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Geometric aspects of S-integrability1

M. Marvan

Abstract. This is a report on results on zero-curvature representations and Bäcklund
transformations of S-integrable partial differential equations recently obtained within the
framework of the Vinogradov diffiety theory.
Keywords and phrases. Diffiety, S-integrability, zero-curvature representation.
MS classification. 58A20, 58J10, 58J72.

1. Introduction

Soliton systems of nonlinear partial differential equations (PDE) continue to attract
attention of researchers since the Korteweg–de Vries equation (KdV) became the first
nonlinear PDE solved by the Inverse Spectral Transform (IST) in 1967 ([12, 13]). The
same method has been found applicable to a whole class of nonlinear systems ([1, 51]),
now called S-integrable, as opposed to C-integrable systems, which are transformable
to a linear system. S-integrable equations share common typical properties that make
them objects of wide interest in several areas of mathematics and mathematical physics.

In the end of seventies, Zakharov and Shabat [51] related S-integrability—at least in
dimension 2—to the existence of a zero-curvature representation (ZCR) and since then
ZCR’s occupy central position in soliton theory ([50, 2, 38]). In particular, knowing
a ZCR depending on a “non-removable” parameter (spectral parameter) opens a way
to solution (e.g., via a Riemann–Hilbert problem [38]). Since the early days, methods
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have been designed to generate integrable equations with prescribed (meromorphic) de-
pendence on the spectral parameter. But even without dependence on parameters, zero-
curvature representations are relevant for geometry, see Tenenblat [39] and references
therein.

To find a ZCR for a given equation, the widely known “prolongation procedure”
of Wahlquist and Estabrook [48] may be employed. The procedure is considered al-
gorithmic for a wide class of equations (Dodd and Fordy [8]), but still some cases
remain difficult if not impossible: the method is sensitive to explicit dependence on
independent variables (first treated by Molino [27]) and only incomplete answers have
been obtained so far in the case of dependence on higher order derivatives (Finley and
McIver [9]). Likewise, classification problems are rather out of the scope—adding to
motivation for the recent progress in symmetry analysis [25, 26, 34] and Painlevé anal-
ysis [49, 28]). Among works studying zero-curvature representations as structures we
point out [42, 19].

Within their diffiety theory, Krasil’shchik and Vinogradov [17] introduced the con-
cept of a covering, substantially generalizing the Wahlquist–Estabrook prolongation
structures. Isomorphism classes of coverings are computable. Zero-curvature represen-
tations form a rather narrow class of coverings, but with a rich structure in the back-
ground. In the papers surveyed here, we built a cohomology theory accompanying any
zero-curvature representation, with or without the spectral parameter. We also suggested
a method to compute ZCR’s with values in a given Lie algebra g, even though practi-
cal results were obtained only for g = sl2. In a forthcoming paper ([23]) we focus on
1-parametric families of ZCR’s and obstructions to removability of the parameter.

S-integrability also involves the presence of Bäcklund (and Darboux) transforma-
tions (see [31, 24] or the survey [10]), accompanied by nonlinear superposition prin-
ciples, They provide a link to remarkable last-century’s discoveries in differential ge-
ometry (see, e.g., [30]). Within the diffiety theory Bäcklund transformations have a
very clear geometric description as a pair of coverings with a common total space.
Krasil’shchik [14] then presented intriguing ideas to explain permutability of Bäcklund
transformations. The omnipresence of permutability and nonlinear superposition prin-
ciples contributed to the common belief that these two properties are interrelated.

2. Prerequisites

Diffieties. We use the Vinogradov category DE of diffieties [44, 45, 46]—geometric
objects that naturally represent PDEs. Diffieties provide a convenient language to
deal with nonlinear PDE’s in full generality. By definition, a diffiety is an infinite-
dimensional smooth manifold E endowed with a finite-dimensional involutive distribu-
tion C, while morphisms of the category are smooth maps that preserve the distribution.
PDE’s related by a contact transformation are isomorphic as diffieties. It is the diffiety
structure what determines symmetries, conservation laws and other invariant objects of
interest in the current research of nonlinear equations.

