π3,1

n , then K 3
n is a normal subgroup in

the L3
n consisting of elements with the coordinates(

δi
j , bi

j1 j2
, bi

j1 j2 j3

)
.
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We can restrict the action of L3
n to the subgroup K 3

n and construct the quotient space
T 2

n (Rn∗ � R
n∗)/K 3

n . In formulas (14) we can put bi
j = δi

j .
In the canonical coordinates the action of K 3

n on T 2
n (Rn∗ � R

n∗) is given by

(15)

ḡi j = gi j ,

ḡi j,k = gi j,k + bp
ki gpj + bp

k j gip,

ḡi j,kl = gi j,kl + bp
lk gi j,p + bp

li gpj,k + bp
l j gip,k + bp

ki gpj,l + bp
k j gip,l

+ (
bp

ki b
q
l j + bp

li b
q
k j

)
gpq + bp

lki gpj + bp
lk j gip.

Now we can see from (15) that it is very hard to characterize the quotient space
T 2

n (Rn∗ � R
n∗)/K 3

n in the canonical coordinates (gi j , gi j,k, gi j,kl). So, we will define
the new coordinates, which we obtain by the following process.

Recall that the point J 2
0 f ∈ T 2

n (Rn∗ � R
n∗), J 2

0 f = (gi j , gi j,k, gi j,kl), is called regu-
lar if det(gi j ) = 0. Denote by gi j the functions on a neighborhood of this regular point
which satisfy the equality

(16) gik gkl = δi
j ,

where δi
j denotes the Kronecker symbol.

Now we will restrict our attention to the open subspace in T 2
n (Rn∗ � R

n∗) consisting
of all regular points. We shall denote this subspace as T r

n (Rn∗ � R
n∗) (no special nota-

tion). Remark that this subspace is L3
n-equivariant. On this subspace we can change the

coordinates from (gi j , gi j,k, gi j,kl) to (gi j , i, jk, Ri jkl, i, jkl) by the formulas

(17)

gi j = gi j ,

i, jk = 1
2

(
gi j,k + gik, j − g jk,i

)
,

Ri jkl = 1
2

(
gil, jk + g jk,il − gik, jl − g jl,ik

)
+ 1

4 gmp
(
(gmj,k + gmk, j − g jk,m)(gpi,l + gpl,i − gil,p)

− (gmj,l + gml, j − g jl,m)(gpi,k + gpk,i − gik,p)
)
,

i, jkl = 1
3

(
gi j,kl + gil, jk + gik,l j

) − 1
6

(
g jk,li + gl j,ki + gkl, j i

)
.

Here i, jk are symmetric in the last two indices and define the Levi-Civita connection,
i, jkl are symmetric in the last three indices, and Ri jkl satisfy the identities

(18)
Ri jkl = −R jikl = −Ri jlk = Rkli j ,

Ri jkl + Ril jk + Rikl j = 0

and define the curvature tensor.
The inverse coordinate transformation is given by

(19)

gi j = gi j ,

gi j,k = i, jk +  j,ik,

gi j,kl = i, jkl +  j,ikl − 1
3

(
Rik jl + R jkil

)
+ 1

3 g pq
(
p,ilq,k j + p, jlq,ki − 2p,i jq,kl

)
.

The new coordinate system(
gi j , i, jk, Ri jkl, i, jkl

)
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is called an adapted coordinate system. Now we simplify the formulas (14) by using the
new coordinates.

