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Differential systems in higher-order mechanics1

O. Krupková

Abstract. The aim of this paper is to provide a geometric description and classification
of general systems of ordinary differential equations of order s ≥ 1 on fibered manifolds,
and to investigate geometric properties of solutions of these equations. The present set-
ting covers Lagrangian systems, higher order semisprays, and constrained systems (equa-
tions subject to constraints modeled by exterior differential systems). Emphasis is put on
singular systems.
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1. Introduction

The subject of this work are ordinary differential equations on fibered manifolds,
namely, systems of m ODE of order s ≥ 1 for sections γ of a fibered manifold (over a
one-dimensional base),

Eσ

(
t, γ ν,

dγ ν

dt
, . . . ,

dsγ ν

dts

)
= 0, 1 ≤ ν ≤ m,
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where γ ν are components of γ . Such equations are modeled by dynamical forms defined
on final jet prolongations of the underlying fibered manifold. We propose a geometric
framework for study these equations in terms of the so called Lepage classes of dynami-
cal forms and their dynamical distributions. On the basis of the properties of dynamical
distributions we provide a geometric classification of ordinary differential equations
reflecting properties of their solutions.

Emphasis is put on singular equations. In this case the dynamical distribution need
not have a constant rank, and consequently, need not be spanned by a system of contin-
uous vector fields (which means that the corresponding dynamics generally cannot be
described by a vector field, or by a system of vector fields). Dealing with singular sys-
tems we are faced with a new non-trivial question—to clarify the structure of solutions
of the dynamical distributions, i.e., the “dynamical picture”. For regular systems this
question is solved trivially—the dynamics is represented by a one-dimensional foliation
of the “phase space” (i.e., the manifold where the dynamical distribution is defined). To
answer this question in general it is reasonable first to classify dynamical distributions
with respect to their geometrical properties. In this way one could distinguish between
systems with relatively simple dynamical distributions (e.g. horizontal, of a constant
rank, etc.), and systems the dynamics of which cannot be studied easily with help of
Frobenius theorem. Based on this classification, an integration algorithm (the so called
constraint algorithm) for highly singular dynamical distributions is proposed. Impor-
tant classes of equations, namely variational equations (i.e., equations which can be
identified with Euler–Lagrange equations of certain Lagrangians), and equations which
can be modeled by semisprays are incorporated within this scheme, and their specific
properties are discussed. In this respect the paper generalizes some recent works on
second and higher order ODE, e.g. [31], [36], [39], [49], [50], [52], [53], [62–64]. The
present setting covers also the so called higher order constrained systems, which arise
as a generalization of systems with holonomic and nonholonomic constraints of classi-
cal mechanics (cf. eg. [15], [35], [37], [41], [46], [47], [50], [51], [55] and references
therein for the first order, and [11], [19], [38], [42], [48], [58], [59], [61] for higher order
constraints). The main point is that constraints of order r are modeled as a fibered sub-
manifold of the fibered manifold Jr Y , endowed with a distribution (of a constant rank,
generally non-involutive). Equivalently, the constraint structure is represented by means
of a (regularly not closed) ideal of differential forms on a fibered manifold. Differential
equations subject to constraints are then represented, roughly speaking, by means of
classes of Lepagean 2-forms modulo the constraint ideal. Unconstrained systems and
holonomic systems then correspond to the case when the constraint ideal is trivial.

The present work is both a review and research paper. The exposition summarizes
and develops concepts and results from [30], [32], and [35–38]. The plan of the paper is
as follows. In Sec. 2 we introduce notations and briefly recall basics on jet prolongations
of fibered manifolds, and vector fields and differential forms related with the fibered
structure. We also recall basic concepts from the theory of distributions of nonconstant
rank, frequently used throughout the paper. Secs. 3 and 4 present a general framework
for the theory of systems of higher order ordinary differential equations on fibered man-
ifolds. Similarly as in [38] we introduce the main objects—Lepage classes of dynamical
forms and related dynamical distributions, globally representing the family of ODE of
any finite order. Within this setting, the equations are naturally locally extended to the
so called Hamiltonian systems. In this way, the problem of study the solutions (paths)
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of the equations is transferred to the geometrically well-defined problem of study the
corresponding dynamical distributions. On this basis, a geometric classification of the
equations, as well as basic properties of the solutions arising from this classification are
presented in Secs. 5 and 6, and an algorithm for finding one-dimensional integral man-
ifolds of generally noncontinuous distributions of a nonconstant rank (possibly greater
than 1) is proposed in Sec. 7. This part of the paper is a direct generalization to arbitrary
ODE of the corresponding results on variational equations, presented in [36] (cf. also
[30], [32]). Lagrangian (variational) systems are then subject of Sec. 8, where also some
additional properties connected with the existence of Lagrangians are discussed. Sec. 9
brings concrete examples of application of the constraint algorithm for solving “highly
singular” distributions. In Secs. 10 and 11 the theory of higher order “equations with
external constraints”, developed in [38], is briefly recalled. The constraint structure on a
fibered manifold, generalizing the well known concepts of holonomic, semiholonomic,
and (general) nonholonomic constraints from classical mechanics, is introduced. It is
shown that with help of the arising constraint ideal the theory of (higher order) equa-
tions subject to (higher order) constraints can be set and processed as a particular case
within the general setting of the geometric theory of higher order ODE presented in the
preceeding part of the paper. It should be stressed, that the theory works in the general
situation, i.e., neither the unconstrained nor the constrained equations must be supposed
to have a particular structure (such as semispray and/or Lagrangian), and no additional
restrictions on the constraints have to be assumed. This enables us to study directly dif-
ferent properties of the constraints and constrained systems, e.g., regularity conditions,
Hamiltonian extensions, if (and when) a constrained system is Lagrangian, and other
important questions arising within the theory of constrained systems.

