Differential invariants of the metric tensor ${ }^{1}$

J. Šeděnková

Abstract

The problem of finding differential invariants of arbitrary order, depending on the metric tensor, is solved by the factorization method with respect to a proper subgroup of the differential group acting in the space of differential invariants. It is shown that the domain $T_{n}^{r}\left(\mathbb{R}^{n *} \odot \mathbb{R}^{n *}\right)$ of the differential invariants of order r has the structure of a trivial principal K_{n}^{r+1}-bundle, where K_{n}^{r+1} is a normal subgroup of the differential group L_{n}^{r+1} acting on the $T_{n}^{r}\left(\mathbb{R}^{n *} \odot \mathbb{R}^{n *}\right)$ from the left. Consequently, any differential invariant with values in a left $G L_{n}(\mathbb{R})$-manifold factorizes through the projection of this principal fiber bundle.

Keywords and phrases. Jet, differential group, differential invariant, metric tensor. MS classification. 58A20, 53A55.

1. Introduction

In this paper, representing an extension of the author's preprint [13], we apply the factorization method with respect to a subgroup of differential group, which was used for the first time by Krupka in [7]. It is not a sole method for finding differential invariants, but it allows exact formulation of the problem of finding invariants for general group actions. Using factorization method, we present here complete results; in particular, we find a basis of invariants in our case.

Let X be an n-dimensional smooth manifold, and $\operatorname{Met} X$ be the bundle of metrics on X, i.e. the bundle of second order regular symmetric covariant tensors on X. The type fiber of $\operatorname{Met} X$ is the left L_{n}^{1}-manifold $\mathbb{R}^{n *} \odot \mathbb{R}^{n *}$, where $\mathbb{R}^{n *}$ is dual vector space to the vector space \mathbb{R}^{n}. Let $T_{n}^{r}\left(\mathbb{R}^{n *} \odot \mathbb{R}^{n *}\right)$ be the prolongation of the left L_{n}^{1}-manifold

[^0]$\mathbb{R}^{n *} \odot \mathbb{R}^{n *} . T_{n}^{r}\left(\mathbb{R}^{n *} \odot \mathbb{R}^{n *}\right)$ is the set of r-jets with source at the $0 \in \mathbb{R}^{n}$ and target in the $\mathbb{R}^{n *} \odot \mathbb{R}^{n *}$ with natural structure of the left L_{n}^{r+1}-manifold. Then the r-jet prolongation $J^{r} \operatorname{Met} X$ of $\operatorname{Met} X$ has the structure of a fiber bundle with type fiber $T_{n}^{r}\left(\mathbb{R}^{n *} \odot \mathbb{R}^{n *}\right)$ associated with bundle of r-frames over X.

Let L_{n}^{r} be the r-th differential group. The general theory tells that each r-order differential invariant of the metric tensor is an L_{n}^{r}-equivariant mapping defined on the type fiber $T_{n}^{r}\left(\mathbb{R}^{n *} \odot \mathbb{R}^{n *}\right)$ of a fiber bundle $J^{r} \operatorname{Met} X$.

At this paper we describe the quotient space of the action of K_{n}^{r+1} on the $T_{n}^{r}\left(\mathbb{R}^{n *} \odot \mathbb{R}^{n *}\right)$. As a consequence, we get the well known result that every differential invariant of the metric tensor depends only on the metric tensor, the curvature tensor of the Levi-Civita connection and the covariant derivatives of the curvature tensor.

2. Basic structures

Let L_{n}^{r} be the r-th differential group with the canonical global coordinate system

$$
\left(a_{j}^{i}, a_{j_{1} j_{2}}^{i}, \ldots, a_{j_{1} j_{2} \ldots j_{r}}^{i}\right), 1 \leq i, j \leq n, 1 \leq j_{1} \cdots \leq j_{k} \leq n, 1 \leq k \leq r .
$$

L_{n}^{r} is the group of invertible r-jets with source and target at the origin $0 \in \mathbb{R}^{n}$. The coordinate functions $a_{j_{1} \ldots j_{k}}^{i}$ are defined by

$$
\begin{equation*}
a_{j_{1} \ldots j_{k}}^{i}(A)=D_{j_{1}} D_{j_{2}} \cdots D_{j_{k}} \alpha_{i}(0), \tag{1}
\end{equation*}
$$

where $A \in L_{n}^{r}, A=J_{0}^{r} \alpha$.
In this paper we will also use the second coordinate system

$$
\left(b_{j}^{i}, b_{j_{1} j_{2}}^{i}, \ldots, b_{j_{1} j_{2} \ldots j_{r}}^{i}\right), 1 \leq i, j \leq n, 1 \leq j_{1} \leq \cdots \leq j_{k} \leq n, 1 \leq k \leq r
$$

with the coordinates $b_{j_{1} j_{2} \ldots j_{k}}^{i}$, defined by

$$
\begin{equation*}
b_{j_{1} \ldots j_{k}}^{i}(A)=a_{j_{1} \ldots j_{k}}^{i}\left(A^{-1}\right)=D_{j_{1}} D_{j_{2}} \cdots D_{j_{k}} \alpha_{i}^{-1}(0) \tag{2}
\end{equation*}
$$

where $A \in L_{n}^{r}, A=J_{0}^{r} \alpha$. It is known that the functions a_{j}^{i}, b_{l}^{k} satisfy the identity

$$
\begin{equation*}
a_{k}^{i} b_{j}^{k}=\delta_{j}^{i} \tag{3}
\end{equation*}
$$

where δ_{j}^{i} denotes the Kronecker symbol.
Let $T_{n}^{r}\left(\mathbb{R}^{n *} \odot \mathbb{R}^{n *}\right)$ be the r-th prolongation of the left L_{n}^{1}-manifold $\mathbb{R}^{n *} \odot \mathbb{R}^{n *}$. $T_{n}^{r}\left(\mathbb{R}^{n *} \odot \mathbb{R}^{n *}\right)$ is the set of r-jets with source at the $0 \in \mathbb{R}^{n}$ and target in the $\mathbb{R}^{n *} \odot \mathbb{R}^{n *}$ with the natural structure of the left L_{n}^{r+1}-manifold.

Let Q be an arbitrary L_{n}^{1}-manifold. Let

$$
\begin{equation*}
\pi_{n}^{r+1,1}: L_{n}^{r+1} \rightarrow L_{n}^{1}, \quad \quad \pi_{n}^{r+1,1}\left(b_{j}^{i}, b_{j_{1} j_{2}}^{i}, \ldots, b_{j_{1} j_{2} \ldots j_{r}}^{i}\right)=\left(b_{j}^{i}\right) \tag{4}
\end{equation*}
$$

be the canonical projection homomorphism of differential groups. A mapping

$$
\begin{equation*}
F: T_{n}^{r}\left(\mathbb{R}^{n *} \odot \mathbb{R}^{n *}\right) \rightarrow Q \tag{5}
\end{equation*}
$$

is called the r-th order differential invariant of the metric tensor, if it satisfies the condition

$$
\begin{equation*}
F\left(A \cdot J_{0}^{r} f\right)=\pi^{r+1,1}(A) \cdot F\left(J_{0}^{r} f\right) \tag{6}
\end{equation*}
$$

for each $J_{0}^{r} f \in T_{n}^{r}\left(\mathbb{R}^{n *} \odot \mathbb{R}^{n *}\right), A \in L_{n}^{r+1}$.
Let K_{n}^{r+1} be the kernel of the homomorphism $\pi_{n}^{r+1,1}, K_{n}^{r+1}$ is a normal subgroup in the L_{n}^{r+1} consisting of elements with the coordinates

$$
\left(\delta_{j}^{i}, b_{j_{1} j_{2}}^{i}, \ldots, b_{j_{1} j_{2} \ldots j_{r}}^{i}\right)
$$

We can restrict the action of L_{n}^{r+1} to the subgroup K_{n}^{r+1} and construct the quotient space $T_{n}^{r}\left(\mathbb{R}^{n *} \odot \mathbb{R}^{n *}\right) / K_{n}^{r+1}$.