If we use (14), transformations (17) and (19), we can formulate

Proposition 1. In the new coordinates (gi j , i, jk, Ri jkl, i, jkl) the action of L3
n on

T 2
n (Rn∗ � R

n∗) is given by

(20)

ḡi j = bp
i bq

j gpq,

̄i, jk = bp
i bq

j b
r
kp,qr + bp

i bq
jk gpq,

R̄i jkl = bp
i bq

j b
r
kbs

l Rpqrs,

̄i, jkl = bp
i bq

j b
r
kbs

l p,qrs + [
bp

i

(
bq

j b
r
kl + bq

k br
l j + bq

l br
k j

)
+ 1

3 bq
i

(
bp

k j b
r
l + bp

l j b
r
k + bp

klb
r
j

) + 1
3

(
bp

ki b
q
j b

r
l + bp

ji b
q
k br

l

+ bp
li b

q
j b

r
k

)]
p,qr + [

bp
i bq

jkl + 1
3

(
bp

ki b
q
jl + bp

li b
q
jk + bp

ji b
q
lk

)]
gpq

and the action of K 3
n on T 2

n (Rn∗ � R
n∗) is given by

(21)

ḡi j = gi j ,

̄i, jk = i, jk + bp
jk gip,

R̄i jkl = Ri jkl,

̄i, jkl = i, jkl + bp
kli, j p + bp

l ji,kp + bp
k ji,lp + 1

3

(
bp

k jp,il + bp
l jp,ik

+ bp
klp,i j

) + 1
3

(
bp

kip, jl + bp
jip,kl + bp

lip, jk
) + 1

3

(
bp

ki b
q
jl + bp

li b
q
jk

+ bp
ji b

q
lk

)
gpq + bp

jkl gip.

5. Second order differential invariants of the metric tensor

In this section we will find the differential invariants

F : T 2
n (Rn∗ � R

n∗) → Q,

where Q is any left L1
n-manifold. Recall that the differential invariant F with values in

a left L1
n-manifold satisfies the condition

(22) F(A · J 2
0 f ) = π3,1

n (A) · F(J 2
0 f ),

where J 2
0 f ∈ T 2

n (Rn∗ � R
n∗), A ∈ L3

n .
Let us consider the space T 2

n (Rn∗ � R
n∗)/K 3

n . For each class [J 2
0 f ]K 3

n
from the

T 2
n (Rn∗ � R

n∗)/K 3
n we can take the same values gi j , Ri jkl as for its representative, i.e.

we put

(23)
gi j

(
[J 2

0 f ]K 3
n

) = gi j (J 2
0 f ),

Ri jkl
(
[J 2

0 f ]K 3
n

) = Ri jkl(J 2
0 f ).

It follows from (15) that these expressions are independent on the choice of represen-
tatives and that two different classes have different systems of numbers gi j , Ri jkl . We
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define a coordinate system on the T 2
n (Rn∗ � R

n∗)/K 3
n by (23). Now we can express the

factor projection

π : T 2
n (Rn∗ � R

n∗) → T 2
n (Rn∗ � R

n∗)/K 3
n

in the form

(24) π = (gi j , Ri jkl).

The group L1
n (which is isomorphic to the L3

n/K 3
n ) acts on T 2

n (Rn∗ � R
n∗) by

(25) A · [J 2
0 f ]K 3

n
= [

ι3(A) · J 2
0 f

]
K 3

n
,

where ι3(A) = (ai
j , 0, 0). The manifold T 2

n (Rn∗ � R
n∗)/K 3

n has the structure of a left
L1

n-manifold.
Let Pn be the subspace of tensor space

(Rn∗ ∧ R
n∗) � (Rn∗ ∧ R

n∗)

which is in the canonical coordinates Ri jkl defined by

(26) Ri jkl + Ril jk + Rikl j = 0.

The dimension of Pn is 1
12 n2(n2 − 1), it is equal to the number of coordinates Ri jkl on

the space T 2
n (Rn∗ � R

n∗). We can write the following theorem.

Theorem 1. The L3
n-manifold T 2

n (Rn∗ � R
n∗) has the structure of a left principal

K 3
n -bundle. This left principal K 3

n -bundle is trivial, and its base T 2
n (Rn∗ � R

n∗)/K 3
n is

diffeomorphic to the (Rn∗ � R
n∗) × Pn.