2. Basic structures

If not otherwise stated, the manifolds and mappings throughout the text are smooth,
and the summation convention is used. We use the symbols T for the tangent functor,
Jr for the r -jet prolongation functor, id for the identity mapping, ∗ for the pull-back,
d for the exterior derivative, and i for the inner product. Other notations are explained
when first used.

We use final jet prolongations of fibered manifolds over one-dimensional bases, and
the corresponding calculus of horizontal and contact forms (see e.g. [25], [26], [36] or
[54] for review). In this section we recall basic concepts and fix notations.

Let π : Y → X be a fibered manifold, dimX = 1, dimY = m + 1. In what
follows, fiber coordinates will be denoted by (t, qσ ), where 1 ≤ σ ≤ m. A mapping
γ : X → Y defined on an open subset U ⊂ X is called a section of the fibered
manifold π if the composite mapping π ◦ γ is the identity mapping of U . For r ≥ 1
we denote by πr : Jr Y → X , the r-jet prolongation of the fibered manifold π , and
by πr,k : Jr Y → J kY, k ≥ 0, k < r , the corresponding canonical projections (here
we identify J 0Y with Y ). The r-jet prolongation of a section γ : U → Y of π is
denoted by Jrγ ; it is a section of πr . Clearly, not every section of πr is of the form
of the r -jet prolongation of a section of π . We say that a section δ of πr is holonomic
if there exists a section γ of π such that δ = Jrγ . If (t, qσ ) are fiber coordinates on
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V ⊂ Y , we have the associated coordinates (t, qσ , qσ
1 , . . . , qσ

r ) on Vr = π−1
r,0 V defined

by qσ
k (Jr

x γ ) = (dkγ σ /dtk)x , 1 ≤ k ≤ r .
A jet prolongation of a fibered manifold πr , r > 0, is often called an anholonomic

prolongation of π . In this paper we shall work with the first jet prolongation of the
fibered manifold πs−1, s ≥ 2; then the associated fibered coordinates on J 1(J s−1Y )

will be denoted by (t, qσ
j , qσ

j,1), 1 ≤ σ ≤ m, 0 ≤ j ≤ s − 1.
A vector field ξ on Y is called π -projectable if there exists a vector field ξ0 on X

such that T π.ξ = ξ0 ◦ π . If, in particular, ξ0 = 0 then ξ is called π -vertical. For a
π -projectable (respectively, π -vertical) vector field ξ on Y one has in fiber coordinates

ξ = ξ 0 ∂

∂t
+ ξσ ∂

∂qσ

where ξσ are functions of (t, qν), and the ξ 0 depend only on t (respectively, ξ 0 = 0). The
r-jet prolongation of a π -projectable vector field ξ on Y is a vector field Jrξ on Jr Y ,

Jrξ = ξ 0 ∂

∂t
+

r∑
i=0

ξσ
i

∂

∂qσ
i

,

where the components ξσ
i , i = 1, . . . , r , are defined by the recurrent formula

ξσ
i = dξσ

i−1

dt
− dξ 0

dt
qσ

i .

Let η be a p-form on Jr Y . We say that η is πr -horizontal if iξη = 0 for every πr -
vertical vector field ξ on Jr Y . Similarly, η is said to be πr,k-horizontal, 0 ≤ k < r ,
if iξη = 0 for every πr,k-vertical vector field on Jr Y . From these definitions we get
that, in particular, a 1-form η is πr -horizontal if its representation in every fiber chart
reads η = f (t, qσ , . . . , qσ

r ) dt , and a 2-form η is πr,0-horizontal if its representation in
every fiber chart contains only the wedge products of dt and dqν’s with the components
possibly dependent upon t, qσ , . . . , qσ

r .
Let η be a q-form, q ≥ 1, on Jr Y . For every point y = Jr+1

x γ ∈ Jr+1Y , and every
system of vector fields ξ1, . . . , ξq ∈ Ty Jr+1Y we set

hη(Jr+1
x γ )(ξ1, . . . , ξq)

= η(Jr
x γ )(Tx Jrγ · T πr+1 · ξ1, . . . , Tx Jrγ · T πr+1 · ξq).

Evidently, hη is a πr+1-horizontal q-form on Jr+1Y . If f is a function on J sY we set

h f (Jr+1
x γ ) = f (Jr

x γ ).

The mapping h is called horizontalization with respect to the projection π . For comput-
ing horizontalization one can utilize the following formulas:

h dt = dt, h dqσ
j = qσ

j+1 dt, 0 ≤ j ≤ r, h f = f ◦ πr+1,r ,

h d f = d f

dt
dt,

d f

dt
= ∂ f

∂t
+

r∑
j=0

∂ f

∂qσ
j

qσ
j+1.