However, for simplicity we use a subcategory DEM consisting of diffieties E fibered
over a fixed finite-dimensional base manifold M and such that the tangent spaces TzE
decompose as TzE = Cz ⊕VzE , with VE being the vertical vector bundle with respect to
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the projection E → M . In this case, C is simply a connection, and the involutivity con-
dition means that C is flat. Isomorphisms in DEM represent invertible transformations
of dependent variables of PDE’s. Also, according to [20], DEM has a well-understood
categorical property, namely, cotripleability.

PDEs become diffieties in the following way. Suppose we are given a finite system
of finite-order equations (indexed by l),

(1) Fl(xi , uk, . . . , uk
i1...ir

, . . .) = 0,

in independent variables xi and dependent variables uk , which may be interpreted as
base and fibre coordinates, respectively, of some finite-dimensional fibred manifold
Y → M . Then uk

i1...ir
means the partial derivative ∂r uk/∂xi1 · · · ∂xir and may be inter-

preted as a local coordinate along the fibres of the infinite jet prolongation j∞Y → Y .
Differential operators Di = ∂/∂xi + ∑

r,I uk
I i ∂/∂uk

I on j∞Y (with I = i1 . . . ir denot-
ing a symmetric multiindex, possibly void) are called total derivatives. Viewed as vector
fields they commute and span the involutive finite-dimensional Cartan distribution on
j∞Y , which makes j∞Y into an object of the category DEM .

Treating Fl’s as functions on j∞Y , we assume that the system (1) along with all
its differential consequences DI Fl = 0 determines a submanifold E ⊆ j∞Y (typically
infinite-dimensional). Endowed with the distribution spanned by the restricted fields
Di = Di |E (the vector fields Di are obviously tangent to E), the manifold E is an object
of DEM , namely the diffiety corresponding to the system (1). Although diffieties are
more general than PDE’s, in the sequel we often use these words interchangeably.

A remark on smooth (C∞) structures is due. There is no general consent on what is
a smooth infinite-dimensional manifold and therefore the diffiety theory can have vari-
ous realizations depending on the choice of the underlying infinite-dimensional smooth
structure. Our preferred choice is that of [4]: topological manifolds are modelled on
R

∞, with smooth functions defined as locally depending on only a finite number of
arguments, and then smoothly in the standard sense.

The CC-spectral sequence. Let us recall from Vinogradov [45] that the diffiety struc-
ture determines the C-spectral sequence. In the subcategory DEM it is associated with
the variational bicomplex, formed by C∞E-modules

�p,qE =
∧p

�1,0E ⊗
∧q

�0,1E,

where �1,0E = Ann C and �0,1E = Ann VE are the C∞E-modules of contact forms and
horizontal 1-forms, respectively. Here C∞E is the ring of C∞ functions on E . In this
way the decomposition TE = C ⊕ VE induces a decomposition of the C∞E-module
of exterior r -forms as �rE = ⊕

p+q=r �p,qE . Accordingly, the exterior differential d :
�nE → �n+1E splits into the horizontal differential d̄ : �p,qE → �p,q+1E and the
vertical differential 	 : �p,qE → �p+1,qE of the variational bicomplex. The C-spectral
sequence is associated to this bicomplex by the identification E p,q

0 = �p,qE and d0 = d̄.
All groups E p,q

r are important geometric invariants of PDE’s. In particular, H̄ m−1 :=
E0,m−1

1 is the group of conservation laws, while H̄ 1 := E0,1
1 is the group of abelian

coverings.
Efficient methods to compute the C-spectral sequence have been given by Vino-

gradov [45], Tsujishita [40], and Verbovetsky [43]. As the starting point, Tsujishita
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and Verbovetsky use the Janet sequence [40, Sect. 5.2 and 5.3] (also known as the
compatibility complex)

P0
φ1−→ P1

φ2−→ P2 → · · · → Pm−1
φm−→ Pm → 0

associated with the system (1). Here each Pj is a vector bundle over the diffiety. Always
Pj = 0 for all j > m, while for non-overdetermined systems we have even Pj =
0 for all j > 1. The differential φ1 is easily identified with the so-called universal
linearization. Each of the subsequent differentials φk , k > 1, expresses the integrability
conditions for the previous one. Considering the formally adjoint complex

(2) P∗
0

φ∗
1←− P∗

1

φ∗
2←− P∗

2 ← · · · ← P∗
m−1

φ∗
m←− P∗

m ← 0

the main result of Tsujishita [40, Theorem 5.3.1] states that

(3) E1,m−q
1

∼= Ker φ∗
q

Im φ∗
q−1

.