Proof. It is well known that is enough to prove that the graph of equivalence of the
relation “there exists A ∈ K 3

n , such that A · J 2
0 f1 = J 2

0 f2” is a closed submanifold of the

T 2
n (Rn∗ � R

n∗) × T 2
n (Rn∗ � R

n∗)

and that the action of K 3
n on T 2

n (Rn∗ � R
n∗) is free.

Let us to prove the first condition. Let us consider the system of coordinates

(27) gi j , i, jk, Ri jkl, i, jkl, ḡi j , ̄i, jk, R̄i jkl, ̄i, jkl,

on

T 2
n (Rn∗ � R

n∗) × T 2
n (Rn∗ � R

n∗).

It follows from (21) that the graph of the above mentioned relation is determined by the
equations

ḡi j = gi j , R̄i jkl = Ri jkl, 1 ≤ s ≤ r

and is therefore closed.
Let us prove that the action of K 3

n on T 2
n (Rn∗ � R

n∗) is free. Suppose that

A · J 2
0 f = J 2

0 f,

where A ∈ K 3
n and J 2

0 f ∈ T 2
n (Rn∗ � R

n∗). In the coordinates we write

(28)
(
ḡi j , ̄i, jk, R̄i jkl, ̄i, jkl

) = (
gi j , i, jk, Ri jkl .i, jkl

)
.
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It follows from (15) that

(29)
br

jk = gri
(
̄i, jk − i, jk

)
,

br
jkl = gri

(
̄i, jkl − i, jkl

) − Br
jkl,

where

(30)

Br
jkl = gri

[
bp

kli, j p + bp
l ji,kp + bp

k ji,lp

+ 1
3

(
bp

k jp,il + bp
l jp,ik + bp

klp,i j
)

+ 1
3

(
bp

kip, jl + bp
jip,kl + bp

lip, jk
)

+ 1
3

(
bp

ki b
q
jl + bp

li b
q
jk + bp

ji b
q
lk

)
gpq

]
depends only on bp

rs, gpq, p,rs . If we use (28) in (29), then we obtain br
jk = 0, br

jkl = 0
for each 1 ≤ r, j, k, l ≤ n. That is why the A = (δi

j , 0, 0) is the unit element of the
group K 3

n and the action is free.
Finally we have to introduce a diffeomorphism which maps the base

T 2
n (Rn∗ � R

n∗)/K 3
n to the (Rn∗ � R

n∗)× Pn . Let us consider the diffeomorphism which
maps class from the T 2

n (Rn∗ � R
n∗)/K 3

n with the coordinates (gi j , Ri jkl) to the element
of the (Rn∗ � R

n∗) × Pn which has the same coordinates (gi j , Ri jkl).
This completes the proof of Theorem 1.

Theorem 2. Every differential invariant from the left L3
n-manifold T 2

n (Rn∗ � R
n∗)

to any left L1
n-manifold Q depends only on gi j and Ri jkl .

Proof. Let

π : T 2
n (Rn∗ � R

n∗) → T 2
n (Rn∗ � R

n∗)/K 3
n

be the canonical projection. Let Q be a left L1
n-manifold. Suppose that

F : T 2
n (Rn∗ � R

n∗) → Q

is a differential invariant. By Lemma 1 there exists a uniquely determined L1
n-equi-

variant mapping

f : T 2
n (Rn∗ � R

n∗)/K 3
n → Q

which satisfies the condition (9)

F = f ◦ π.

This mapping f is defined by (10)

f
(
[p]K 3

n

) = F(p)

for each p ∈ T 2
n (Rn∗ � R

n∗).
From the uniqueness of the f follows that the F depends only on gi j and Ri jkl . We

say that

π = (gi j , Ri jkl)

is the basis of the invariants of metric with values in a left L1
n-manifold.
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This completes the proof of Theorem 2.

Remark. There exists no nontrivial first order differential invariant of the metric
tensor, because the space T 1

n (Rn∗ � R
n∗)/K 2

n is isomorphic to the R
n∗ � R

n∗ and every
invariant from the T 1

n (Rn∗ � R
n∗) to any left L1

n-manifold depends only on gi j .