Let us consider the quotient space $T_{n}^{r}\left(\mathbb{R}^{n *} \odot \mathbb{R}^{n *}\right) / K_{n}^{r+1}$. We define the left action of L_{n}^{1} (which is isomorphic to the $L_{n}^{r+1} / K_{n}^{r+1}$) on $T_{n}^{r}\left(\mathbb{R}^{n *} \odot \mathbb{R}^{n *}\right) / K_{n}^{r+1}$ by the expression

$$
\begin{equation*}
J_{0}^{1} \alpha \cdot[w]_{K_{n}^{r+1}}=\left[\iota^{r+1}\left(J_{0}^{1} \alpha\right) \cdot w\right]_{K_{n}^{r+1}} \tag{7}
\end{equation*}
$$

where $J_{0}^{1} \alpha \in L_{n}^{1},[w]_{K_{n}^{r+1}} \in T_{n}^{r}\left(\mathbb{R}^{n *} \odot \mathbb{R}^{n *}\right) / K_{n}^{r+1}$ and ι^{r+1} is the homomorphism

$$
\begin{equation*}
\iota^{r+1}: L_{n}^{1} \rightarrow L_{n}^{r+1}, \quad \iota^{r+1}\left(b_{j}^{i}\right)=\left(b_{j}^{i}, 0,0, \ldots, 0\right) \tag{8}
\end{equation*}
$$

Formula (7) defines the left action of L_{n}^{1} on $T_{n}^{r}\left(\mathbb{R}^{n *} \odot \mathbb{R}^{n *}\right) / K_{n}^{r+1}$.
Lemma 1. Let Q be a left L_{n}^{1}-manifold, let

$$
\pi: T_{n}^{r}\left(\mathbb{R}^{n *} \odot \mathbb{R}^{n *}\right) \rightarrow T_{n}^{r}\left(\mathbb{R}^{n *} \odot \mathbb{R}^{n *}\right) / K_{n}^{r+1}
$$

be the canonical projection onto the orbit space. Then every differential invariant

$$
F: T_{n}^{r}\left(\mathbb{R}^{n *} \odot \mathbb{R}^{n *}\right) \rightarrow Q
$$

is of the form

$$
\begin{equation*}
F=f \circ \pi, \tag{9}
\end{equation*}
$$

where

$$
f: T_{n}^{r}\left(\mathbb{R}^{n *} \odot \mathbb{R}^{n *}\right) / K_{n}^{r+1} \rightarrow Q
$$

is a uniquely determined L_{n}^{1}-equivariant mapping.
Proof. Let $F: T_{n}^{r}\left(\mathbb{R}^{n *} \odot \mathbb{R}^{n *}\right) \rightarrow Q$ be a differential invariant, let $w \in T_{n}^{r}\left(\mathbb{R}^{n *} \odot \mathbb{R}^{n *}\right)$. We can construct a mapping $f: T_{n}^{r}\left(\mathbb{R}^{n *} \odot \mathbb{R}^{n *}\right) / K_{n}^{r+1} \rightarrow Q$ by

$$
\begin{equation*}
f\left([w]_{K_{n}^{r+1}}\right)=F(w) \tag{10}
\end{equation*}
$$

(it follows from (9)). Now we must verify that the f is well defined. It is defined on the whole $T_{n}^{r}\left(\mathbb{R}^{n *} \odot \mathbb{R}^{n *}\right) / K_{n}^{r+1}$, because π is a surjection. We must show that the f is independent on the choice of representative. Let $\left[w_{1}\right]_{K_{n}^{r+1}}=\left[w_{2}\right]_{K_{n}^{r+1}}$. Then there exists $B \in K_{n}^{r+1}$ such that $w_{1}=B \cdot w_{2}$ and

$$
\begin{aligned}
& f\left(\left[w_{1}\right]_{K_{n}^{r+1}}\right)=F\left(w_{1}\right)=F\left(B \cdot w_{2}\right)=\pi^{r+1,1}(B) \cdot F\left(w_{2}\right) \\
& \quad=\pi^{r+1,1}(B) f\left(\left[w_{2}\right]_{K_{n}^{r+1}}\right)=f\left(\left[w_{2}\right]_{K_{n}^{r+1}}\right)
\end{aligned}
$$

(the last equality is satisfied because $\pi^{r+1,1}(B)=J_{0}^{1}$ id for each $B \in K_{n}^{r+1}$).
Now we prove the uniqueness of the f. Suppose that there exist two different mappings which satisfy (9)

$$
F=f_{1} \circ \pi, \quad F=f_{2} \circ \pi
$$

Then $f_{1}\left([w]_{K_{n}^{r+1}}\right)=f_{2}\left([w]_{K_{n}^{r+1}}\right)$ for each $w \in T_{n}^{r}\left(\mathbb{R}^{n *} \odot \mathbb{R}^{n *}\right)$ and $f_{1}=f_{2}$ on the set

$$
\pi\left(T_{n}^{r}\left(\mathbb{R}^{n *} \odot \mathbb{R}^{n *}\right)\right)=T_{n}^{r}\left(\mathbb{R}^{n *} \odot \mathbb{R}^{n *}\right) / K_{n}^{r+1}
$$

i.e. $f_{1}=f_{2}$.

Now we must prove that the f is a L_{n}^{1}-equivariant mapping.
Let $A \in L_{n}^{1}, w \in T_{n}^{r}\left(\mathbb{R}^{n *} \odot \mathbb{R}^{n *}\right)$. Then

$$
\begin{aligned}
& f\left(A \cdot[w]_{K_{n}^{r+1}}\right)=f\left(\left[\iota^{1, r+1}(A) w\right]_{K_{n}^{r+1}}\right)=F\left(\iota^{1, r+1}(A) w\right) \\
& \quad=\pi^{r+1,1}\left(\iota^{1, r+1}(A)\right) \cdot F(w)=A \cdot F(w)=A \cdot f\left([w]_{K_{n}^{r+1}}\right)
\end{aligned}
$$

and the f is a L_{n}^{1}-equivariant mapping.
If we replace the $T_{n}^{r}\left(\mathbb{R}^{n *} \odot \mathbb{R}^{n *}\right)$ by an arbitrary L_{n}^{r+1}-manifold P, this lemma will be conserved (you can find the proof for example in [2]).

3. The action of L_{n}^{1} on $\mathbb{R}^{n *} \odot \mathbb{R}^{n *}$

Let us consider $\mathbb{R}^{n *} \odot \mathbb{R}^{n *}$, the space of symmetric covariant second-order tensors on the \mathbb{R}^{n}. Denote by e_{i} the canonical basis of \mathbb{R}^{n} and e^{i} the dual basis of $\mathbb{R}^{n *}$. Each element $g \in \mathbb{R}^{n *} \odot \mathbb{R}^{n *}$ is then uniquely written in the form

$$
g=g_{i j}(g) e^{i} \odot e^{j}
$$

where $1 \leq i \leq j \leq n$. The system of functions

$$
\left(g_{i j}\right), \quad 1 \leq i \leq j \leq n,
$$

define a global coordinate system on the $\mathbb{R}^{n *} \odot \mathbb{R}^{n *}$.
Let L_{n}^{1} be the 1 -st differential group with the canonical global coordinate system

$$
\left(b_{j}^{i}\right), \quad 1 \leq i, j \leq n,
$$

with the coordinates b_{j}^{i} defined by

$$
b_{j}^{i}(A)=D_{j} \alpha_{i}^{-1}(0)
$$

where $A \in L_{n}^{1}, A=J_{0}^{1} \alpha$. It is evident that the group L_{n}^{1} can be identified with the general linear group $G L_{n}(\mathbb{R})$.

Let us consider the left L_{n}^{1}-manifold $\mathbb{R}^{n *} \odot \mathbb{R}^{n *}$. The standard left action of L_{n}^{1} on $\mathbb{R}^{n *} \odot \mathbb{R}^{n *}$ is introduced as follows. If $g \in \mathbb{R}^{n *} \odot \mathbb{R}^{n *}$ and $J_{0}^{1} \alpha \in L_{n}^{1}$ then in the coordinates

$$
g_{i j}\left(J_{0}^{1} \alpha \cdot g\right)=b_{i}^{p}\left(J_{0}^{1} \alpha\right) b_{j}^{q}\left(J_{0}^{1} \alpha\right) g_{p q}(g) .
$$

If we use the notation with a bar $\bar{g}_{i j}=g_{i j}\left(J_{0}^{1} \alpha \cdot g\right)$ without a bar $g_{i j}=g_{i j}(g)$, and $b_{i}^{p}=b_{i}^{p}\left(J_{0}^{1} \alpha\right)$ we can rewrite the last expression in the form

$$
\begin{equation*}
\bar{g}_{i j}=b_{i}^{p} b_{j}^{q} g_{p q} . \tag{11}
\end{equation*}
$$

The action of L_{n}^{1} on $\mathbb{R}^{n *} \odot \mathbb{R}^{n *}$ is given by formula (11).