Apparently, if η is a 1-form on Jr Y then Jrγ ∗η = Jr+1γ ∗hη for every section γ of π .
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A form η on Jr Y is called contact if Jrγ ∗η = 0 for every section γ of π . Notice that
every q-form for q > dimX is contact. In particular, a 2-form η is called 1-contact if for
every πr -vertical vector field ξ the 1-form iξη is horizontal, and it is called 2-contact if
iξη is contact.

Put

(2.1) ωσ
j = dqσ

j − qσ
j+1 dt, 1 ≤ σ ≤ m, 0 ≤ j ≤ r.

The 1-forms (2.1) are obviously contact, and they form a basis of contact 1-forms on
Jr+1Y . Notice that the forms dt, ωσ , . . . , ωσ

r−1, dqσ
r form a basis of 1-forms on Jr Y

adapted to the contact structure. We shall frequently make use of this basis.
Every 1-form η on Jr Y admits a unique decomposition into a sum of a horizontal

and contact form. In fibered coordinates where η = f dt + f 0
σ dqσ + · · · + f r

σ dqσ
r this

decomposition reads

π∗
r+1,rη = (

f + f 0
σ qσ

1 + · · · f r
σ qσ

r+1

)
dt + f 0

σ ωσ + · · · + f r
σ ωσ

r .

We denote by pη the contact part of η, i.e., pη = f 0
σ ωσ +· · ·+ f r

σ ωσ
r . Similarly, every 2-

form η on Jr Y admits a unique decomposition into a sum of a 1-contact and 2-contact
form. We denote by p1η and p2η the 1-contact and 2-contact part of η, respectively.
Thus, for a 2-form η on Jr Y we write

π∗
r+1,rη = p1η + p2η.

Non-vertical vector fields annihilating (all) contact 1-forms on Jr Y are called semis-
prays of order r . In fibered coordinates they take the form

ζ = ζ0

(
∂

∂t
+

r−1∑
j=0

qσ
j+1

∂

∂qσ
j

+ ζ σ
r

∂

∂qσ
r

)
,

where at each point ζ0 = 0, and ζ σ
r , 1 ≤ σ ≤ m, are functions on an open subset of Jr Y .

Finally let us recall basic concepts of the theory of distributions which will be fre-
quently used throughout this paper. For more details we refer, e.g., to [2], [36], or [43].
Let M be a smooth manifold. By a distribution on M we mean a mapping � assign-
ing to every point x ∈ M a vector subspace �x of the vector space Tx M . The function
rank � : M → R, assigning to every point x ∈ M the number dim�x will be called rank
of the distribution �. If this function is constant (respectively, constant on each con-
nected component of M) we say that the distribution is of a constant (respectively, lo-
cally constant) rank. A distribution can be defined by a system of (local) vector fields, at
each point spanning the vector space �x , or by a system of annihilating 1-forms. If � is
a distribution we denote its annihilator by �0; the mapping �0 : x � M → �0

x ⊂ T ∗M
is said to be a codistribution on M .

We say that � is continuous (respectively, smooth) if it can be spanned by a system
of continuous (respectively, smooth) vector fields. Since the rank of a continuous distri-
bution is a lower semicontinuous function on M , a smooth distribution of a non-constant
rank cannot be defined by means of continuous one-forms, and conversely, a distribu-
tion of a non-constant rank defined by means of smooth one-forms is not continuous.

An immersion f : Q → M is called an integral mapping of � if

f ∗ω = 0 for all ω ∈ �0.
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A connected submanifold Q of M of dimension q is called an integral manifold of �,
if the canonical inclusion i : Q → M is an integral mapping of �. A distribution � on
M is called completely integrable if through every point x ∈ M there passes an integral
manifold of � of maximal dimension (i.e., such that dimQ(x) = rank �(x)).

The geometric structure of solutions of completely integrable distributions is de-
scribed by foliations. More precisely, maximal integral manifolds of a completely in-
tegrable distribution on M form a foliation of M , and the leaves of this foliation are
immersed submanifolds of M . If the distribution has a constant rank then all the leaves
of the corresponding foliation are manifolds of the same dimension, in general however
the dimensions of the leaves may differ. The existence of a foliation means in particu-
lar that (i) through every point of M there passes a unique maximal integral manifold
of �, (ii) if f : Q → M is an integral mapping of maximal dimension then f (Q) is a
local diffeomorphism onto an open subset in a leaf, (iii) if f : Q → M is an integral
mapping and rank � = const then f is an immersion of Q into a leaf of the foliation.
One should note, however, that a completely integrable distribution of a non-constant
rank may possess integral mappings (of dimension less than maximal) which intersect
different leaves.

For distributions of a constant (locally constant) rank one has the famous Frobe-
nius Theorem stating necessary and sufficient conditions of complete integrability. As a
consequence, for a completely integrable distribution � of a constant rank, k, in a neigh-
borhood of every point x ∈ M there exists an adapted chart to the associated foliation.
In this chart, maximal integral manifolds of � are given by the equations

xk+1 = ck+1, . . . , xn = cn,

where ck+1, . . . , cn are constant functions. Maximal integral manifolds of a distribu-
tion of a constant rank can be found by means of symmetries (for different geometric
integration methods see e.g. [14], [31], [36], [39], [44], [62-64]).