3. Zero-curvature representations

In this section we report on our investigation [21] of the gauge cohomology related
to ZCR’s (in a rather loose analogy with the C-spectral sequence) leading to an alter-
native method to compute ZCR’s. We show that gauge equivalence classes of ZCR’s
are computable from a determining system of differential equations in total derivatives,
which has as many equations as it has unknowns. Even though only few explicit com-
putational examples have been published so far, the “direct” method, as we call it now,
has been found applicable to classification problems even in combination with com-
pletely arbitrary dependences. Independently, in the context of evolution equations, and
without cohomological interpretation, Sakovich introduced essentially the same char-
acteristic element (see below) and put it in the core of a completely different method to
compute ZCR’s [32] of evolution systems.

The gauge cohomology generalizes the groups E1,q
1 of the C-spectral sequence and

formula (3). Recently, Verbovetsky [43] interpreted the gauge cohomology in terms of
the C-spectral sequence with coefficients in a C-module (as one of the three motivating
examples).

Let E be the diffiety corresponding to the system (1). Let G be a matrix Lie group,
let g be the corresponding matrix Lie algebra. A g-valued zero-curvature representation
(ZCR) for system (1) is a g-valued horizontal form α = Ai dxi on the diffiety, such that
D j Ai − Di A j + [Ai , A j ] = 0 for i �= j or, more compactly,

(4) d̄α = 1
2 [α, α].

For any G-matrix H , the form

αH = d̄ H · H−1 + H · α · H−1

is a ZCR again. The mapping α �→ αH is called the gauge transformation; it is a group
action. The ZCR αH is said to be gauge equivalent to α. A ZCR gauge equivalent to the
zero form α = 0 is said to be trivial. We call a g-valued ZCR α irreducible if neither of
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the gauge equivalent forms αH falls into a proper subalgebra of g. Otherwise α is called
reducible.

The problem is to decide whether a given system (1) admits a nontrivial ZCR in a
given Lie algebra g, and if so, to compute all its ZCR’s modulo gauge equivalence. Of
special interest are irreducible ZCR’s with coefficients in a non-solvable Lie algebra,
and 1-parameter families of them.

Turning to the material of [21], consider the tensor product of the Lie algebra g with
the variational bicomplex �p,qE . Given a ZCR α, we introduce operators

∂̄α = d̄ − adα,

where adαρ = [α, ρ] for any ρ ∈ �p,qE ⊗ g. We have ∂̄α ◦ ∂̄α = 0 as a consequence of
(4), hence the pth linear gauge complex

�p,0E ⊗ g
∂̄α−→ �p,1E ⊗ g

∂̄α−→ �p,2E ⊗ g → · · · → �p,mE ⊗ g → 0.

The groups

H p,q
α (E, g) = Ker

(
�p,qE ⊗ g

∂̄α−→ �p,q+1E ⊗ g
)

Im
(
�p,q−1E ⊗ g

∂̄α−→ �p,qE ⊗ g
)

are called the gauge cohomology groups with respect to the ZCR α.
If p = 1, then in analogy with (3) we have

Proposition ([21, eq. (2.10)]).

(5) H 1,m−q
α

∼= Ker φ̂∗
q

Im φ̂∗
q−1

,

where for a differential operator φ : P → Q in total derivatives (C-differential oper-
ator) we denote by φ̂∗ : P ⊗ g → Q ⊗ g the operator obtained by replacing every
occurrence of the total derivative Di in φ∗ with the operator D̂i = Di − adAi .