4. The action of L_{n}^{3} on $T_{n}^{2}\left(\mathbb{R}^{n *} \odot \mathbb{R}^{n *}\right)$

Now we will study the special case $r=2$ in detail (we will find the second order differential invariants of the metric tensor). In this section we will explicitly express the action of L_{n}^{3} on $T_{n}^{2}\left(\mathbb{R}^{n *} \odot \mathbb{R}^{n *}\right)$.

Let $T_{n}^{2}\left(\mathbb{R}^{n *} \odot \mathbb{R}^{n *}\right)$ be the second prolongation of the $\mathbb{R}^{n *} \odot \mathbb{R}^{n *}$.
Let $Q \in T_{n}^{2}\left(\mathbb{R}^{n *} \odot \mathbb{R}^{n *}\right)$ be a 2-jet and f be a mapping from a neighborhood of the $0 \in \mathbb{R}^{n}$ to the $\mathbb{R}^{n *} \odot \mathbb{R}^{n *}$ such that $Q=J_{0}^{2} f$. There exists a canonical global coordinate system

$$
\left(g_{i j}, g_{i j, k}, g_{i j, k l}\right), \quad 1 \leq i \leq j \leq n, 1 \leq k \leq l \leq n
$$

on the $T_{n}^{2}\left(\mathbb{R}^{n *} \odot \mathbb{R}^{n *}\right)$, defined by

$$
\begin{align*}
& g_{i j}(Q)=g_{i j}(f(0)), \\
& g_{i j, k}(Q)=D_{k}\left(g_{i j} f\right)(0), \tag{12}\\
& g_{i j, k l}(Q)=D_{k} D_{l}\left(g_{i j} f\right)(0)
\end{align*}
$$

If we prolong the left action of L_{n}^{1} on $\mathbb{R}^{n *} \odot \mathbb{R}^{n *}$, we obtain the left action of L_{n}^{3} on $T_{n}^{2}\left(\mathbb{R}^{n *} \odot \mathbb{R}^{n *}\right)$. Let $J_{0}^{3} \alpha \in L_{n}^{3}, J_{0}^{2} f \in T_{n}^{2}\left(\mathbb{R}^{n *} \odot \mathbb{R}^{n *}\right)$, then

$$
J_{0}^{3} \alpha \cdot J_{0}^{2} f=J_{0}^{2} \Phi,
$$

where Φ is a mapping from a neighborhood of the $0 \in \mathbb{R}^{n}$ to the $\mathbb{R}^{n *} \odot \mathbb{R}^{n *}$ defined by

$$
\begin{equation*}
\Phi(x)=J_{0}^{1}\left(t_{x} \alpha t_{-\alpha^{-1}(x)}\right) \cdot f\left(\alpha^{-1}(x)\right) \tag{13}
\end{equation*}
$$

where t_{x} denotes the translation of \mathbb{R}^{n}, which transfer the point $x \in \mathbb{R}^{n}$ to the point $0 \in \mathbb{R}^{n}$ and dot means the action of L_{n}^{1} on $\mathbb{R}^{n *} \odot \mathbb{R}^{n *}$. We express the formula (13) in the coordinates

$$
g_{i j}(\Phi(x))=D_{i}\left(t_{x} \alpha t_{-\alpha^{-1}(x)}\right)_{p}^{-1}(0) D_{j}\left(t_{x} \alpha t_{-\alpha^{-1}(x)}\right)_{q}^{-1}(0) g_{p q}\left(f \alpha^{-1}(x)\right)
$$

It is easy to show that it is the same as $g_{i j}(\Phi(x))=D_{i} \alpha_{p}^{-1}(0) D_{j} \alpha_{q}^{-1}(0) g_{p q}\left(f \alpha^{-1}(x)\right)$. Now we can calculate. From now on we will denote for short

$$
\begin{array}{llll}
b_{i}^{p}=b_{i}^{p}\left(J_{0}^{1} \alpha\right), & & \\
\bar{g}_{i j}=g_{i j}\left(J_{0}^{2} \Phi\right), & \bar{g}_{i j, k}=g_{i j, k}\left(J_{0}^{2} \Phi\right), & \bar{g}_{i j, k l}=g_{i j, k l}\left(J_{0}^{2} \Phi\right), \\
g_{i j}=g_{i j}\left(J_{0}^{2} f\right), & g_{i j, k}=g_{i j, k}\left(J_{0}^{2} f\right), & g_{i j, k l}=g_{i j, k l}\left(J_{0}^{2} f\right) .
\end{array}
$$

In the coordinates the left action of L_{n}^{3} on $T_{n}^{2}\left(\mathbb{R}^{n *} \odot \mathbb{R}^{n *}\right)$ is given by

$$
\begin{align*}
& \bar{g}_{i j}=b_{i}^{p} b_{j}^{q} g_{p q}, \\
& \bar{g}_{i j, k}=b_{i}^{p} b_{j}^{q} b_{k}^{r} g_{p q, r}+\left(b_{k i}^{p} b_{j}^{q}+b_{i}^{p} b_{k j}^{q}\right) g_{p q}, \tag{14}\\
& \bar{g}_{i j, k l}=b_{i}^{p} b_{j}^{q} b_{k}^{r} b_{l}^{s} g_{p q, r s}+\left(b_{l i}^{p} b_{j}^{q} b_{k}^{r}+b_{i}^{p} b_{l j}^{q} b_{k}^{r}+b_{i}^{p} b_{j}^{q} b_{l k}^{r}+b_{k i}^{p} b_{j}^{q} b_{l}^{r}\right. \\
& \left.\quad+b_{i}^{p} b_{k j}^{q} b_{l}^{r}\right) g_{p q, r}+\left(b_{l k i}^{p} b_{j}^{q}+b_{k i}^{p} b_{l j}^{q}+b_{l i}^{p} b_{k j}^{q}+b_{i}^{p} b_{l k j}^{q}\right) g_{p q} .
\end{align*}
$$

Let K_{n}^{3} be the kernel of the homomorphism $\pi_{n}^{3,1}$, then K_{n}^{3} is a normal subgroup in the L_{n}^{3} consisting of elements with the coordinates

$$
\left(\delta_{j}^{i}, b_{j_{1} j_{2}}^{i}, b_{j_{1} j_{2} j_{3}}^{i}\right) .
$$

We can restrict the action of L_{n}^{3} to the subgroup K_{n}^{3} and construct the quotient space $T_{n}^{2}\left(\mathbb{R}^{n *} \odot \mathbb{R}^{n *}\right) / K_{n}^{3}$. In formulas (14) we can put $b_{j}^{i}=\delta_{j}^{i}$.

In the canonical coordinates the action of K_{n}^{3} on $T_{n}^{2}\left(\mathbb{R}^{n *} \odot \mathbb{R}^{n *}\right)$ is given by

$$
\begin{align*}
& \bar{g}_{i j}=g_{i j}, \\
& \bar{g}_{i j, k}=g_{i j, k}+b_{k i}^{p} g_{p j}+b_{k j}^{p} g_{i p}, \\
& \bar{g}_{i j, k l}=g_{i j, k l}+b_{l k}^{p} g_{i j, p}+b_{l i}^{p} g_{p j, k}+b_{l j}^{p} g_{i p, k}+b_{k i}^{p} g_{p j, l}+b_{k j}^{p} g_{i p, l} \tag{15}\\
& \quad+\left(b_{k i}^{p} b_{l j}^{q}+b_{l i}^{p} b_{k j}^{q}\right) g_{p q}+b_{l k i}^{p} g_{p j}+b_{l k j}^{p} g_{i p} .
\end{align*}
$$

Now we can see from (15) that it is very hard to characterize the quotient space $T_{n}^{2}\left(\mathbb{R}^{n *} \odot \mathbb{R}^{n *}\right) / K_{n}^{3}$ in the canonical coordinates $\left(g_{i j}, g_{i j, k}, g_{i j, k l}\right)$. So, we will define the new coordinates, which we obtain by the following process.

