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Differential invariants of the metric tensor?

J. Sedénkova

Abstract. The problem of finding differential invariants of arbitrary order, depending on
the metric tensor, is solved by the factorization method with respect to a proper subgroup
of the differential group acting in the space of differential invariants. It is shown that
the domain T} (R™ © R™) of the differential invariants of order r has the structure of a
trivial principal K|\ *1-bundle, where K|, * isanormal subgroup of the differential group
LI+ acting onthe T (R™ @ R™) from the left. Consequently, any differential invariant
with valuesin aleft GL,(IR)-manifold factorizes through the projection of this principal
fiber bundle.
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1. Introduction

In this paper, representing an extension of the author’s preprint [13], we apply the
factorization method with respect to a subgroup of differential group, which was used
for the first time by Krupka in [7]. It is not a sole method for finding differential in-
variants, but it allows exact formulation of the problem of finding invariants for general
group actions. Using factorization method, we present here complete results; in partic-
ular, we find abasis of invariants in our case.

Let X be an n-dimensional smooth manifold, and MetX be the bundle of metrics
on X, i.e. the bundle of second order regular symmetric covariant tensors on X. The
type fiber of MetX isthe left Li-manifold R™ © R™, where R™ is dua vector space
to the vector space R". Let T! (R™ ® R™) be the prolongation of the left L1-manifold
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R™ @ R™. T! (R™ © R™) isthe set of r -jetswith source at the 0 € R" and target in the
R™ © R™ with natural structure of the left LI +1-manifold. Then ther -jet prolongation
J'MetX of MetX has the structure of a fiber bundle with type fiber T (R™ © R™)
associated with bundle of r-frames over X.

Let L}, be ther-th differential group. The general theory tells that each r -order dif-
ferential invariant of the metric tensor isan L -equivariant mapping defined on the type
fiber T, (R™ © R™) of afiber bundle J"MetX.

At this paper we describe the quotient space of the action of K!'+1 on the
T. (R™ © R™). As a consequence, we get the well known result that every differential
invariant of the metric tensor depends only on the metric tensor, the curvature tensor of
the Levi-Civita connection and the covariant derivatives of the curvature tensor.

2. Basic structures

Let L}, bether-th differential group with the canonical global coordinate system

i . . . .
(@.a),, ---.a,,. ) 1<i.j<nl<j--<jk<nl<k=<r

L}, is the group of invertible r-jets with source and target at the origin 0 € R". The
coordinate functions a;, ; are defined by

(l) Jl Jk(A) Dlejz et Djkai (O),
where Ae L], A= Jja.

In this paper we will also use the second coordinate system

(b}, by, b, ) 1< j<nl<ji<-- <jk<nl<k<r,

with the coordinates b'Jl io...j» defined by
@ 11 Jk(A) 11 Jk(A l) =Dy, Dj, - - Djk“rl(o),
where A € L}, A= Jja. Itisknown that the functions a], bi* satisfy the identity
@  ab=4,

where 8' denotes the Kronecker symbol.

Let Tr (R™ © R™) bether -th prolongation of the left L1-manifold R™ © R™.
T (R™ © R™) isthe set of r-jetswith source at the 0 € R" and targetinthe R™ © R™
With the natural structure of the left LI +1-manifold.

Let Q bean arbitrary L}-manifold. Let

1,1. 1 1 1,1 i
4 e B mt (b'J b'mz, .. b'J1J2 Jr) = (b'j)
be the canonical projection homomorphism of differential groups. A mapping
5 F:T,R™"OR™) - Q
is called ther-th order differential invariant of the metric tensor, if it satisfies the con-
dition

(6) FA-J5f) =a""4A) - FI )
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foreach 35 f € TI(R™ O R™), Ae LI
Let K[+ be the kernel of the homomorphism =+, K!+1 is anormal subgroup in
the L consisting of elements with the coordinates
(85,0, - b, ) -

J1)2° Ji)2.Jr
We can restrict the action of L! " to the subgroup K+ and construct the quotient space
an (Rn* 0) Rn*)/Krr1+l.
Let us consider the quotient space T, (R™ © R™) /K 1. We define the | eft action of
L1 (whichisisomorphictothe LI +1/K!+1) on T (R™ © R™) /K1 by the expression

(7 Joo - [wlgrer = [ Ige) - UJ]Kr('+1,
where Jgo € L, [w]ri1 € T5 (R™ © R™)/K [+ and ' is the homomorphism
(8) A I (b)) = (b}.0.0,....0).