Here φ∗
q are differentials of the complex (2). Consequently, for m > 2 (three and

more independent variables) we have H 1,1
α (E, g) = 0 unless the system (1) is overde-

termined.
Let us consider the element 	(α) ∈ �1,1E ⊗ g, which is easily seen to be ∂̄α-closed.

Then we have the corresponding 1st cohomology class [	(α)] ∈ H 1,1
α (E, g), whose

image in P∗
m−1 ⊗ g under the isomorphism (5) is called the characteristic element of α

and denoted by χα.

Proposition ([21, Prop. 4.2]). If H 2,0
α = 0 and χα = 0, then α is trivial (gauge

equivalent to zero).

For any matrix function S : E → G we have the conjugation AdS : �̄qE ⊗ g →
�̄qE ⊗ g by γ �→ S · γ · S−1. Then ∂̄αS ◦ AdS = AdS ◦ ∂̄α so that AdS is a morphism
between the horizontal gauge complexes for α and the gauge equivalent αS . But AdS is
invertible with AdS−1 as the inverse, hence

H 1,q
α (E, g) ∼= H 1,q

αS (E, g).

Summing up the above, we have
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Proposition. 1◦ ([21, Prop. 3.9], [32]) Gauge equivalent ZCR’s have conjugate
characteristic elements;

2◦ ([21, eq. 2.11, Prop. 2.7]) χ satisfies

∑
I,	

(−1)|I | D̂I

(
∂ F	

∂uk
I

χ	

)
= 0.

3◦ ([21, Prop. 4.2, 4.3]) For non-overdetermined systems, χ �= 0 unless α is trivial.

The converse of 1◦ is not true in general: two ZCR’s with conjugate characteris-
tic elements may still be gauge inequivalent. Examples are provided by numerous S-
integrable equations of mathematical physics (e.g., KdV, mKdV, sine-Gordon, etc.) that
have their characteristic elements independent of the spectral parameter.

Note also that for g = C and m = 2 a ZCR reduces to a conservation law, while
the characteristic element is just the n-tuple of generating functions in the sense of [45].
Similar reduction takes place for any abelian algebra g. Note that for g = C, eq. 2◦ is
exactly the determining condition for generating functions of conservation laws.

A procedure to compute ZCR’s of non-overdetermined systems (1) follows. The
input are eq. (1) and the Lie algebra g.

Procedure ([22]). Solve the determining system

d̄ᾱ= 1
2 [ᾱ, ᾱ],(6)

0 =
∑
I,	

(−1)|I | D̂I

(
∂ F	

∂uk
I

χ̄	

)
(7)

for unknowns χ̄ , ᾱ for (χ̄ , ᾱ) running through possible normal forms for couples (χ, α),
χ ∈ P∗

m−1 ⊗ g, χ �= 0, with respect to the the group action

(χ, α) �→ (Sχ S−1, αS).

The unknown ZCR ᾱ enters eqs. (6)–(7) via the coefficients of D̂i . Components of χ̄
come as auxiliary unknowns; note that (7) is linear in them. In case of general position
the system in question has (n + 1) dim g equations for the same number of unknowns,
where n is the number of equations in the system (1).

Possible normal forms χ̄ , ᾱ depend only on the algebra g. In [22] we analysed the
simplest case of g = sl2.

Proposition ([21, Prop. 4.2]). Let α = A dx + B dy be an irreducible sl2-valued
ZCR, let χ �= 0 be its characteristic matrix. Then we have one of the following two
normal forms for (the first nonzero matrix in) χ and A:
– Nilpotent case

(8) χ̄ =
(

0 0
1 0

)
, Ā =

(
0 a2

a3 0

)
.

– Diagonal case

(9) χ̄ =
(

r 0
0 −r

)
, Ā =

(
a1 1
a3 −a1

)
.

No further reduction of B is possible, i.e., B̄ = B.
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Thus, in the case of g = sl2 the classification turns out to be very simple. Let us note
in this context that the problem of classification of normal forms of pairs of matrices
with respect to conjugation is “wild” (see Sergeichuk [33]).