In this paper we shall deal mostly with distributions of nonconstant rank defined
by smooth one-forms. The structure of solutions of such distributions is rather compli-
cated, and no general integrability theory is available. We shall show in Sec. 7 that local
solutions can be effectively found by means of the so called constraint algorithm.

An important example of distributions is connected with smooth 2-forms. Let α be
a (smooth) 2-form on M . Denote by V(M) the system of all vector fields on M . There
arises a distribution, D, called the characteristic distribution of α, defined by means
of the system of (local, generally not continuous) vector fields such that iζ α = 0. The
annihilator D0 of D is spanned by the (smooth) 1-forms

iξα, where ξ runs over V(M),

and is called the associated system of α. Notice that at each point x ∈ M , rank α(x) =
corankD(x).

Two distributions �1 and �2 on M are called complementary if at each point x ∈ M ,
�1(x) ⊕ �2(x) = Tx M .

A distribution on a fibered manifold is called vertical if it is spanned by vertical vec-
tor fields only. A distribution complementary to a vertical distribution is called weakly
horizontal.
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3. Lepage classes and dynamical distributions

A 2-form E on J sY, s ≥ 1, is called a dynamical form if it is 1-contact and πs,0-
horizontal. This means that E is a dynamical form if in every fiber chart

(3.1) E = Eσ (t, qν, qν
1 , . . . , qν

s ) dqσ ∧ dt.

A section γ of π is called a path of E if E ◦ J sγ = 0. In fiber coordinates this equation
represents a system of m ordinary differential equations of order s,

(3.2) Eσ

(
t, γ ν,

dγ ν

dt
, . . . ,

dsγ ν

dts

)
= 0

for the components γ ν(t), 1 ≤ ν ≤ m, of γ .
Denote by �2

af(J sY ) the set of dynamical forms on J sY with the components Eσ

affine in the derivatives of order s, i.e., in every fiber chart given as follows:

(3.3) Eσ = Aσ (t, qρ, . . . , qρ

s−1) + Bσν(t, qρ, . . . , qρ

s−1) qν
s .

3.1. Remark. (i) One can easily check that �2
af(J sY ) is correctly defined. Namely, if

(V, ψ) and (V̄ , ψ̄) are two overlapping fiber charts, and if the restriction of E to π−1
s,0 (V )

belongs to �2
af(π

−1
s,0 (V )) then the restriction of E to π−1

s,0 (V̄ ) belongs to �2
af(π

−1
s,0 (V̄ )).

(ii) Throughout this paper we shall always suppose that a dynamical form E is of
the form (3.3). Notice, however, that restricting to dynamical forms affine in the highest
derivatives means in fact no loss of generality. Indeed, if a dynamical form E on J sY
does not belong to �2

a f (J sY ) then it belongs to �2
a f (J s+1Y ), i.e., it is “affine in the

highest derivatives” if considered as a form on J s+1Y .

Let us turn to a geometric description of the equations for paths of a dynamical form
of order s in terms of (generally local) distributions on J s−1Y . To this purpose we shall
first assign to every dynamical form E ∈ �2

af(J sY ) local classes of 2-forms of order
s − 1.

Let W ⊂ Jr Y be open. We say that a 2-form α on W is a (generalized) Lepage
2-form of order r if its 1-contact part p1α is a dynamical form. Two Lepage 2-forms α′

and α with the same domain of definition W will be called equivalent if p1α
′ = p1α

(note that forms equivalent in this sense are equivalent also in the sense of the Krupka
variational sequence [27–29]). For a Lepage 2-form α on W ⊂ Jr Y put

(3.4) �0
α = span{iξα | ξ runs over the set of all πr -vertical vector fields on W }.

�0
α is a codistribution on W , it will be called the dynamical codistribution of α. The

corresponding distribution �α will be then called the dynamical distribution of α.
Let s ≥ 2. Every dynamical form E ∈ �2

af(J sY ) can be represented by local equiv-
alence classes of Lepage 2-forms of order s − 1. The family [α] of Lepage 2-forms
defined on open sets of J s−1Y such that for every α ∈ [α], p1α = E on the domain of
definition of α, is called the Lepage class of E of order s − 1 [38]. In fiber coordinates,
the Lepage class of E is represented as follows: If (V, ψ), ψ = (t, qσ ), is a fiber chart
on Y then on Vs−1 = π−1

s−1,0(V ),

(3.5) α = ωσ ∧ (Aσ dt + Bσνdqν
s−1) + η,
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where

(3.6) η =
s−2∑

i, j=0

Fi j
σνω

σ
i ∧ ων

j

is an arbitrary 2-contact 2-form. The corresponding dynamical codistributions �0
α are

locally spanned by the following 1-forms:

(3.7) Aσ dt +
s−2∑
j=0

2F0 j
σν ων

j + Bσν dqν
s−1, Bσν ων,

s−2∑
j=0

Fi j
σν ων

j , 1 ≤ i ≤ s − 2.