Formula (7) defines the left action of L on T (R™ © R™)/K!*L.
Lemmal. Let Q bealeft Li-manifold, let
7 TP R™ OR™) — TP R™ 0 R™)/K T
be the canonical projection onto the orbit space. Then every differential invariant

F:T,R™OR™) — Q

is of the form
9 F=fom,
where

f:T R™OR™)/K™ - Q
is a uniquely determined L:-equivariant mapping.
Proof. Let F:T! (R™ © R™)— Q be adifferential invariant, let weT; (R™ © R™).
We can construct amapping f : TI(R™ © R™)/K!+1 — Q by
(10) f([w]K{]“) = F(w)

(it follows from (9)). Now we must verify that the f is well defined. It is defined on
thewhole T (R™ © R™) /K1, because r is a surjection. We must show that the f is
independent on the choice of representative. Let [w1]  r+1 = [w2];+1. Then there exists
B € K!*1 suchthat w; = B - w; and

f([wilggr) = F(w1) = F(B - wp) = 7" "+4(B) - F(wy)
= 7Tr+1’1(B) f ([U)z] Krr]+l) =f ([U)z] Krr]+1)

(the last equality is satisfied because 7" *1-1(B) = Jlid for each B € K[ *1).
Now we prove the uniqueness of the f. Suppose that there exist two different map-
pings which satisfy (9)

F:flon, F:fzo?‘[.
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Then fi([w]yr+1) = fa([w]yr+) foreachw € T (R™ o R™) and f; = f, onthe set
H_(Trll’ (Rn* @ Rn*)) — Tr:’ (Rn* @ Rn*)/K;-‘rl,

i.e f1 = fz.
Now we must prove that the f isa L}-equivariant mapping.
Let Ae L}, w e TT(R™ © R™). Then

f(A- [wlgr) = f ([tl’f“(A)w]Krrﬁl) = F(M T (Aw)
=7 PTYA) - Fw) = A Fw) = A f([w]yr)

and the f isa L l-equivariant mapping.
If we replace the T, (R™ © R™) by an arbitrary L!+!-manifold P, this lemma will
be conserved (you can find the proof for examplein [2]).

3. Theaction of L} on R™ @ R™

Let us consider R™ © R™, the space of symmetric covariant second-order tensors
on the R". Denote by g the canonical basis of R" and € the dual basis of R™. Each
element g € R™ © R™ isthen uniquely written in the form

g=gj@€ o,
wherel <i < | < n.The system of functions
Gj), 1<i<j<n,

define aglobal coordinate system on the R™ © R™.
Let L bethe 1-st differential group with the canonical global coordinate system

b)), 1=<ij=n,
with the coordinates b; defined by
bl (A) = Dje;(0),

where A € LY, A = Jla. It is evident that the group L} can be identified with the
general linear group GL,(R).

Let us consider the left L:-manifold R™ © R™. The standard left action of L} on
R™ © R™ isintroduced asfollows. If g € R™ ® R™ and Jj« € L} thenin the coordi-
nates

gj(Jge - 9) = b’ (Jge) b (Ige) gpa(9).

If we use the notation with abar §j; = i (Jola - g) without abar g; = g;(9), and
b? = b (Jter) we can rewrite the last expression in the form

(11) Gij = b’b]gpq.
Theaction of L on R™ © R™ is given by formula (11).
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4. Theaction of L2 on T2(R™ © R™)

Now we will study the special caser = 2 in detail (we will find the second order
differential invariants of the metric tensor). In this section we will explicitly expressthe
action of L3 on T2(R™ © R™).