The following construction was, in the particular case of evolution equations, dis-
covered by Sakovich [32].

Proposition. Let g-matrices C I
	 satisfy

(10) d̄α − 1
2 [α, α] =

∑
	,I

DI F	 · C I
	 .

Put

(11) C̄	 =
∑

I

(−D̂)I C I
	 .

Then (C̄	), restricted to the equation manifold, is the characteristic element for α.

Examples. (1) In [20], irreducible sl2-valued ZCR’s were computed for equations of
the form uxy = f (u). The well-known result ([35], see also [2, Sect. 3.2d]) that f must
be µecu + νe−cu (c, µ, ν = const) was reestablished.

(2) In [21], an incomplete classification of third-order evolution equations of the
form ut = uxxx + F(t, x, u, ux) possessing an irreducible sl2-valued ZCR’s was given.
We restricted ourself to the so called “nilpotent case”; among the resulting equations
were integrable equations such as KdV and cKdV. All S-integrable equations of this
class were found reducible to KdV by a point transformation. ZCR’s depending on
higher-order derivatives of u were also considered, but all reduced to second-order ones.
Both S- and C-integrable equations of the same form have been already classified by the
symmetry analysis in [25, 34].

(3) In [16] we found four S-integrable cases among reduced Gauss–Mainardi–
Codazzi equations for surfaces immersed in E3, in geodesic and Chebyshev coordinates
separately. One of the resulting classes of equations was well known (linear Weingarten
equations); the remaining three were given by coordinate-dependent conditions, hence
non-geometric.

4. Application: insertion of the spectral parameter

For a long time it is known that for many integrable systems the parameter can be
successfully inserted by action of a finite symmetry([31, 8, 17]). In the framework of
the Wahlquist–Estabrook theory, the action of symmetries has been explained in [29],
see also [31]. Even more instructive is the action of symmetries on coverings, see [17,
Sect. 3.6]. Believing that the parameter can always be inserted that way, Levi, Sym and
Tu [18] suggested to put point symmetries in the basis for an effective algorithm. Later
on Cieśliński ([5, 7]) discovered a counterexample to show that local point symmetries
may be insufficient for inserting the spectral parameter. He also suggested an extension
of the symmetry method ([5, 7]) to overcome the problem. Yet different method to insert
the parameter has been applied by Bandos [3].

However, in many cases the whole 1-parametric family of ZCR’s has one and the
same characteristic element. We call such parameters passive. Many equations of math-
ematical physics (including “model” integrable equations such as KdV, mKdV, sine-
Gordon [1]) have a passive spectral parameter.
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Passive parameters are very easy to insert—it suffices to reconstruct the ZCR from
its characteristic element χ using eq. (7). Recall that ᾱ enters eq. (7) via the coefficients
of operators D̂.

Experience shows that the reconstruction is best possible for ZCR’s with coefficients
in a semisimple algebra g, and is more or less hindered when the ZCR admits a reduc-
tion to a solvable subalgebra. If the algebra is abelian, then eq. (7) does not explicitly
contain α, whence the reconstruction from eq. (7) is impossible at all (in this case the
ZCR reduces to conservation laws, which still may be reconstructed from generating
functions—see [45]).

Some care is needed to avoid parameters removable by gauge transformation. Con-
sider a one-parametric ZCR A(λ), B(λ), where λ belongs to an open interval. The pa-
rameter λ is said to be removable if A(λ), B(λ) are mutually gauge equivalent for all
values of λ, otherwise it is non-removable. A removable parameter λ may be “removed”
by gauge action with respect to an appropriate λ-dependent matrix H(λ). Only non-
removable parameters are relevant for complete integrability theory.

In [22, Remark 1] we show that when the characteristic element is χ = ( 0
1

0
0

)
one al-

ways obtains a removable parameter. E.g., the reconstructed ZCR for the KdV equation
comes out as depending on two parameters, and just one of them is the non-removable
spectral parameter (see [22]).