Notice that �α need not be of a constant rank, but rank �α ≥ 1 at each point of Vs−1.
For a dynamical form E of order 1 the above construction provides us with a Lepage

class defined on J 1Y , which obviously is of the form

α = ωσ ∧ (Aσ dt + Bσνdq̇ν) + Fσνω
σ ∧ ων.

However, the situation may even simplify as follows:

3.2. Theorem. Let E ∈ �2
af(J 1Y ) be a dynamical form. There exists a Lepage class

of E of order zero (i.e., defined on Y ) if and only if (in every fiber chart) the matrix

(3.8) B = (Bσν) =
(

∂ Eσ

∂qν
1

)

is antisymmetric. The Lepage class of E of order zero consists of a unique Lepage 2-
form α on Y . In fiber coordinates where E = (Aσ + Bσν q̇ν) dqσ ∧ dt, one has

(3.9) α = Aσ dqσ ∧ dt + 1
2 Bσν dqσ ∧ dqν.

Proof. Let E ∈ �2
af(J 1Y ), and denote E = (Aσ + Bσν q̇ν) dqσ ∧ dt in a fiber

chart V on Y . Let α be a 2-form on V , α = ασ dqσ ∧ dt + ασνdqσ ∧ dqν . Since
p1α = (ασ + (ασν − ανσ )q̇ν) dqσ ∧ dt , the condition E = p1α gives

ασ = Aσ , Bσν = ασν − ανσ .

Hence, the matrix B is antisymmetric. Obviously, if B is antisymmetric in a fiber chart
on Y , it is antisymmetric in every fiber chart on Y . Conversely, if the matrix (3.8) is
antisymmetric we obtain by (3.9) a Lepage class of E .

Let E satisfy the antisymmetry condition. Then putting (3.9) in a fiber chart V on Y ,
one gets a Lepage 2-form of E over V , which is obviously unique. Moreover, transfor-
mation properties of the functions Bσν show that the form p2α is well-defined, proving
the global existence of α. �

3.3. Remark. For simplicity of notations, from now on we shall suppose that s de-
notes the “true order” of a dynamical form E in the sense that the lowest possible order
for the corresponding Lepage class of E is s − 1. More precisely,

(i) for s ≥ 3, E ∈ �2
af(J sY ) means that E /∈ �2

af(J s−1Y ),
(ii) E ∈ �2

af(J 2Y ) means that either E /∈ �2
af(J 1Y ), or E ∈ �2

af(J 1Y ) but its
Lepage class is not projectable onto Y (E does not satisfy the antisymmetry condition
of Theorem 3.2), and

(iii) E ∈ �2
af(J 1Y ) means that E is representable by a unique Lepage form on Y

(cf. Theorem 3.2.).
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In what follows, the Lepage class [α] associated with a dynamical form E ∈ �2
af

(J sY ) is called a mechanical system, and the number s − 1 is called the order of the
mechanical system [α]. The manifold Y is called the configuration space, accordingly,
J s−1Y is called the phase space for E . The class of the corresponding dynamical distri-
butions is denoted by [�α]. Note that every mechanical system of order zero is repre-
sentable by a unique and global Lepage 2-form on Y .

We can immediately see that for equivalent Lepage 2-forms the holonomic integral
sections of their dynamical distributions coincide. Moreover, if [α] is the Lepage class
of E then the set of holonomic integral sections of any dynamical distribution �α locally
coincides with the set of paths of E . Summarizing, we easily get the following equations
for paths of a dynamical form.

3.4. Theorem. Let E be a dynamical form on J sY where s ≥ 1, [α] its Lepage
class on J s−1Y . Let γ : I → Y be a section of π , defined on an open set I ⊂ X. The
following conditions are equivalent:

(1) γ is a path of E.
(2) E vanishes along J sγ , i.e., E ◦ J sγ = 0.
(3) For every πs−1-vertical vector field ξ on J s−1Y and every element α of [α] such

that J s−1γ (I ) ∩ dom α = ∅, γ satisfies the equation

(3.10) J s−1γ ∗ iξ α = 0.

(4) For every πs−1-projectable vector field ξ on J s−1Y and every α ∈ [α] such that
J s−1γ (I ) ∩ dom α = ∅, γ satisfies the equation J s−1γ ∗ iξ α = 0.

(5) For every vector field ξ on J s−1Y and every α ∈ [α] such that J s−1γ (I )∩
dom α = ∅, γ satisfies the equation J s−1γ ∗ iξ α = 0.

(6) In every fiber chart, γ satisfies the system (3.2) of m ordinary differential equa-
tions of order s for the components γ ν, 1 ≤ ν ≤ m, of γ .

4. Hamiltonian extensions of a mechanical system

By Theorem 3.4, paths of a dynamical form E can be interpreted as holonomic inte-
gral sections of the dynamical distributions associated to E (item (3)), or, equivalently,
as holonomic integral sections of the characteristic distributions of the corresponding
Lepage 2-forms (item(5)). Moreover, locally the paths do not depend on the choice of
the 2-form α from the Lepage class [α] of E .

The set of holonomic integral sections of the dynamical (respectively, characteristic)
distribution of a Lepage 2-form is a subset of the set of all its integral sections, and these
sets are generally different. Moreover, distributions corresponding to different equiva-
lent Lepage 2-forms possess different sets of integral sections. Thus, inspired by the
classical mechanics, we can introduce the following concepts.