Recall that the point $J_{0}^{2} f \in T_{n}^{2}\left(\mathbb{R}^{n *} \odot \mathbb{R}^{n *}\right), J_{0}^{2} f=\left(g_{i j}, g_{i j, k}, g_{i j, k l}\right)$, is called regular if $\operatorname{det}\left(g_{i j}\right) \neq 0$. Denote by $g^{i j}$ the functions on a neighborhood of this regular point which satisfy the equality

$$
\begin{equation*}
g^{i k} g_{k l}=\delta_{j}^{i} \tag{16}
\end{equation*}
$$

where δ_{j}^{i} denotes the Kronecker symbol.
Now we will restrict our attention to the open subspace in $T_{n}^{2}\left(\mathbb{R}^{n *} \odot \mathbb{R}^{n *}\right)$ consisting of all regular points. We shall denote this subspace as $T_{n}^{r}\left(\mathbb{R}^{n *} \odot \mathbb{R}^{n *}\right)$ (no special notation). Remark that this subspace is L_{n}^{3}-equivariant. On this subspace we can change the coordinates from $\left(g_{i j}, g_{i j, k}, g_{i j, k l}\right)$ to ($g_{i j}, \Gamma_{i, j k}, R_{i j k l}, \Gamma_{i, j k l}$) by the formulas

$$
\begin{align*}
& g_{i j}=g_{i j} \\
& \Gamma_{i, j k}=\frac{1}{2}\left(g_{i j, k}+g_{i k, j}-g_{j k, i}\right) \\
& R_{i j k l}=\frac{1}{2}\left(g_{i l, j k}+g_{j k, i l}-g_{i k, j l}-g_{j l, i k}\right) \\
& \quad+\frac{1}{4} g^{m p}\left(\left(g_{m j, k}+g_{m k, j}-g_{j k, m}\right)\left(g_{p i, l}+g_{p l, i}-g_{i l, p}\right)\right. \tag{17}\\
& \left.\quad-\left(g_{m j, l}+g_{m l, j}-g_{j l, m}\right)\left(g_{p i, k}+g_{p k, i}-g_{i k, p}\right)\right) \\
& \Gamma_{i, j k l}=\frac{1}{3}\left(g_{i j, k l}+g_{i l, j k}+g_{i k, l j}\right)-\frac{1}{6}\left(g_{j k, l i}+g_{l j, k i}+g_{k l, j i}\right) .
\end{align*}
$$

Here $\Gamma_{i, j k}$ are symmetric in the last two indices and define the Levi-Civita connection, $\Gamma_{i, j k l}$ are symmetric in the last three indices, and $R_{i j k l}$ satisfy the identities

$$
\begin{align*}
& R_{i j k l}=-R_{j i k l}=-R_{i j l k}=R_{k l i j} \\
& R_{i j k l}+R_{i l j k}+R_{i k l j}=0 \tag{18}
\end{align*}
$$

and define the curvature tensor.
The inverse coordinate transformation is given by

$$
\begin{align*}
& g_{i j}=g_{i j} \\
& g_{i j, k}=\Gamma_{i, j k}+\Gamma_{j, i k} \\
& g_{i j, k l}=\Gamma_{i, j k l}+\Gamma_{j, i k l}-\frac{1}{3}\left(R_{i k j l}+R_{j k i l}\right) \tag{19}\\
& \quad+\frac{1}{3} g^{p q}\left(\Gamma_{p, i l} \Gamma_{q, k j}+\Gamma_{p, j l} \Gamma_{q, k i}-2 \Gamma_{p, i j} \Gamma_{q, k l}\right)
\end{align*}
$$

The new coordinate system

$$
\left(g_{i j}, \Gamma_{i, j k}, R_{i j k l}, \Gamma_{i, j k l}\right)
$$

is called an adapted coordinate system. Now we simplify the formulas (14) by using the new coordinates.

If we use (14), transformations (17) and (19), we can formulate
Proposition 1. In the new coordinates $\left(g_{i j}, \Gamma_{i, j k}, R_{i j k l}, \Gamma_{i, j k l}\right)$ the action of L_{n}^{3} on $T_{n}^{2}\left(\mathbb{R}^{n *} \odot \mathbb{R}^{n *}\right)$ is given by

$$
\begin{align*}
& \bar{g}_{i j}=b_{i}^{p} b_{j}^{q} g_{p q}, \\
& \bar{\Gamma}_{i, j k}=b_{i}^{p} b_{j}^{q} b_{k}^{r} \Gamma_{p, q r}+b_{i}^{p} b_{j k}^{q} g_{p q}, \\
& \bar{R}_{i j k l}=b_{i}^{p} b_{j}^{q} b_{k}^{r} b_{l}^{s} R_{p q r s}, \\
& \bar{\Gamma}_{i, j k l}=b_{i}^{p} b_{j}^{q} b_{k}^{r} b_{l}^{s} \Gamma_{p, q r s}+\left[b_{i}^{p}\left(b_{j}^{q} b_{k l}^{r}+b_{k}^{q} b_{l j}^{r}+b_{l}^{q} b_{k j}^{r}\right)\right. \tag{20}\\
& \quad+\frac{1}{3} b_{i}^{q}\left(b_{k j}^{p} b_{l}^{r}+b_{l j}^{p} b_{k}^{r}+b_{k l}^{p} b_{j}^{r}\right)+\frac{1}{3}\left(b_{k i}^{p} b_{j}^{q} b_{l}^{r}+b_{j i}^{p} b_{k}^{q} b_{l}^{r}\right. \\
& \left.\left.\quad+b_{l i}^{p} b_{j}^{q} b_{k}^{r}\right)\right] \Gamma_{p, q r}+\left[b_{i}^{p} b_{j k l}^{q}+\frac{1}{3}\left(b_{k i}^{p} b_{j l}^{q}+b_{l i}^{p} b_{j k}^{q}+b_{j i}^{p} b_{l k}^{q}\right)\right] g_{p q}
\end{align*}
$$

and the action of K_{n}^{3} on $T_{n}^{2}\left(\mathbb{R}^{n *} \odot \mathbb{R}^{n *}\right)$ is given by

$$
\begin{align*}
& \bar{g}_{i j}=g_{i j}, \\
& \bar{\Gamma}_{i, j k}=\Gamma_{i, j k}+b_{j k}^{p} g_{i p}, \\
& \bar{R}_{i j k l}=R_{i j k l}, \\
& \bar{\Gamma}_{i, j k l}=\Gamma_{i, j k l}+b_{k l}^{p} \Gamma_{i, j p}+b_{l j}^{p} \Gamma_{i, k p}+b_{k j}^{p} \Gamma_{i, l p}+\frac{1}{3}\left(b_{k j}^{p} \Gamma_{p, i l}+b_{l j}^{p} \Gamma_{p, i k}\right. \tag{21}\\
& \left.\quad+b_{k l}^{p} \Gamma_{p, i j}\right)+\frac{1}{3}\left(b_{k i}^{p} \Gamma_{p, j l}+b_{j i}^{p} \Gamma_{p, k l}+b_{l i}^{p} \Gamma_{p, j k}\right)+\frac{1}{3}\left(b_{k i}^{p} b_{j l}^{q}+b_{l i}^{p} b_{j k}^{q}\right. \\
& \left.\quad+b_{j i}^{p} b_{l k}^{q}\right) g_{p q}+b_{j k l}^{p} g_{i p} .
\end{align*}
$$

5. Second order differential invariants of the metric tensor

In this section we will find the differential invariants

$$
F: T_{n}^{2}\left(\mathbb{R}^{n *} \odot \mathbb{R}^{n *}\right) \rightarrow Q
$$

where Q is any left L_{n}^{1}-manifold. Recall that the differential invariant F with values in a left L_{n}^{1}-manifold satisfies the condition

$$
\begin{equation*}
F\left(A \cdot J_{0}^{2} f\right)=\pi_{n}^{3,1}(A) \cdot F\left(J_{0}^{2} f\right) \tag{22}
\end{equation*}
$$

where $J_{0}^{2} f \in T_{n}^{2}\left(\mathbb{R}^{n *} \odot \mathbb{R}^{n *}\right), A \in L_{n}^{3}$.
Let us consider the space $T_{n}^{2}\left(\mathbb{R}^{n *} \odot \mathbb{R}^{n *}\right) / K_{n}^{3}$. For each class $\left[J_{0}^{2} f\right]_{K_{n}^{3}}$ from the $T_{n}^{2}\left(\mathbb{R}^{n *} \odot \mathbb{R}^{n *}\right) / K_{n}^{3}$ we can take the same values $g_{i j}, R_{i j k l}$ as for its representative, i.e. we put

$$
\begin{align*}
& g_{i j}\left(\left[J_{0}^{2} f\right]_{K_{n}^{3}}\right)=g_{i j}\left(J_{0}^{2} f\right), \\
& R_{i j k l}\left(\left[J_{0}^{2} f\right]_{K_{n}^{3}}\right)=R_{i j k l}\left(J_{0}^{2} f\right) \tag{23}
\end{align*}
$$