Let T2(R™ © R™) be the second prolongation of the R™ © R™.

Let Q € T2(R™ © R™) bea2-jet and f be a mapping from a neighborhood of the
0 € R"totheR™ ® R™ suchthat Q = JZ f. Thereexistsacanonical global coordinate
system

(Gij, Gijk Gijk), l<i<j<nl<k<l<n,
on the T2(R™ © R™), defined by

9 (Q) = gij (f(0)),
(12) 0ij.k(Q) = Dx(gij f)(0),

0ij .« (Q) = DkDi(gij )(0).

If we prolong the Ieft action of L on R™ © R™, we obtain the left action of L3
on T2R™ © R™). Let JPa € L3, 32f € T2R™ © R™), then

o - 2 = J2o,
where ® isamapping from aneighborhood of the 0 € R" to the R™ © R™ defined by
(13) () = Iy (txat_g-10) - T (@71(X)),

where t, denotes the trandation of R", which transfer the point x € R" to the point
0 € R" and dot means the action of L on R™ © R™. We express the formula (13) in
the coordinates

gij () = D (txat,a_l(x)) 0D (tert g-1x)) L (0)gpq (fa™(0).

Itis easy to show that it is the same as gij (@ (x)) = Dia; (0) Djarg (0)gpq (fa ™ (X)).
Now we can calculate. From now on we will denote for short
bP = b’ (Jja),
Gij = 9 (JZ®), Gijx = 0ijk(IFD), Gijx = Gijk(I5D),
gj = G (&), Uik = Gijk(IZT), Uik = Gijx ().
In the coordinates the left action of L3 on T2(R™ © R™) is given by
Gij = b"bgp.
Gijk = bbbl gpq.r + (bg b} +b°by;) gpg.
Gija = Db, b?bkbl Opa.rs + (bﬁb?b + bpb by + b-pbqblrk + bfl b?bl
+ bbb ) gpq.r + (b b + beby + bl .+ bbj};) dpq-

Let K2 be the kernel of the homomorphism 72?1, then K2 is a normal subgroup in
the L3 consisting of elements with the coordinates

(85 B> ) -

17 T2’ T1)2)3

(14
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We can restrict the action of L2 to the subgroup K32 and construct the quotient space
T2R™ © R™)/K3. In formulas(14) we can put b, = 5.
In the canonical coordinates the action of K3 on T2(R™ © R™) isgiven by
Gij = Gij»
Gijk = Gij.k + bg gpj + b Gip,
Gijk = Gijk + bRGij.p + bl gpik + bl dipk + bg gpja + By Gip,
+ (b blq +bf’b) )gpq + by 9pj + bIkJ Gip-

Now we can see from (15) that it is very hard to characterize the quotient space
T2(R™ © R™)/K? in the canonical coordinates (gij, Gij.k, Gij.x)- So, we will define
the new coordinates, which we obtain by the following process.

Recall that the point J f e Tz(Rn* O R™), sz = (gi,-, Jij ks gij,k|), iscalled regu-
lar if det(gi;) # 0. Denote by g'! the functions on a neighborhood of this regular point
which satisfy the equality
(16) g ga = 5.

where 8' denotes the Kronecker symbol.

Now wewill restrict our attention to the open subspacein T2(R™ © R™) consisting
of al regular points. We shall denote this subspace as T (R™ © R™) (no specia nota-
tion). Remark that this subspace is L 3-equivariant. On this subspace we can change the
coordinates from (Gij> Yij.k> Gijk) 0 (Gij, T jks Rijwrs Tiju) by the formulas

gij = Gij,
Tijk = 3 (Gik + Gikj — Giki) »
Rik = 3(9i.jk + Gikil — Gikji — Gjl.ik)
+ 29™ ((Omi.k + Imi.j — Gikm) (Gpit + Jpii — Gir.p)
— (Omj,l + Omi.j — 9ji.m)(Gpik + Ipki — ik.p))s
[ jw = %, (gij,kl + Giljk + gik,lj) — ;13 (gjk,li + Ok + gkl,ji)-