Let [α] be a mechanical system of order s − 1, let α be a representative of [α],
dom α = U ⊂ J s−1Y , and �α the corresponding dynamical distribution. The 2-form
α will be called a Hamiltonian system related to E . Integral sections of the distribution
�α, i.e., local sections δ of the fibered manifold πs−1 passing in U and such that

(4.1) δ∗iξα = 0
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for every πs−1-vertical vector field ξ on U , will be called Hamilton paths of E . Equa-
tions (4.1), which are first-order ODE for δ will be called generalized Hamilton equa-
tions.

Let us now consider the 1-jet prolongation of the fibered manifold πs−1 : J s−1Y →
X , i.e., the fibered manifold (πs−1)1 : J 1(J s−1Y ) → X . To avoid confusion, we shall
use the notation h̃ (resp. p̃, resp. p̃1) for the horizontalization (resp. contactization, resp.
1-contactization) with respect to the projection πs−1. According to Theorem 3.2, the 2-
form α on U ⊂ J s−1Y is the unique representative of a Lepage class of order zero (with
respect to the projection πs−1). This Lepage class is associated with the dynamical form

(4.2) Hα = p̃1α,

which is defined on (πs−1)
−1
1,0(U ) ⊂ J 1(J s−1Y ). The form Hα will be called a Hamilton

form related to E .
Directly from the definition of Hamilton form we obtain the following:

4.1. Proposition. Let E be a dynamical form on J sY , α a representative of its Lep-
age class defined on U ⊂ J s−1Y . Then for every πs−1-vertical vector field ξ on U,

(4.3) i J 1ξ Hα = h̃ iξ α.

Conversely, if for a 2-form η the relation i J 1ξ η = h̃ iξ α for every πs−1-vertical
vector field ξ holds, then η = Hα.

Using a fiber-chart expression of α, and denoting the associated coordinates on
J 1(J s−1Y ) by (t, qσ , . . . , qσ

s−1, qσ
,1, . . . , qσ

s−1,1), we get for the Hamilton form the fol-
lowing formula:

(4.4)

Hα =
s−1∑
i=0

Hi
σ (α) dqσ

i ∧ dt,

Hi
σ (α) = Eσ δ0i +

s−1−i∑
k=0

2Fik
σν(q

ν
k,1 − qν

k+1).

Theorem 3.4 applied to the dynamical form Hα gives equivalent expressions for the
generalized Hamilton equations:

4.2. Theorem. Let E ∈ �2
af(J sY ) be a dynamical form, [α] its Lepage class of

order s − 1. Let Hα = p̃1α be a related Hamilton form defined on an open subset of
J 1(J s−1Y ). Let δ be a (local) section of πs−1 passing through dom α. The following
conditions are equivalent:

(1) δ is a Hamilton path of E.
(2) The Hamilton form Hα vanishes along J 1δ, i.e., Hα ◦ J 1δ = 0.
(3) For every πs−1-vertical vector field ξ on J s−1Y , δ∗ iξ α = 0.
(4) For every πs−1-projectable vector field ξ on J s−1Y , δ∗ iξ α = 0.
(5) For every vector field ξ on J s−1Y , δ∗ iξ α = 0.
(6) In every fiber chart, δ satisfies the system of ms first-order ODE,

(4.5) Hi
σ (α) ◦ J 1δ = 0, 0 ≤ i ≤ s − 1, 1 ≤ σ ≤ m,

where Hi
σ (α) are given by (4.4).
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In order to understand relations between a given mechanical system and an associ-
ated Hamiltonian system it is necessary to clarify relations between paths and Hamilton
paths. Obviously, in general, paths are not in one-to-one correspondence with Hamilton
paths, since among Hamilton paths there may appear sections which do not correspond
to any solution of the original equations. However, apparently, a set of Hamilton paths
contains all (prolonged) paths; more precisely, the following assertion holds.

4.3. Proposition. Let E be a dynamical form of order s, α an associated Hamilto-
nian system defined on an open set U ⊂ J s−1Y . Then the paths of E passing in U are
in one-to-one correspondence with the holonomic Hamilton paths.

In view of the above proposition we shall also say that equations for paths describe
proper dynamics and generalized Hamilton equations describe extended dynamics. Ac-
cordingly, each (local) Hamiltonian system associated with E will be called a (local)
Hamiltonian extension of E .

5. Geometric classification of Hamiltonian extensions of ODE

In the previous section we have associated with a mechanical system (represented by a
dynamical form E of order s, or by a Lepage class [α] of order s−1) a family of different
Hamiltonian systems, represented by local dynamical forms of order 1 with respect
to the projection πs−1. This means that now we have the possibility to study instead
of the original dynamics (represented by local sections of π ) certain new dynamics
given by Hamilton paths which are local sections of πs−1. According to the definition,
generalized Hamilton equations represent a system of sm first-order ODE of the form