It follows from (15) that these expressions are independent on the choice of representatives and that two different classes have different systems of numbers $g_{i j}, R_{i j k l}$. We
define a coordinate system on the $T_{n}^{2}\left(\mathbb{R}^{n *} \odot \mathbb{R}^{n *}\right) / K_{n}^{3}$ by (23). Now we can express the factor projection

$$
\pi: T_{n}^{2}\left(\mathbb{R}^{n *} \odot \mathbb{R}^{n *}\right) \rightarrow T_{n}^{2}\left(\mathbb{R}^{n *} \odot \mathbb{R}^{n *}\right) / K_{n}^{3}
$$

in the form

$$
\begin{equation*}
\pi=\left(g_{i j}, R_{i j k l}\right) \tag{24}
\end{equation*}
$$

The group L_{n}^{1} (which is isomorphic to the $\left.L_{n}^{3} / K_{n}^{3}\right)$ acts on $T_{n}^{2}\left(\mathbb{R}^{n *} \odot \mathbb{R}^{n *}\right)$ by

$$
\begin{equation*}
A \cdot\left[J_{0}^{2} f\right]_{K_{n}^{3}}=\left[\iota^{3}(A) \cdot J_{0}^{2} f\right]_{K_{n}^{3}} \tag{25}
\end{equation*}
$$

where $\iota^{3}(A)=\left(a_{j}^{i}, 0,0\right)$. The manifold $T_{n}^{2}\left(\mathbb{R}^{n *} \odot \mathbb{R}^{n *}\right) / K_{n}^{3}$ has the structure of a left L_{n}^{1}-manifold.

Let P_{n} be the subspace of tensor space

$$
\left(\mathbb{R}^{n *} \wedge \mathbb{R}^{n *}\right) \odot\left(\mathbb{R}^{n *} \wedge \mathbb{R}^{n *}\right)
$$

which is in the canonical coordinates $R_{i j k l}$ defined by

$$
\begin{equation*}
R_{i j k l}+R_{i l j k}+R_{i k l j}=0 \tag{26}
\end{equation*}
$$

The dimension of P_{n} is $\frac{1}{12} n^{2}\left(n^{2}-1\right)$, it is equal to the number of coordinates $R_{i j k l}$ on the space $T_{n}^{2}\left(\mathbb{R}^{n *} \odot \mathbb{R}^{n *}\right)$. We can write the following theorem.

Theorem 1. The L_{n}^{3}-manifold $T_{n}^{2}\left(\mathbb{R}^{n *} \odot \mathbb{R}^{n *}\right)$ has the structure of a left principal K_{n}^{3}-bundle. This left principal K_{n}^{3}-bundle is trivial, and its base $T_{n}^{2}\left(\mathbb{R}^{n *} \odot \mathbb{R}^{n *}\right) / K_{n}^{3}$ is diffeomorphic to the $\left(\mathbb{R}^{n *} \odot \mathbb{R}^{n *}\right) \times P_{n}$.

Proof. It is well known that is enough to prove that the graph of equivalence of the relation "there exists $A \in K_{n}^{3}$, such that $A \cdot J_{0}^{2} f_{1}=J_{0}^{2} f_{2}$ " is a closed submanifold of the

$$
T_{n}^{2}\left(\mathbb{R}^{n *} \odot \mathbb{R}^{n *}\right) \times T_{n}^{2}\left(\mathbb{R}^{n *} \odot \mathbb{R}^{n *}\right)
$$

and that the action of K_{n}^{3} on $T_{n}^{2}\left(\mathbb{R}^{n *} \odot \mathbb{R}^{n *}\right)$ is free.
Let us to prove the first condition. Let us consider the system of coordinates

$$
\begin{equation*}
g_{i j}, \Gamma_{i, j k}, R_{i j k l}, \Gamma_{i, j k l}, \bar{g}_{i j}, \bar{\Gamma}_{i, j k}, \bar{R}_{i j k l}, \bar{\Gamma}_{i, j k l} \tag{27}
\end{equation*}
$$

on

$$
T_{n}^{2}\left(\mathbb{R}^{n *} \odot \mathbb{R}^{n *}\right) \times T_{n}^{2}\left(\mathbb{R}^{n *} \odot \mathbb{R}^{n *}\right)
$$

It follows from (21) that the graph of the above mentioned relation is determined by the equations

$$
\bar{g}_{i j}=g_{i j}, \quad \bar{R}_{i j k l}=R_{i j k l}, \quad 1 \leq s \leq r
$$

and is therefore closed.
Let us prove that the action of K_{n}^{3} on $T_{n}^{2}\left(\mathbb{R}^{n *} \odot \mathbb{R}^{n *}\right)$ is free. Suppose that

$$
A \cdot J_{0}^{2} f=J_{0}^{2} f
$$

where $A \in K_{n}^{3}$ and $J_{0}^{2} f \in T_{n}^{2}\left(\mathbb{R}^{n *} \odot \mathbb{R}^{n *}\right)$. In the coordinates we write

$$
\begin{equation*}
\left(\bar{g}_{i j}, \bar{\Gamma}_{i, j k}, \bar{R}_{i j k l}, \bar{\Gamma}_{i, j k l}\right)=\left(g_{i j}, \Gamma_{i, j k}, R_{i j k l} \cdot \Gamma_{i, j k l}\right) \tag{28}
\end{equation*}
$$

It follows from (15) that

$$
\begin{align*}
& b_{j k}^{r}=g^{r i}\left(\bar{\Gamma}_{i, j k}-\Gamma_{i, j k}\right), \\
& b_{j k l}^{r}=g^{r i}\left(\bar{\Gamma}_{i, j k l}-\Gamma_{i, j k l}\right)-B_{j k l}^{r} \tag{29}
\end{align*}
$$

where

$$
\begin{align*}
& B_{j k l}^{r}=g^{r i}\left[b_{k l}^{p} \Gamma_{i, j p}+b_{l j}^{p} \Gamma_{i, k p}+b_{k j}^{p} \Gamma_{i, l p}\right. \\
& \quad+\frac{1}{3}\left(b_{k j}^{p} \Gamma_{p, i l}+b_{l j}^{p} \Gamma_{p, i k}+b_{k l}^{p} \Gamma_{p, i j}\right) \\
& \quad+\frac{1}{3}\left(b_{k i}^{p} \Gamma_{p, j l}+b_{j i}^{p} \Gamma_{p, k l}+b_{l i}^{p} \Gamma_{p, j k}\right) \tag{30}\\
& \left.\quad+\frac{1}{3}\left(b_{k i}^{p} b_{j l}^{q}+b_{l i}^{p} b_{j k}^{q}+b_{j i}^{p} b_{l k}^{q}\right) g_{p q}\right]
\end{align*}
$$

depends only on $b_{r s}^{p}, g_{p q}, \Gamma_{p, r s}$. If we use (28) in (29), then we obtain $b_{j k}^{r}=0, b_{j k l}^{r}=0$ for each $1 \leq r, j, k, l \leq n$. That is why the $A=\left(\delta_{j}^{i}, 0,0\right)$ is the unit element of the group K_{n}^{3} and the action is free.

Finally we have to introduce a diffeomorphism which maps the base $T_{n}^{2}\left(\mathbb{R}^{n *} \odot \mathbb{R}^{n *}\right) / K_{n}^{3}$ to the $\left(\mathbb{R}^{n *} \odot \mathbb{R}^{n *}\right) \times P_{n}$. Let us consider the diffeomorphism which maps class from the $T_{n}^{2}\left(\mathbb{R}^{n *} \odot \mathbb{R}^{n *}\right) / K_{n}^{3}$ with the coordinates $\left(g_{i j}, R_{i j k l}\right)$ to the element of the $\left(\mathbb{R}^{n *} \odot \mathbb{R}^{n *}\right) \times P_{n}$ which has the same coordinates $\left(g_{i j}, R_{i j k l}\right)$.

This completes the proof of Theorem 1.
Theorem 2. Every differential invariant from the left L_{n}^{3}-manifold $T_{n}^{2}\left(\mathbb{R}^{n *} \odot \mathbb{R}^{n *}\right)$ to any left L_{n}^{1}-manifold Q depends only on $g_{i j}$ and $R_{i j k l}$.