6. r -th order differential invariants of the metric tensor

Let Lr
n be the r -th differential group with the canonical global coordinate system(

bi
j , bi

j1 j2
, . . . , bi

j1 j2... jr

)
, 1 ≤ i, j ≤ n, 1 ≤ j1 ≤ · · · ≤ jk ≤ n, 1 ≤ k ≤ r,

with the coordinates bi
j1 j2... jk

defined by (2)

bi
j1... jk (A) = ai

j1... jk (A−1) = D j1 D j2 · · · D jk α
−1
i (0),

where A ∈ Lr
n , A = Jr

0 α.
Let T r

n (Rn∗ � R
n∗) be the r -th prolongation of the left L1

n-manifold R
n∗ � R

n∗.
T r

n (Rn∗ � R
n∗) is the set of r -jets with source at the 0 ∈ R

n and target in the R
n∗ � R

n∗

with the natural structure of the left Lr+1
n -manifold. Let

(gi j ), 1 ≤ i ≤ j ≤ n,

be the canonical global coordinate system on the R
n∗ � R

n∗. Then the canonical global
coordinate system(

gi j , gi j,k1, gi j,k1k2, . . . , gi j,k1k2...kr

)
,

1 ≤ i ≤ j ≤ n, 1 ≤ k1 ≤ · · · ≤ kr ≤ n,

on the T r
n (Rn∗ � R

n∗) is defined analogically as for case r = 2 (see (12)).
The group action of Lr+1

n on T r
n (Rn∗ � R

n∗) is induced by the prolongation of the
group action (11) of L1

n on R
n∗ � R

n∗. Corresponding equations are obtained by s-
th formal differentiation of (11) for s = 1, 2, . . . , r (see [4]). The action of Lr+1

n on
T r

n (Rn∗ � R
n∗) is given by (14) for r = 2 in the canonical coordinates.

Let Q be an arbitrary L1
n-manifold. Let π r+1,1

n : Lr+1
n → L1

n be the projection
homomorphism of differential groups (see (4)). Recall that mapping

(31) F : T r
n (Rn∗ � R

n∗) → Q

is called the r-th order differential invariant of the metric tensor, if it satisfies the con-
dition

(32) F(A · Jr
0 f ) = π r+1,1(A) · F(Jr

0 f )

for each Jr
0 f ∈ T r

n (Rn∗ � R
n∗), A ∈ Lr

n .
Let K r+1

n be the kernel of the homomorphism π r+1,1
n , K r+1

n is a normal subgroup in
the Lr+1

n consisting of elements with the coordinates

(δi
j , bi

j1 j2
, . . . , bi

j1 j2... jr ).

We can restrict the action of Lr+1
n to the subgroup K r+1

n and construct the quotient space
T r

n (Rn∗ � R
n∗)/K r+1

n .
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In the canonical coordinates the action of K r+1
n on the T r

n (Rn∗ � R
n∗) is given by

(33)

ḡi j = gi j ,

ḡi j,k1 = gi j,k1 + bp
k1i gpj + bp

k1 j gip,

ḡi j,k1k2 = gi j,k1k2 + bp
k2k1

gi j,p + bp
k2i gpj,k1 + bp

k2 j gip,k1 + bp
k1i gpj,k2

+ bp
k1 j gip,k2 + bp

k2k1i gpj + (
bp

k1i b
q
k2 j + bp

k2i b
q
k1 j

)
gpq + bp

k2k1 j gip,

· · ·
Now we can see from (33) that it is very hard to characterize the quotient space

T r
n (Rn∗ � R

n∗)/K r+1
n in the canonical coordinates(

gi j , gi j,k1, gi j,k1k2, . . . , gi j,k1k2...kr

)
.