(5.1) F ẋ = b,

where x stands for the components of a section δ of πs−1 (i.e., xν
k = qν

k ◦ δ), and F
is a matrix which generally need not be regular. If F is regular then these equations
become equations for integral sections of a (nowhere zero smooth) vector field, hence
are completely integrable (in the sense of the Frobenius Theorem) and their solutions
are obtained if in a neighborhood of each point sm independent first integrals are found.
Moreover, in this case, obviously, paths and Hamilton paths locally coincide, i.e., equa-
tions for paths and the corresponding equations for Hamilton paths are equivalent. Un-
fortunately, in general, the situation is much more complicated. If the matrix F is not
regular one has to find integral sections of a distribution of generally a nonconstant
rank greater than 1, spanned by a system of (smooth) 1-forms. In such an unpleasant
case, however, a distribution cannot be spanned by a system of continuous vector fields,
i.e., Hamilton equations can no more be interpreted as equations for integral sections
of a vector field. Consequently, no integrability theory is available (neither Frobenius–
Sussmann–Viflyantsev theorem can be applied to obtain integrability conditions, nor
first integrals can be used for finding the solutions).

In order to be able to deal with the general situation, it is convenient to provide a geo-
metric classification of higher order ordinary differential equations, based on geometric
properties of the corresponding dynamical and characteristic distributions, as follows.
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Consider a dynamical form E on J sY , s ≥ 1, and let α be its Hamiltonian extension
defined on an open subset W ⊂ J s−1Y . We denote by Dα the characteristic distribution,
i.e., the distribution on W annihilated by means of the one-forms

(5.2) iξ α, where ξ runs over the set of all vector fields on W ,

or equivalently, spanned by vector fields ζ such that

(5.3) iζ α = 0.

It is easy to see that the annihilator of Dα takes the form

(5.4) D0
α = span

{
η0, ησ , ηi

σ , 1 ≤ i ≤ s − 1, 1 ≤ σ ≤ m
}
,

where

(5.5)

η0 =
(

Aσ −
s−2∑
k=0

2F0k
σν qν

k+1

)
dqσ −

s−1∑
i=1

s−1∑
k=0

2Fik
σν qν

k+1 dqσ
i ,

ησ = Aσ dt +
s−2∑
k=0

2F0k
σν ων

k + Bσν dqν
s−1,

ηi
σ =

s−1∑
k=0

2Fik
σν ων

k , 1 ≤ i ≤ s − 1, 1 ≤ σ ≤ m.

The rank of the distribution Dα is generally nonconstant, and at each point x ∈ J s−1Y ,

(5.6) corankDα(x) = rank α(x).

We shall call the vector fields satisfying (5.3) Hamilton vector fields related to α. Notice
that since we suppose α be smooth, Hamilton vector fields need not be continuous.

The characteristic distribution is a subdistribution of the dynamical distribution,
Dα ⊂ �α, since

(5.7) �0
α = span

{
ησ , ηi

σ , 1 ≤ i ≤ s − 1, 1 ≤ σ ≤ m
}
.

By Theorem 4.2 and Proposition 4.3 we can see the geometric meaning of the dis-
tributions Dα and �α:

5.1. Proposition.
(1) A section δ of πs−1 is an integral section of �α if and only if it is an integral

section of Dα.
(2) Integral sections of each of the distributions �α and Dα coincide with Hamilton

paths. Holonomic integral sections of �α as well as of Dα coincide with the (s − 1)-th
prolongations of paths.

Roughly we can say that, though generally different, the distributions Dα and �α “in-
tersect on Hamilton paths”. The following theorem shows that both the distributions Dα

and �α are useful for a geometric classification of higher order ODE, and that especially
the difference between them can be helpful in understanding “singular” systems.
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To this end, consider the matrices

(5.8) B = (Bσν), (B|A) = (Bσν, Aσ ),

where the left (resp. right) index numbers rows (resp. columns), and

(5.9) F = (2Fik
σν), (F|A) =

(
2F0k

σν Aσ

2Fik
σν 0

)

where the left indices σ, j, 1 ≤ σ ≤ m, 0 ≤ j ≤ s − 1, number rows, and the right
indices ν, k label columns, 1 ≤ ν ≤ m, 0 ≤ k ≤ s − 1.

Now, we can prove a theorem fundamental for learning the structure of Hamilton
paths.

5.2. Theorem. Let α be a Hamiltonian system defined on an open set W ⊂ J s−1Y ,
let x ∈ W be a point. The following five conditions are equivalent:

(1) The characteristic distribution Dα of α is weakly horizontal at x.
(2) The dynamical distribution �α is weakly horizontal at x.
(3) �α(x) = Dα(x).
(4) At x, the equation iζ α = 0 has a nonvertical solution ζx .
(5) rank F(x) = rank (F|A)(x).
If the condition rank B(x) = rank (B|A)(x) holds then any of the above assertions is

satisfied.

Proof. (1) ⇒ (2), since Dα ⊂ �α. Next, (1) and (4) are obviously equivalent.
(2) ⇔ (5): Let ξ be a (not necessarily continuous) vector field belonging to �α,

defined in a neighborhood U of x , and such that T πs−1.ξ = 0 at x , let

ξ = ξ 0 ∂

∂t
+

s−1∑
j=0

ξσ
j

∂

∂qσ
j

be a fiber-chart expression of ξ . By assumption, ξ satisfies the equations

(5.10)

(
Aσ −

s−2∑
k=0

2F0k
σν qν

k+1

)
ξ 0 +

s−2∑
k=0

2F0k
σν ξ ν

k + Bσν ξ ν
s−1 = 0,

−
s−2∑
k=0

2Fik
σν qν

k+1 ξ 0 +
s−2∑
k=0

2Fik
σν ξ ν

k = 0, 1 ≤ σ ≤ m, 1 ≤ i ≤ s − 2,

−Bσνqν
1 ξ 0 + Bσνξ

ν = 0.