Example. Consider the non-homogeneous non-linear Schrödinger equation

(12)
qt = i(q f )xx + 2iqr,

rx = −(|q|2)x f − 2|q|2 fx ,

where q is complex, r is real, and f is real and given. We follow the exposition by
Cieśliński [5, 7]. For every given function f = f (t, x) the system admits an sl2-valued
ZCR (A, B) with

A =
(

0 q
−p 0

)
, B =

(
ir i(q f )x

i(p f )x −ir

)
.

In [5, 7] this ZCR served as a counterexample to the local symmetry method. It is
known that the system (12) is completely integrable for any f linear in x (see loc.
cit. and references therein). Here we demonstrate that it is easy to insert the parameter
by reconstruction, assuming that it is passive. The condition of f being linear in x
reappears again.

To start with, we rewrite equation (12) as

0 = qt − i(q f )xx − 2iqr,

0 = pt + i(p f )xx + 2ipr,

0 = rx − (pq)x f − 2pq fx ,

where p = q̄ . Using eq. (11) we obtain the characteristic element as the triple of matri-
ces

χ1 =
(

0 1
0 0

)
, χ2 =

(
0 0

−1 0

)
, χ3 =

(−i 0
0 i

)
,
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which is already in normal form with respect to conjugation. Upon inserting χ1, χ2, χ3

and yet unknown sl2-matrices

A =
(

a1 a2

a3 −a1

)
, B =

(
b1 b2

b3 −b1

)
.

into formula (7) we get a system of linear algebraic equations on unknowns a2, a3,
b1, b2, b3:

b2 = i f Dxa2 + 2ia2 f a1 + iq ∂ f/∂x,

b1 = ir + i f Dxa1 + 2i f a2
1 + i f a2a3 − i f qa3,

b3 = −i f Dxa3 + 2ia3 f a1 + ip ∂ f/∂x,

b1 = −i f Dxa1 + I f a2a3 + 2i f a2
1 + ir + i f pa2,

a2 = q,

a3 = −p.

By comparing the two expressions for b1 we immediately get a necessary condition

(13) Dxa1 = 0.

Then

A =
(

a1 q
−p −a1

)
, B =

(
ir + 2i f a2

1 i(q f )x + 2iq f a1

i(p f )x − 2ip f a1 −ir − 2i f a2
1

)
,

and the condition At − Bx + [A, B] = 0 becomes

(14) Dta1 = 2i fxa2
1 .

By cross-differentiating (13) and (14) we get 0 = Dx( fxa2
1), i.e., 0 = fxx (unless

a1 = 0, which would lead us back to the initial non-parametric ZCR), and therefore

f = c1x + c0,

where c1, c0 are arbitrary functions of t . Finally, by (14)

a1 = −1/(2ic1t + λ),

which is the same result as in [5, 7].
One can easily prove that the parameter λ is non-removable. Indeed, assuming the

converse we see that the gauge matrix H must commute with each of the three matrices
χi , i = 1, 2, 3. But then H is a scalar multiple of the identity matrix, and as such it
cannot remove λ by gauge action.

5. Bäcklund transformations

In this section we report on the work [22]. Bäcklund transformations usually accom-
pany S-integrable equations [2, 31]. We introduce two local properties, effectivity and
normality, which arise very naturally within the Krasil’shchik and Vinogradov’s [17]
theory of coverings. These properties allow us to understand geometrically the concept
of “generating power” of Bäcklund transformations and also imply the existence of a
nonlinear superposition principle (independently of the permutability).
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Adapted to the category DEM , basic definitions of Krasil’shchik and Vinogradov [17]
are: Let E, Ẽ ∈ DEM be diffieties over a common base manifold M . A morphism
p : Ẽ → E is said to be a covering if Ẽ is a fibered manifold over E with respect to p.
A covering is said to be n-dimensional if the fibre dimension of the fibered manifold
is n. A Bäcklund transformation is a diagram consisting of two coverings:

(15)
Ẽ

p↙ ↘q

E1 E2

The case E1 = E2 is referred to as a Bäcklund autotransformation.
The Bäcklund transformation is a tool to generate new solutions from known ones.