Proof. Let

$$
\pi: T_{n}^{2}\left(\mathbb{R}^{n *} \odot \mathbb{R}^{n *}\right) \rightarrow T_{n}^{2}\left(\mathbb{R}^{n *} \odot \mathbb{R}^{n *}\right) / K_{n}^{3}
$$

be the canonical projection. Let Q be a left L_{n}^{1}-manifold. Suppose that

$$
F: T_{n}^{2}\left(\mathbb{R}^{n *} \odot \mathbb{R}^{n *}\right) \rightarrow Q
$$

is a differential invariant. By Lemma 1 there exists a uniquely determined L_{n}^{1}-equivariant mapping

$$
f: T_{n}^{2}\left(\mathbb{R}^{n *} \odot \mathbb{R}^{n *}\right) / K_{n}^{3} \rightarrow Q
$$

which satisfies the condition (9)

$$
F=f \circ \pi
$$

This mapping f is defined by (10)

$$
f\left([p]_{K_{n}^{3}}\right)=F(p)
$$

for each $p \in T_{n}^{2}\left(\mathbb{R}^{n *} \odot \mathbb{R}^{n *}\right)$.
From the uniqueness of the f follows that the F depends only on $g_{i j}$ and $R_{i j k l}$. We say that

$$
\pi=\left(g_{i j}, R_{i j k l}\right)
$$

is the basis of the invariants of metric with values in a left L_{n}^{1}-manifold.

This completes the proof of Theorem 2.
Remark. There exists no nontrivial first order differential invariant of the metric tensor, because the space $T_{n}^{1}\left(\mathbb{R}^{n *} \odot \mathbb{R}^{n *}\right) / K_{n}^{2}$ is isomorphic to the $\mathbb{R}^{n *} \odot \mathbb{R}^{n *}$ and every invariant from the $T_{n}^{1}\left(\mathbb{R}^{n *} \odot \mathbb{R}^{n *}\right)$ to any left L_{n}^{1}-manifold depends only on $g_{i j}$.

6. r-th order differential invariants of the metric tensor

Let L_{n}^{r} be the r-th differential group with the canonical global coordinate system

$$
\left(b_{j}^{i}, b_{j_{1} j_{2}}^{i}, \ldots, b_{j_{1} j_{2} \ldots j_{r}}^{i}\right), 1 \leq i, j \leq n, 1 \leq j_{1} \leq \cdots \leq j_{k} \leq n, 1 \leq k \leq r
$$

with the coordinates $b_{j_{1} j_{2} \ldots j_{k}}^{i}$ defined by (2)

$$
b_{j_{1} \ldots j_{k}}^{i}(A)=a_{j_{1} \ldots j_{k}}^{i}\left(A^{-1}\right)=D_{j_{1}} D_{j_{2}} \cdots D_{j_{k}} \alpha_{i}^{-1}(0)
$$

where $A \in L_{n}^{r}, A=J_{0}^{r} \alpha$.
Let $T_{n}^{r}\left(\mathbb{R}^{n *} \odot \mathbb{R}^{n *}\right)$ be the r-th prolongation of the left L_{n}^{1}-manifold $\mathbb{R}^{n *} \odot \mathbb{R}^{n *}$.
$T_{n}^{r}\left(\mathbb{R}^{n *} \odot \mathbb{R}^{n *}\right)$ is the set of r-jets with source at the $0 \in \mathbb{R}^{n}$ and target in the $\mathbb{R}^{n *} \odot \mathbb{R}^{n *}$ with the natural structure of the left L_{n}^{r+1}-manifold. Let

$$
\left(g_{i j}\right), \quad 1 \leq i \leq j \leq n,
$$

be the canonical global coordinate system on the $\mathbb{R}^{n *} \odot \mathbb{R}^{n *}$. Then the canonical global coordinate system

$$
\begin{aligned}
& \left(g_{i j}, g_{i j, k_{1}}, g_{i j, k_{1} k_{2}}, \ldots, g_{i j, k_{1} k_{2} \ldots k_{r}}\right) \\
& 1 \leq i \leq j \leq n, 1 \leq k_{1} \leq \cdots \leq k_{r} \leq n,
\end{aligned}
$$

on the $T_{n}^{r}\left(\mathbb{R}^{n *} \odot \mathbb{R}^{n *}\right)$ is defined analogically as for case $r=2$ (see (12)).
The group action of L_{n}^{r+1} on $T_{n}^{r}\left(\mathbb{R}^{n *} \odot \mathbb{R}^{n *}\right)$ is induced by the prolongation of the group action (11) of L_{n}^{1} on $\mathbb{R}^{n *} \odot \mathbb{R}^{n *}$. Corresponding equations are obtained by s th formal differentiation of (11) for $s=1,2, \ldots, r$ (see [4]). The action of L_{n}^{r+1} on $T_{n}^{r}\left(\mathbb{R}^{n *} \odot \mathbb{R}^{n *}\right)$ is given by (14) for $r=2$ in the canonical coordinates.

Let Q be an arbitrary L_{n}^{1}-manifold. Let $\pi_{n}^{r+1,1}: L_{n}^{r+1} \rightarrow L_{n}^{1}$ be the projection homomorphism of differential groups (see (4)). Recall that mapping

$$
\begin{equation*}
F: T_{n}^{r}\left(\mathbb{R}^{n *} \odot \mathbb{R}^{n *}\right) \rightarrow Q \tag{31}
\end{equation*}
$$

is called the r-th order differential invariant of the metric tensor, if it satisfies the condition

$$
\begin{equation*}
F\left(A \cdot J_{0}^{r} f\right)=\pi^{r+1,1}(A) \cdot F\left(J_{0}^{r} f\right) \tag{32}
\end{equation*}
$$

for each $J_{0}^{r} f \in T_{n}^{r}\left(\mathbb{R}^{n *} \odot \mathbb{R}^{n *}\right), A \in L_{n}^{r}$.
Let K_{n}^{r+1} be the kernel of the homomorphism $\pi_{n}^{r+1,1}, K_{n}^{r+1}$ is a normal subgroup in the L_{n}^{r+1} consisting of elements with the coordinates

$$
\left(\delta_{j}^{i}, b_{j_{1} j_{2}}^{i}, \ldots, b_{j_{1} j_{2} \ldots j_{r}}^{i}\right)
$$

We can restrict the action of L_{n}^{r+1} to the subgroup K_{n}^{r+1} and construct the quotient space $T_{n}^{r}\left(\mathbb{R}^{n *} \odot \mathbb{R}^{n *}\right) / K_{n}^{r+1}$.

In the canonical coordinates the action of K_{n}^{r+1} on the $T_{n}^{r}\left(\mathbb{R}^{n *} \odot \mathbb{R}^{n *}\right)$ is given by

$$
\begin{align*}
& \bar{g}_{i j}=g_{i j}, \\
& \bar{g}_{i j, k_{1}}=g_{i j, k_{1}}+b_{k_{1} i}^{p} g_{p j}+b_{k_{1} j}^{p} g_{i p}, \\
& \bar{g}_{i j, k_{1} k_{2}}=g_{i j, k_{1} k_{2}}+b_{k_{2} k_{1}}^{p} g_{i j, p}+b_{k_{2} i}^{p} g_{p j, k_{1}}+b_{k_{2} j}^{p} g_{i p, k_{1}}+b_{k_{1} i}^{p} g_{p j, k_{2}} \tag{33}\\
& \quad+b_{k_{1} j}^{p} g_{i p, k_{2}}+b_{k_{2} k_{1} i}^{p} g_{p j}+\left(b_{k_{1} i}^{p} b_{k_{2} j}^{q}+b_{k_{2} i}^{p} b_{k_{1} j}^{q}\right) g_{p q}+b_{k_{2} k_{1} j}^{p} g_{i p}
\end{align*}
$$

Now we can see from (33) that it is very hard to characterize the quotient space $T_{n}^{r}\left(\mathbb{R}^{n *} \odot \mathbb{R}^{n *}\right) / K_{n}^{r+1}$ in the canonical coordinates

$$
\left(g_{i j}, g_{i j, k_{1}}, g_{i j, k_{1} k_{2}}, \ldots, g_{i j, k_{1} k_{2} \ldots k_{r}}\right)
$$