Here T jx are symmetric in the last two indices and define the Levi-Civita connection,
Ii j are symmetric in the last three indices, and Rijiy satisfy the identities

Rijk = —Rjik = —Rijik = Ruij,
Rijk + Rijk + Rkj =0

and define the curvature tensor.
The inverse coordinate transformation is given by

gij = Gij,
Gijk = T jk + Tjik;
Gij = Tijin + i — 3 (R + Rywi)
+39% (CpitTak + pjiTak — 20piiTau) -
The new coordinate system

(9. Tijk> Rijw, Tiojua)

(15

(17

(18)

(19)
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is called an adapted coordinate system. Now we simplify the formulas (14) by using the
new coordinates.
If we use (14), transformations (17) and (19), we can formulate

Proposition 1. In the new coordinates (gij, I'i jk, Riju. I'i,jx) the action of Lﬁ on
T2(R™ © R™) isgiven by
gij = bipb?gpq,
Iii,Jk = bbb p g + bPD}yGpg,
Rijk = bb]bib’ Rpgrs,
fi jk| - bprbI’ b|st qrs + [blp(b?br| + bquI'J + bqbr)

lbo‘(bp by +b|pb -|—b|f|bj) (btﬁ’,bqbI +b bqbI
+bibbl) ] Tpar + [07b5 + 5(bE b5 + bibj\ + bfibik)]9p

(20)

and the action of K32 on T2(R™ © R™) is given by

Gj = Gij,
Tijk = Ti.jk + bjyGip,
1) Rijk = Rju,
Tiju = Tiju +bgTijp+ b Tikp + B Tip + l(b,fjrpi. +bfj’rpik
+bgTpij) + (bklerlJFb Tpx +B{Tp k) + 3(bg b + bib] ik

+ bpblq)gpq + b1k|9|p

5. Second order differential invariants of the metric tensor

In this section we will find the differential invariants
F:TR™OR™) - Q,

where Q isany left L:-manifold. Recall that the differential invariant F with valuesin
aleft Li-manifold satisfies the condition

(22) F(A-J3f) =n3Y(A) - F(IE1),

where sz e T2R™ O R™), Ae L3
Let us consider the space TZ(R”* O R™)/KS. For each class [J¢ f]xs from the
Z(R”* ® ]R{”*)/K3 we can take the same values gij, Riju asfor its repr@entatlve i.e
we put

aij ([3¢ flkz) = @i (3G ),
F\)ukl ([Jo f]K3) = ]kI(Jo f).

It follows from (15) that these expressions are independent on the choice of represen-
tatives and that two different classes have different systems of numbers g;j, Rijiu. We

(23)
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define a coordinate system on the T2(R™ © R™) /K 2 by (23). Now we can express the
factor projection

7 TZR™ OR™) — T2R™ 0 R™)/K?
intheform
(24) 7 = (Gij, Rijw)-
The group L} (whichisisomorphicto the L3/K3) actson T2(R™ © R™) by
@) A% flg=[*A - I ]y

where (3(A) = (a‘j, 0, 0). The manifold T2(R™ © R™)/K2 has the structure of a left
Li-manifold.
Let P, be the subspace of tensor space

(Rn* A Rn*) @ (Rn* A Rn*)
which isin the canonical coordinates R;j defined by
(26) Riju + Rijk + Ruj = 0.

The dimension of P, is 1—12n2(n2 — 1), it isequal to the number of coordinates R;ji on

the space T2(R™ © R™). We can write the following theorem.

Theorem 1. The L3-manifold T2(R™ © R™) has the structure of a left principal
K3-bundle. This left principal K3-bundleistrivial, and its base T2(R™ © R™)/K 3 is
diffeomorphic to the (R™ © R™) x R,.