So, we will define the coordinates, which we obtain by the following process.
On the space T r

n (Rn∗ � R
n∗) let us consider the functions

(34) i, jk = 1
2(gi j,k + gik, j − g jk,i )

and the functions

(35) i, jk,m1...ms

defined as the s-th derivative of (34). Using these functions, we can consider the fol-
lowing functions

i, j1 j2, i, j1 j2 j3 . . . , i, j1 j2 j3... jr+1,(36)

Ri jkl, Ri jkl;m1, . . . , Ri jkl;m1;...;mr−2,(37)

where i, j1 j2 j3... js = i,( j1 j2, j3... js ) (the symmetrization in indices j1, j2, j3, . . . , js) and
Ri jkl;m1;...;ms denotes the s-th covariant derivative of the curvature tensor

(38) Ri jkl = i, jk,l − i, jl,k + g pq
(
i,plq, jk − i,pkq, jl

)
.

The first covariant derivative of the curvature tensor is the system of functions

(39)
Ri jkl;m = Ri jkl,m − g pq

(
p,mi Rq jkl + p,mj Riqkl

+ p,mk Ri jql + p,ml Ri jkq
)
,

where

(40) Ri jkl,m =
(

∂ Ri jkl

∂gpq
gpq,m + ∂ Ri jkl

∂gpq,r
gpq,rm + ∂ Ri jkl

∂gpq,rs
gpq,rsm

)
.

Lemma 2. The system of functions gi j , (36) and (37) contains a subsystem defining
a coordinate system on the T r

n (Rn∗ � R
n∗).

Proof. For each s, 1 ≤ s ≤ r − 2, consider the canonical coordinates gi j,k1k2...ks+2 .
We have the decomposition

(41)
gi j,k1k2...ks+2 = i, jk1...ks+2 +  j,ik1...ks+2

+ (
gi j,k1k2...ks+2 − i, jk1...ks+2 −  j,ik1...ks+2

)
.
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It is seen that the expression in the bracket may be rewritten as a sum of terms of the
form

(42) �i,pqr j1... js = gip,qr j1... js − gir,qpj1... js+1 .

Consider the systems

Gs = (gi j,k1k2...ks+2), 1 ≤ i ≤ j ≤ n, k1 ≤ k2 ≤ · · · ≤ ks+2,

s = (i, j1 j2... js+3), 1 ≤ i ≤ n, j1 ≤ j2 ≤ · · · ≤ js+3,

�i,p1 p2...ps+2,

and the linear mapping Gs → (s, �s). We can write(
s

�s

)
= Cs · Gs,

where Cs is the matrix of the linear mapping. Relations (41) show that there exists a
matrix C̄s such that C̄s · Cs = I (the identity matrix). This implies

rank Cs = rank C̄s =
(

n + 1

2

)(
n + s + 1

s + 2

)
,

where the right hand side expression is the number of the coordinates gi j,k1k2...ks+2 .
Choose a squared submatrix C0

s of Cs such that rank C0
s = rank Cs . It is clear that

the system of functions

gi j , i ≤ j, i, jk, j ≤ k, C0
s · Gs, 0 ≤ s ≤ r − 2,

defines a coordinate system on T r
n (Rn∗ � R

n∗).
Now consider the s-th formal covariant derivative of Ri jkl . By definition

Ri jkl;m1;...;ms = 1
2(�i,k jlm1...ms − � j,kilm1...ms ) + Pi, jklm1...ms ,

where Pi, jklm1...ms is a polynomial in the canonical coordinates, independent on the co-
ordinates gi j,k1k2...ks+2 . Combining this fact with the above assertion about the coordinate
system gi j , i, jk , C0

s · Gs on the T r
n (Rn∗ � R

n∗) we obtain the subsystem of gi j , (36)
and (37) required.

Each coordinate system on the T r
n (Rn∗ � R

n∗) defined by Lemma 2 will be called an
adapted coordinate system. The functions belonging to an adapted coordinate system
will be called adapted coordinates.