So, we will define the coordinates, which we obtain by the following process.
On the space $T_{n}^{r}\left(\mathbb{R}^{n *} \odot \mathbb{R}^{n *}\right)$ let us consider the functions

$$
\begin{equation*}
\Gamma_{i, j k}=\frac{1}{2}\left(g_{i j, k}+g_{i k, j}-g_{j k, i}\right) \tag{34}
\end{equation*}
$$

and the functions

$$
\begin{equation*}
\Gamma_{i, j k, m_{1} \ldots m_{s}} \tag{35}
\end{equation*}
$$

defined as the s-th derivative of (34). Using these functions, we can consider the following functions

$$
\begin{align*}
& \Gamma_{i, j_{1} j_{2}}, \Gamma_{i, j_{1} j_{2} j_{3}} \ldots, \Gamma_{i, j_{1} j_{2} j_{3} \ldots j_{r+1}} \tag{36}\\
& R_{i j k l}, R_{i j k l ; m_{1}}, \ldots, R_{i j k l ; m_{1} ; \ldots ; m_{r-2}} \tag{37}
\end{align*}
$$

where $\Gamma_{i, j_{1} j_{2} j_{3} \ldots j_{s}}=\Gamma_{i,\left(j_{1} j_{2}, j_{3} \ldots j_{s}\right)}$ (the symmetrization in indices $j_{1}, j_{2}, j_{3}, \ldots, j_{s}$) and $R_{i j k l ; m_{1} ; \ldots ; m_{s}}$ denotes the s-th covariant derivative of the curvature tensor

$$
\begin{equation*}
R_{i j k l}=\Gamma_{i, j k, l}-\Gamma_{i, j l, k}+g^{p q}\left(\Gamma_{i, p l} \Gamma_{q, j k}-\Gamma_{i, p k} \Gamma_{q, j l}\right) \tag{38}
\end{equation*}
$$

The first covariant derivative of the curvature tensor is the system of functions

$$
\begin{align*}
& R_{i j k l ; m}=R_{i j k l, m}-g^{p q}\left(\Gamma_{p, m i} R_{q j k l}+\Gamma_{p, m j} R_{i q k l}\right. \\
& \left.\quad+\Gamma_{p, m k} R_{i j q l}+\Gamma_{p, m l} R_{i j k q}\right) \tag{39}
\end{align*}
$$

where

$$
\begin{equation*}
R_{i j k l, m}=\left(\frac{\partial R_{i j k l}}{\partial g_{p q}} g_{p q, m}+\frac{\partial R_{i j k l}}{\partial g_{p q, r}} g_{p q, r m}+\frac{\partial R_{i j k l}}{\partial g_{p q, r s}} g_{p q, r s m}\right) . \tag{40}
\end{equation*}
$$

Lemma 2. The system of functions $g_{i j}$, (36) and (37) contains a subsystem defining a coordinate system on the $T_{n}^{r}\left(\mathbb{R}^{n *} \odot \mathbb{R}^{n *}\right)$.

Proof. For each $s, 1 \leq s \leq r-2$, consider the canonical coordinates $g_{i j, k_{1} k_{2} \ldots k_{s+2}}$. We have the decomposition

$$
\begin{align*}
& g_{i j, k_{1} k_{2} \ldots k_{s+2}}=\Gamma_{i, j k_{1} \ldots k_{s+2}}+\Gamma_{j, i k_{1} \ldots k_{s+2}} \\
& \quad+\left(g_{i j, k_{1} k_{2} \ldots k_{s+2}}-\Gamma_{i, j k_{1} \ldots k_{s+2}}-\Gamma_{j, i k_{1} \ldots k_{s+2}}\right) \tag{41}
\end{align*}
$$

It is seen that the expression in the bracket may be rewritten as a sum of terms of the form

$$
\begin{equation*}
\Delta_{i, p q r j_{1} \ldots j_{s}}=g_{i p, q r j_{1} \ldots j_{s}}-g_{i r, q p j_{1} \ldots j_{s+1}} \tag{42}
\end{equation*}
$$

Consider the systems

$$
\begin{aligned}
& G_{s}=\left(g_{i j, k_{1} k_{2} \ldots k_{s+2}}\right), \quad 1 \leq i \leq j \leq n, k_{1} \leq k_{2} \leq \cdots \leq k_{s+2} \\
& \Gamma_{s}=\left(\Gamma_{i, j_{1} j_{2} \ldots j_{s+3}}\right), \quad 1 \leq i \leq n, j_{1} \leq j_{2} \leq \cdots \leq j_{s+3} \\
& \Delta_{i, p_{1} p_{2} \ldots p_{s+2}}
\end{aligned}
$$

and the linear mapping $G_{s} \rightarrow\left(\Gamma_{s}, \Delta_{s}\right)$. We can write

$$
\binom{\Gamma_{s}}{\Delta_{s}}=C_{s} \cdot G_{s}
$$

where C_{s} is the matrix of the linear mapping. Relations (41) show that there exists a matrix \bar{C}_{s} such that $\bar{C}_{s} \cdot C_{s}=I$ (the identity matrix). This implies

$$
\operatorname{rank} C_{s}=\operatorname{rank} \bar{C}_{s}=\binom{n+1}{2}\binom{n+s+1}{s+2}
$$

where the right hand side expression is the number of the coordinates $g_{i j, k_{1} k_{2} \ldots k_{s+2}}$. Choose a squared submatrix C_{s}^{0} of C_{s} such that rank $C_{s}^{0}=\operatorname{rank} C_{s}$. It is clear that the system of functions

$$
g_{i j}, \quad i \leq j, \quad \Gamma_{i, j k}, \quad j \leq k, \quad C_{s}^{0} \cdot G_{s}, \quad 0 \leq s \leq r-2,
$$

defines a coordinate system on $T_{n}^{r}\left(\mathbb{R}^{n *} \odot \mathbb{R}^{n *}\right)$.
Now consider the s-th formal covariant derivative of $R_{i j k l}$. By definition

$$
R_{i j k l ; m_{1} ; \ldots ; m_{s}}=\frac{1}{2}\left(\Delta_{i, k j l m_{1} \ldots m_{s}}-\Delta_{j, k i l m_{1} \ldots m_{s}}\right)+P_{i, j k l m_{1} \ldots m_{s}},
$$

where $P_{i, j k l m_{1} \ldots m_{s}}$ is a polynomial in the canonical coordinates, independent on the coordinates $g_{i j, k_{1} k_{2} \ldots k_{s+2}}$. Combining this fact with the above assertion about the coordinate system $g_{i j}, \Gamma_{i, j k}, C_{s}^{0} \cdot G_{s}$ on the $T_{n}^{r}\left(\mathbb{R}^{n *} \odot \mathbb{R}^{n *}\right)$ we obtain the subsystem of $g_{i j}$, (36) and (37) required.

Each coordinate system on the $T_{n}^{r}\left(\mathbb{R}^{n *} \odot \mathbb{R}^{n *}\right)$ defined by Lemma 2 will be called an adapted coordinate system. The functions belonging to an adapted coordinate system will be called adapted coordinates.

Using formal differentiation of (20) and the transformation formulas for (36) and (37), we can see that in the adapted coordinates the action of L_{n}^{r+1} on the $T_{n}^{r}\left(\mathbb{R}^{n *} \odot \mathbb{R}^{n *}\right)$ is given by the formulas

$$
\begin{align*}
& \bar{g}_{i j}=b_{i}^{p} b_{j}^{q} g_{p q}, \tag{43}\\
& \bar{\Gamma}_{i, j_{1} j_{2} \ldots j_{s+1}}=b_{i}^{p} b_{j_{1}}^{q_{1}} b_{j_{2}}^{q_{2}} \cdots b_{j_{s+1}}^{q_{s+1}} \Gamma_{p, q_{1} q_{2} \ldots q_{s+1}}+B_{j_{1} j_{2} \ldots j_{s+1}}^{i}+g_{p q} b_{i}^{p} b_{j_{1} j_{2} \ldots j_{s+1}}^{p} \tag{44}\\
& \bar{R}_{i j k l ; m_{1} ; \ldots ; m_{s-2}}=b_{i}^{p} b_{j}^{q} b_{k}^{u} b_{l}^{v} b_{m_{1}}^{t_{1}} \cdots b_{m_{s-2}-2}^{t_{s-2}} R_{p, q u v ; t_{1} ; \ldots ; t_{s-2}} \tag{45}
\end{align*}
$$

where $1 \leq s \leq r$ and $B_{j_{1} j_{2} \ldots j_{s+1}}^{i}$ is a polynomial in the canonical coordinates on the L_{n}^{s} and in the adapted coordinates on the $T_{n}^{s-1}\left(\mathbb{R}^{n *} \odot \mathbb{R}^{n *}\right)$.