Proof. It iswell known that is enough to prove that the graph of equivalence of the
relation “thereexists A € K32, suchthat A- J2 f; = J2 f,” isaclosed submanifold of the

Tnz(Rn* @ Rn*) X Tnz(Rn* @ Rn*)

and that the action of K3 on T2(R™ © R™) isfree.
Let usto prove the first condition. Let us consider the system of coordinates

(27) 9ij» Tijks Rijkis> Tiojwis Gijs Tijks Rijks Tijis
on
Tnz(Rn* 0 Rn*) % THZ(RI’I* o Rn*)

It follows from (21) that the graph of the above mentioned relation is determined by the
equations

Gij = 9ij» Rjk = Rju, l<s<r

and is therefore closed.
Let us prove that the action of K32 on T2(R™ © R™) isfree. Suppose that

A X f = 3,
where A e K2and JZ f € T2(R™ © R™). In the coordinates we write

(28) (Gij. Ti.jk» Rijis Ti i) = (ij, T jke Rijia-Tijia) -
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It follows from (15) that

biy = g (T jk — Tijk) »

9 i = E (Tijw — Tiju) — Biu>
where

By = 9" [04Ti.jp + b Tikp + B Tiip
(30) + 3 (08 Tpit + B Tpik + b Tpij)

+3(b& Tp.jt + b Tpia + BT p, i)

+ 3 (bg b\ -+ bYbjy + bfi b ) gpg]

depends only on bfs, gpq, Tprs- If we use (28) in (29), then we obtain bj, = 0, b, =0
foreachl <r, j,k,| < n. That iswhy the A = (8!, 0, 0) is the unit element of the
group K2 and the action is free.

Findly we have to introduce a diffeomorphism which maps the base
T2R™ © R™)/K3tothe (R™ © R™) x P,. Let usconsider the diffeomorphism which
maps class from the T2(R™ © R™)/K2 with the coordinates (gij, Riju) to the element
of the (R™ © R™) x P, which has the same coordinates (gij, Riju).

This completes the proof of Theorem 1.

Theorem 2. Every differential invariant from the left L3-manifold T2(R™ © R™)
to any left L1-manifold Q depends only on gij and Riju.

Proof. Let
7 TIR™ O R™) — TXR™ O R™)/K3
be the canonical projection. Let Q be aleft L:-manifold. Suppose that
F:TZR™OR™) - Q

is a differential invariant. By Lemma 1 there exists a uniquely determined L }:-equi-
variant mapping

f:TIR™ OR™)/KS - Q
which satisfies the condition (9)
F=fom.
Thismapping f isdefined by (10)
f([plks) = F(P)

for each p € T2(R™ © R™).
From the uniqueness of the f follows that the F depends only on g;; and Rj.. We
say that

7 = (Gij, Riju)

isthe basis of the invariants of metric with valuesin a left L :-manifold.
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This completes the proof of Theorem 2.

Remark. There exists no nontrivia first order differential invariant of the metric
tensor, because the space T1(R™ © R™)/K 2 isisomorphic to the R™ © R™ and every
invariant from the TH(R™ © R™) to any left L :-manifold depends only on g; .

6.r-th order differential invariants of the metric tensor

Let L}, bether-th differential group with the canonical global coordinate system
(b, 0 ..., b

P> Mg o Jlj2~~jr)
defined by (2)

bl (A =a . (A1) =D;Dj, - Dja }0),

ja--Jk ja-k

,1<i,j=nl<ji<---<jk=<nl<k<r,

with the coordinates bljljz.ujk

where Ae L], A= Ja.

Let T, (R™ © R™) be ther -th prolongation of the left L:-manifold R™ © R™.
T (R™ © R™) isthe set of r-jetswith source at the 0 € R" and target inthe R™ © R™
with the natural structure of the left L *1-manifold. Let

@, 1l<i<j=n,

be the canonical global coordinate system on the R™ @ R™. Then the canonical global
coordinate system

(gij» Oij.ki> Gij kikos - - - » gij,klkz,..kr)»

l<i<j<nl<k<---<k <n,

onthe T} (R™ © R™) is defined analogically asfor caser = 2 (see (12)).