Using formal differentiation of (20) and the transformation formulas for (36) and
(37), we can see that in the adapted coordinates the action of Lr+1

n on the T r
n (Rn∗ � R

n∗)
is given by the formulas

ḡi j = bp
i bq

j gpq,(43)

̄i, j1 j2... js+1 = bp
i bq1

j1
bq2

j2
· · · bqs+1

js+1
p,q1q2...qs+1 + Bi

j1 j2... js+1
+ gpqbp

i bp
j1 j2... js+1

,(44)

R̄i jkl;m1;...;ms−2 = bp
i bq

j b
u
k bv

l bt1
m1

· · · bts−2
ms−2

Rp,quv;t1;...;ts−2,(45)

where 1 ≤ s ≤ r and Bi
j1 j2... js+1

is a polynomial in the canonical coordinates on the Ls
n

and in the adapted coordinates on the T s−1
n (Rn∗ � R

n∗).
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Proposition 2. The action of K r+1
n on the T r

n (Rn∗ � R
n∗) in the adapted coordi-

nates on the T r
n (Rn∗ � R

n∗) and the canonical coordinates on the K r+1
n is given by the

formulas

(46)

ḡi j = gi j ,

̄i, j1 j2... js+1 = i, j1 j2... js+1 + Bi
j1 j2... js+1

+ gipbp
j1 j2... js+1

,

R̄i jkl;m1;...;ms−2 = Ri jkl;m1;...;ms−2,

where 1 ≤ s ≤ r and Bi
j1 j2... js+1

is a polynomial in the canonical coordinates on the K s
n

and in the adapted coordinates on the T s−1
n (Rn∗ � R

n∗).

Now we have the formulas (46), which will help us to prove the following theorem.

Theorem 3. The Lr+1
n -manifold T r

n (Rn∗ � R
n∗) has the structure of a left principal

K r+1
n -bundle. This left principal K r+1

n -bundle is trivial, and its base is diffeomorphic to
some Euclidean space.

Proof. It is well known that it is sufficient to prove that the graph of equivalence
relation “there exists A ∈ K r+1

n such that A · Jr
0 f1 = Jr

0 f2” is a closed submanifold of

T r
n (Rn∗ � R

n∗) × T r
n (Rn∗ � R

n∗)

and that the action of K r+1
n on the T r

n (Rn∗ � R
n∗) is free.

Let us prove the first condition. Let us consider the system of coordinates

gi j , 
i
j1 j2... js+1

, Ri
jkl;m1;...;ms−2

, ḡi j , ̄
i
j1 j2... js+1

, R̄i
jkl;m1;...;ms−2

on the T r
n (Rn∗ � R

n∗)×T r
n (Rn∗ � R

n∗). From (46) it follows that the graph of the above
mentioned relation is determined by the equations

ḡi j = gi j , R̄i
jkl;m1;...;ms−2

= Ri
jkl;m1;...;ms−2

, 1 ≤ s ≤ r

and is therefore closed.
Let us prove that the action of K r+1

n on the T r
n (Rn∗ � R

n∗) is free. From the condition
A · Jr

0 f1 = Jr
0 f2; in the coordinates it can be written as(

ḡi j , ̄
i
j1 j2... js+1

, R̄i
jkl;m1;...;ms−2

) = (
gi j , 

i
j1 j2... js+1

, Ri
jkl;m1;...;ms−2

)
,

1 ≤ s ≤ n, follows, using (46), that for every indices i, j1, j2, . . . , js+1 is bi
j1 j2... js+1

= 0.
It is satisfied only for the unit element A = (δi

j , 0, 0, . . . , 0) and the action is free.
This completes the proof of Theorem 3.

Theorem 4. Every differential invariant from the left Lr+1
n -manifold T r

n (Rn∗ � R
n∗)

to any left L1
n-manifold Q depends only on gi j and

Ri jkl, Ri jkl;m, Ri jkl;m1;m2, . . . , Ri jkl;m1;...;mr−2 .

Proof. It is consequence of Theorem 3 and Lemma 1.
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