Proposition 2. The action of K_{n}^{r+1} on the $T_{n}^{r}\left(\mathbb{R}^{n *} \odot \mathbb{R}^{n *}\right)$ in the adapted coordinates on the $T_{n}^{r}\left(\mathbb{R}^{n *} \odot \mathbb{R}^{n *}\right)$ and the canonical coordinates on the K_{n}^{r+1} is given by the formulas

$$
\begin{align*}
& \bar{g}_{i j}=g_{i j}, \\
& \bar{\Gamma}_{i, j_{1} j_{2} \ldots j_{s+1}}=\Gamma_{i, j_{1} j_{2} \ldots j_{s+1}}+B_{j_{1} j_{2} \ldots j_{s+1}}^{i}+g_{i p} b_{j_{1} j_{2} \ldots j_{s+1}}^{p}, \tag{46}\\
& \bar{R}_{i j k l ; m_{1} ; \ldots ; m_{s-2}}=R_{i j k l ; m_{1} ; \ldots ; m_{s-2}},
\end{align*}
$$

where $1 \leq s \leq r$ and $B_{j_{1} j_{2} \ldots j_{s+1}}^{i}$ is a polynomial in the canonical coordinates on the K_{n}^{s} and in the adapted coordinates on the $T_{n}^{s-1}\left(\mathbb{R}^{n *} \odot \mathbb{R}^{n *}\right)$.

Now we have the formulas (46), which will help us to prove the following theorem.
Theorem 3. The L_{n}^{r+1}-manifold $T_{n}^{r}\left(\mathbb{R}^{n *} \odot \mathbb{R}^{n *}\right)$ has the structure of a left principal K_{n}^{r+1}-bundle. This left principal K_{n}^{r+1}-bundle is trivial, and its base is diffeomorphic to some Euclidean space.

Proof. It is well known that it is sufficient to prove that the graph of equivalence relation "there exists $A \in K_{n}^{r+1}$ such that $A \cdot J_{0}^{r} f_{1}=J_{0}^{r} f_{2}$ " is a closed submanifold of

$$
T_{n}^{r}\left(\mathbb{R}^{n *} \odot \mathbb{R}^{n *}\right) \times T_{n}^{r}\left(\mathbb{R}^{n *} \odot \mathbb{R}^{n *}\right)
$$

and that the action of K_{n}^{r+1} on the $T_{n}^{r}\left(\mathbb{R}^{n *} \odot \mathbb{R}^{n *}\right)$ is free.
Let us prove the first condition. Let us consider the system of coordinates

$$
g_{i j}, \Gamma_{j_{1} j_{2} \ldots j_{s+1}}^{i}, R_{j k l ; m_{1} ; \ldots ; m_{s-2}}^{i}, \bar{g}_{i j}, \bar{\Gamma}_{j_{1} j_{2} \ldots j_{s+1}}^{i}, \bar{R}_{j k l ; m_{1} ; \ldots ; m_{s-2}}^{i}
$$

on the $T_{n}^{r}\left(\mathbb{R}^{n *} \odot \mathbb{R}^{n *}\right) \times T_{n}^{r}\left(\mathbb{R}^{n *} \odot \mathbb{R}^{n *}\right)$. From (46) it follows that the graph of the above mentioned relation is determined by the equations

$$
\bar{g}_{i j}=g_{i j}, \quad \bar{R}_{j k l ; m_{1} ; \ldots ; m_{s-2}}^{i}=R_{j k l ; m_{1} ; \ldots ; m_{s-2}}^{i}, \quad 1 \leq s \leq r
$$

and is therefore closed.
Let us prove that the action of K_{n}^{r+1} on the $T_{n}^{r}\left(\mathbb{R}^{n *} \odot \mathbb{R}^{n *}\right)$ is free. From the condition $A \cdot J_{0}^{r} f_{1}=J_{0}^{r} f_{2}$; in the coordinates it can be written as

$$
\left(\bar{g}_{i j}, \bar{\Gamma}_{j_{1} j_{2} \ldots j_{s+1}}^{i}, \bar{R}_{j k l ; m_{1} ; \ldots ; m_{s-2}}^{i}\right)=\left(g_{i j}, \Gamma_{j_{1} j_{2} \ldots j_{s+1}}^{i}, R_{j k l ; m_{1} ; \ldots ; m_{s-2}}^{i}\right),
$$

$1 \leq s \leq n$, follows, using (46), that for every indices $i, j_{1}, j_{2}, \ldots, j_{s+1}$ is $b_{j_{1}, j_{2} \ldots j_{s+1}}^{i}=0$. It is satisfied only for the unit element $A=\left(\delta_{j}^{i}, 0,0, \ldots, 0\right)$ and the action is free.

This completes the proof of Theorem 3.
Theorem 4. Every differential invariant from the left L_{n}^{r+1}-manifold $T_{n}^{r}\left(\mathbb{R}^{n *} \odot \mathbb{R}^{n *}\right)$ to any left L_{n}^{1}-manifold Q depends only on $g_{i j}$ and

$$
R_{i j k l}, R_{i j k l ; m}, R_{i j k l ; m_{1} ; m_{2}}, \ldots, R_{i j k l ; m_{1} ; \ldots ; m_{r-2}}
$$

Proof. It is consequence of Theorem 3 and Lemma 1.

Acknowledgments

I wish to thank Prof. D. Krupka for his help during my work.

References

[1] J. Janyška, Connections naturally induced from the metric tensor and its derivatives of finite order, Proc. of the Conference on Diff. Geometry and Its Applications, Brno, 1986, 143-156.
[2] I. Kolář, P. W. Michor, J. Slovák, Natural Operations in Differential Geometry, Springer, Berlin Heidelberg, 1993.
[3] D. Krupka, J. Janyška, Lectures on Differential Invariants, Faculty of Science, J. E. Purkyně University, Brno, 1990.
[4] D. Krupka, A setting for generally invariant Lagrangian Structures in tensor bundles, Bull. Acad. Polon. Sci., Sér. Math. Astronom. Phys. 22 (1974) 967-972.
[5] D. Krupka, A theory of generally invariant Lagrangians for the metric fields I, Internat. J. Theoret. Phys. 17 (1978) 359-368.
[6] D. Krupka, A theory of generally invariant Lagrangians for the metric fields II, Internat. J. Theoret. Phys. 15 (1978) 949-959.
[7] D. Krupka, Elementary theory of differential invariants, Arch. Math. (Brno) 4 (1978) 207-214.
[8] D. Krupka, Local invariants of a linear connection, Coll. Math. Soc. János Bolyai, 31. Differential Geometry, Budapest (Hungary), 1979; North Holland, Amsterdam, 1982, 349-369.
[9] V. Mikolášová, On the functional independence of scalar invariants of curvature for dimensions n=2,3,4, Math. Slovaca 32 (1982) 349-354.
[10] J. Novotný, On the generally invariant Lagrangians for the metric field and other tensor fields, Internat. J. Theoret. Phys. 17 (1978) 677-684.
[11] J. Novotný, On the generally invariant theories of gravitation, Coll. Math. Soc. János Bolyai, 46. Differential Geometry, Debrecen (Hungary), 1984.
[12] S. Sternberg, Lectures on Differential Geometry, American Mathematical Society, USA, 1999.
[13] J. Šeděnková, Second order differential invariants of the metric tensor, thesis, Silesian university at Opava, Opava, 1999 (in Czech).
[14] J. Šeděnková, Differential Invariants of the Metric Tensor, preprint series in Global Analysis GA 2/2000, Mathematical Institute of the Silesian University in Opava, 2000.
[15] T. Y. Thomas, The Differential Invariants of Generalized Spaces, Cambridge, The University Press, 1934.

Jana Šeděnková
Mathematical Institute
Silesian University in Opava
Bezručovo nám. 13, 74601 Opava
Czech Republic
E-mail: Jana.Sedenkova@math.slu.cz

Received 20 January 2000

[^0]: ${ }^{1}$ Research supported by Grants CEZ:J10/98:192400002, VS 96003 and FRVŠ 1467/2000 of the Czech Ministry of Education, Youth and Sports,and by the Grant 201/00/0724 of the Czech Grant Agency. This paper is in final form and no part of it will be published elsewhere.