The group action of L!*! on T/ (R™ © R™) is induced by the prolongation of the
group action (11) of L on R™ © R™. Corresponding equations are obtained by s-
th formal differentiation of (11) fors = 1,2,...,r (see [4]). The action of L!*! on
T (R™ © R™) isgiven by (14) for r = 2 in the canonical coordinates.

Let Q be an arbitrary Li-manifold. Let 7/ ™! : LI — L1 be the projection
homomorphism of differential groups (see (4)). Recall that mapping

(31) F:T.R™OR™) - Q

is called ther -th order differential invariant of the metric tensor, if it satisfies the con-
dition

(32 FA-XH=a"A)-FIDH

foreach JJ f € T, (R™ O R™), Ae L.

Let K[+ be the kernel of the homomorphism =+, K!+1 is anormal subgroup in
the L[ consisting of elements with the coordinates

i i i
(51 ’ bjljz’ T biljz-ujr)'

We can restrict the action of L! ™ to the subgroup K' ! and construct the quotient space

Trllr (Rn* 0) Rn*)/KE—H'.
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In the canonical coordinates the action of K/ +1 onthe T (R™ © R™) is given by
Gij = i,
Gijke = Gijky + De; Opj + bl Gip:
(33 Gijkake = Gijkako + bk i, p + Bl Opi ks + by Gipk + B Ipi ko
+ bl?ljgip,kz + bleligpj + (blfli bgzj + blfzi bﬁlj)gpq + blfzkljgipa

Now we can see from (33) that it is very hard to characterize the quotient space
T, (R™ © R™)/K! 1 in the canonical coordinates

(gi,—, Oijkis Gijkakos -+« s gij,klkz...kr)-

So, we will define the coordinates, which we obtain by the following process.
On the space T} (R™ © R™) let us consider the functions

(34) Tijk = 3(Gijk + Gik.j — Jjki)
and the functions
(35) i jkmy...m

defined as the s-th derivative of (34). Using these functions, we can consider the fol-
lowing functions

(360 Tijije Tisjujaia -+ Disjajoiaedrsas

(37) Rijkis Rijkizmgs -« -5 Rijksmycme_o»

where i j,j,j...js = Lii(j1jz.ja.. s (the Symmetrization inindices ji, j2, js. ..., js) and
Rijii:m;:...ms denotes the s-th covariant derivative of the curvature tensor

(39) Rijk = T jit = Fijik + 9P (T pi g, jk — T pkCa 1) -

Thefirst covariant derivative of the curvature tensor is the system of functions

(29) Riji:m = Rijii,m — 9P (T p.mi Rgji + Tp.mj Rig

+ 1—‘p,mkRiqu + 1—‘p,ml Rijkq)»

where

IR IR IR
(40) F\)ijkl,m:< R”klg + I:\)”klgpq,rm'f‘ﬂ%q,rsm)-

90pq pam 09pq.r 99pa.rs

Lemma 2. The system of functions g;j, (36) and (37) contains a subsystem defining
a coordinate systemon the T, (R™ © R™).

Proof. Foreach s, 1 < s < r — 2, consider the canonical coordinates g;; k;k,...ks,-
We have the decomposition
Oijkiko.ksrz = Tiljka.ksrz T Dk ksso

(41)
+ (G ko kero = Disjkakorz = Diike ksp2)-
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It is seen that the expression in the bracket may be rewritten as a sum of terms of the
form

(42)  Aiparji.js = Yip.aris-.js — Gir.apiz..jsi1-

Consider the systems
Gs = (Gijkiko kein):» L1=<i <] <Nk <k <--- <Ko,
Fs = Tijijpjes) 151N j1<jo< - < jst3,
Ai,pipp...psi2s

and the linear mapping Gs — (I's, Ag). We can write

r
(Ai,) = CS‘GSa

where Cs is the matrix of the linear mapping. Relations (41) show that there exists a
matrix Cs such that Cs - Cs = | (theidentity matrix). Thisimplies

- n+1\/n+s+1
ranszzransz=< —; )( —;_—; )

where the right hand side expression is the number of the coordinates gij k.. ks,
Choose a squared submatrix C2 of Cs such that rank C? = rank Cs. It is clear that
the system of functions

defines a coordinate system on T; (R™ © R™).
Now consider the s-th formal covariant derivative of R;j. By definition

1
Rijki:my:.cms = 5(Aikjimp..ms — Ajkilmg..ms) + P jkimg..ms>

where P juim,..ms iSapolynomial in the canonical coordinates, independent on the co-
ordinates gij k;k,.. ks,,- Combining thisfact with the above assertion about the coordinate
system gij, T jk, C2 - Gs on the T (R™ © R™) we obtain the subsystem of g;;, (36)
and (37) required.