On the level of jets of solutions (= points of diffieties) the process is as follows: Assume
that the covering Ẽ → E1 is n-dimensional, n < ∞. Given a point u ∈ E1, the
preimage p−1u ⊂ Ẽ is an n-dimensional submanifold. Points in the image qp−1u ⊂ E2

are said to be related to u by the Bäcklund transformation (15).
Quite naturally, if qp−1u is a manifold, then its dimension l will be called the gener-

ating power of the Bäcklund transformation. It is easy to give an infinitesimal criterion
to ensure that l = n:

Definition ([22]). A Bäcklund transformation (15) is called effective if no nonzero
vector in T Ẽ is vertical with respect to both p and q.

Proposition ([22]). The Bäcklund transformation (15) is effective if and only if for
every point u ∈ E1 the mapping q|p−1u : p−1u → E2 is an immersion.

Under effectivity, the image qp−1u is locally a submanifold of dimension n, and the
generating power l is equal to n. Then one can induce natural coordinates on the fibres
p−1u from any natural coordinates in E2. Given two Bäcklund transformations between
E1 and E2, it is then a matter of routine to decide whether they are identical: it suffices
to express both in one and the same natural system of coordinates.

Effectivity is equivalent to � = Ker T p ∩ Ker T q being zero. In general, � ⊂ T Ẽ
is a distribution. If � �= 0 and the factor r : Ẽ → Ẽ/� exists, then one can factorize
p, q through r to obtain an effective Bäcklund transformation with the same generating
properties. In [22] an example of this factorization has been given for the Bäcklund
transformation for the Tzitzéica equation [41], which in original formulation has the
dimension n = 4, but whose generating power is only three.

The next natural question is what happens if u ∈ E1 is replaced with a submanifold
K ⊂ E1 of dimension k < ∞. We have dim p−1 K = k + n, but we may still have
dim qp−1 K < k + n even if the Bäcklund transformation is effective.

Definition ([22]). Consider a Bäcklund transformation (15). Let �, H denote the
involutive distributions �x = Ker Tx p, Hx = Ker Txq on Ẽ , respectively. Denote

r = inf
η∈H\{0}

dimL〈�, η〉,

where L〈�, η〉 stands for the commutator of the distribution generated by � and η ∈ H .
The Bäcklund transformation is said to be r-normal if r < ∞, and normal if r = ∞.



Geometric aspects of S-integrability 141

Obviously, if η ∈ �, then r = dim � = k. Thus, one needs effectivity to have
normality with r > k.

Proposition ([22]). Let the Bäcklund transformation (15) be r-normal with r >

n + k. Then there exists an open dense subset N 0 ⊆ p−1 K such that q|N 0 : N 0 → E2

is an immersion.

Considering a normal Bäcklund autotransformation of generating power l, we con-
clude that the generating power of its i th iteration is il. In particular, a normal Bäcklund
autotransformation never fails to generate a new solution (outside K ).

Using normality, one can also explain the nonlinear superposition principles, usually
atributed to permutability. Consider two successive Bäcklund transformations: E1 ←
Ẽ1 → E2 and E2 ← Ẽ2 → E3. Assuming normality and regularity, we have:

Proposition ([22]). For u ∈ E1 arbitrary, let Pu ⊂ Ẽ1 ×E2 Ẽ2 denote the set of all
triples (u, v, w) where v is related to u by the first and w is related to v by the second
Bäcklund transformation. Then there exists an open dense subset P0

u ⊆ Pu such that the
mapping P0

u → E3, (u, v, w) �→ w, is an immersion.

The proposition implies that v can be computed from u and w by the implicit func-
tion theorem (without integration).

An explicit check of normality has been performed for three well-known S-
intagrable equations:

Proposition ([22]). The pKdV equation ut = −uxxx − 3u2
x , the sine-Gordon equa-

tion utx = sin u, and the Tzitzéica equation utx = eu − e−2u have normal Bäcklund
transformations.

To prove normality (after appropriate factorization in the third case), we substantially
exploited the concept of pseudosymmetry due to Sokolov [36].

Finally, one is naturally lead to a conjecture that normality is a typical property
shared by BT’s of all S-integrable equations.
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