Each coordinate system onthe T, (R™ © R™) defined by Lemma 2 will be called an
adapted coordinate system. The functions belonging to an adapted coordinate system
will be called adapted coordinates.

Using formal differentiation of (20) and the transformation formulas for (36) and
(37), we can seethat in the adapted coordinatesthe action of LI+ onthe T! (R™ © R™)
is given by the formulas
(43) Gij = b"bgp.

(44) Diitip sy = bipb?ib?j o b?ssillrp.,qm»--qsﬂ + B e T gquipbﬁjz...jm’

= — hPRIKWURWY K ts_o
(45) Rijkl;ml;“.;ms,z - bi bj bkb| bm1 T bnsqs_z Rp,quv;tl;..‘;ts,z,

wherel <s <r and B}ljz---js+l isapolynomial in the canonical coordinates on the L},

and in the adapted coordinates on the TS~ 1(R™ © R™).
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Proposition 2. The action of K!'*! on the T (R™ ©® R™) in the adapted coordi-
nates on the T (R™ © R™) and the canonical coordinates on the K+ is given by the
formulas

Gij = 9ij,
B T [ . P
(46) F' JJ1)2e s+l T F' J1)2--)s+1 + lejz s+l + g|pbj1j2..‘j5+1’
F\)ukl my;...;Mg_2 R|]k| my;...;Ms_2>s
wherel <s <r and B' i.,, Isapolynomial in the canonical coordinates on the K3

and in the adapted coorél nat% onthe TS"L{(R™ © R™).
Now we have the formulas (46), which will help us to prove the following theorem.

Theorem 3. The LI *1-manifold T (R™ © R™) has the structure of a left principal
K!+1-bundle. Thisleft principal K!*1-bundleistrivial, and its base s diffeomorphic to
some Euclidean space.

Proof. It is well known that it is sufficient to prove that the graph of equivalence
relation “there exists A € K{ﬁl suchthat A- Jj f1 = Jj f,” isaclosed submanifold of

Tr: (Rn* @ Rn*) X Trll' (Rn* @ Rn*)
and that the action of K/ *! onthe T (R™ © R™) isfree.
Let us prove the first condition. Let us consider the system of coordinates

i FJlJZ---Js+1’ jKlimg;..sms_p? Gij F]1]2-<-]s+1’ Jkl my;...;Ms_2

ontheT; (R™ © R™) x T (R™ © R™). From (46) it follows that the graph of the above
mentioned relation is determined by the equations

gii = Gij, RIJkl Mi.;Ms_2 — RlJkl M. M2 l<sc<r
and is therefore closed.
Let usprovethat theaction of K+ onthe T, (R™ © R™) isfree. From the condition
A. Jj fy = Jj fo; inthe coordinates it can be written as
(gii’ Flilizmjsﬂ’ lekl;mlz..‘;msfz) = (gii’ Fljlizmjsﬂ’ RJk| SMs s msfz)’
1 < s < n, follows, using (46), that for every indicesi, 1, jo, ..., js+1 isb! =0.

jijz-Js+1

It is satisfied only for the unit element A = (a'j ,0,0,...,0 and the actionisfree.
This completes the proof of Theorem 3.

Theorem 4. Every differential invariant fromthe left L!*t-manifold T (R™ © R™)
to any left L t-manifold Q dependsonly on g;; and

Rijki, Rijki:ms Rijki:mpimgs - Rijkiimy.cme

Praoof. It is consequence of Theorem 3 and Lemma 1.
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