Without loss of generality we can assume ξ 0(x) = −1. Hence, at x we obtain a system
of ms linear non-homogeneous algebraic equations for ms unknowns ξσ

j (x). Since the
matrix of the system is equivalent to the matrix (F|A)(x), we get from the Frobenius
theorem on the existence of solutions of algebraic equations that rank F = rank (F|A)

at x . Conversely, if (5) holds, then by Frobenius theorem at the point x there exists a
solution ξ(x) to (5.10) satisfying ξ 0(x) = −1. Hence, ξ(x) ∈ �α(x) proving (2).

(3) ⇔ (5): Suppose (3). Then η0(x) is a linear combination of the 1-forms
ηi

σ (x), 0 ≤ i ≤ s − 1, 1 ≤ σ ≤ m. Since the matrix of the generators of Dα is
equivalent to the matrix



100 O. Krupková

(5.11)

(
F A
A 0

)

where the submatrix (F|A) is the matrix of generators of �α, we get that the last row
has to be a linear combination of the other rows (at x). Consequently, considering the
condition Fik

σν = −Fki
νσ which holds for F, we get that (at x) the last column of the

matrix (5.11) is a linear combination of its other columns. This means that at x

rank

(
F A
A 0

)
= rank (F|A) = rank

(
F
A

)
= rank F.

Conversely, if the condition rank F(x) = rank (F|A)(x) holds then, by the same argu-
ments as above, Dα(x) is spanned by the forms ηi

σ (x), 0 ≤ i ≤ s − 1, 1 ≤ σ ≤ m.
Hence Dα(x) = �α(x).

It remains to show (2) ⇒ (1), which, however, is now trivial.
Finally, looking at the matrix F we can see that rank B(x) = rank (B|A)(x) means

that rank F(x) = rank (F|A)(x). �

5.3. Remarks. (i) Theorem 5.2 provides a geometric characterization of the weak
horizontality conditions of the characteristic and dynamical distribution. Equivalently,
it provides us with an explicit algebraic condition (condition (5)) which can be easily
applied in every concrete situation to exclude the points of the phase space where the
generalized Hamilton equations a priori have no solution.

(ii) The distribution Dα (as the characteristic distribution of α), compared with �α,
seems at a first sight to be a more natural object describing the Hamiltonian system as-
sociated with α. However, according to the above results, both the distributions Dα and
�α are useful from the theoretical and practical point of view. Indeed, if the Hamiltonian
system is weakly horizontal then (5.5) leads to consider superfluous (not independent)
1-forms. In such a situation, working with the distribution �α is more simple. Also,
there is a theoretical argument for taking into account both the distributions Dα and
�α, namely the condition (3) of the above theorems, which leads to a geometric inter-
pretation of the set of points of the phase space where Hamilton extremals a priori are
not allowed to pass through as the set of points where the distributions Dα and �α are
different.

To study proper dynamics, one has to find additional conditions excluding the non-
holonomic Hamilton paths. Clearly, while Hamilton paths are connected with non-
vertical vector fields, holonomic Hamilton paths are connected with semisprays. We
have the following assertions which will help us to learn the structure of holonomic
Hamilton paths (= prolonged paths).

5.4. Theorem. Let α be a Hamiltonian system defined on an open subset W ⊂
J s−1Y , s > 1, let �α be its dynamical distribution. Let x ∈ W be a point. The following
conditions are equivalent:

(1) In a neighborhood of x there exists a (possibly non-continuous) semispray ξ such
that ξ(x) ∈ �α(x).

(2) rank B(x) = rank (B|A)(x).
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Proof. Let ξ be a semispray such that ξ(x) ∈ �α(x). Then ξ(x) satisfies the equa-
tions (5.10), and since ξ 0 = 1, ξσ

i = qσ
i+1, 1 ≤ σ ≤ m, 0 ≤ i ≤ s − 2, the equations

(5.10) simplify to

(5.12) (Aσ + Bσνξ
ν
s−1)(x) = 0.

This system is solvable with respect to the ξν
s−1(x)’s, i.e., the condition (2) is satisfied.

Conversely, suppose rank B(x) = rank (B|A)(x), and let βν
x , 1 ≤ ν ≤ m be a solu-

tion of the equation Aσ (x) + Bσν(x)βν
x = 0. Putting

ξ = ∂

∂t
+

s−2∑
i=0

qσ
i+1

∂

∂qσ
i

+ ξσ
s−1

∂

∂qσ
s−1

where ξσ
s−1(x) = βσ

x , 1 ≤ σ ≤ m, and ξσ
s−1(y) = 0 for all y = x we get a semispray

satisfying the condition (1). �

Taking into account the equations (5.12) we get

5.5. Theorem. Let α be a Hamiltonian system defined on an open subset W ⊂
J s−1Y , s > 1, let �α be its dynamical distribution. Let r be an integer, 1 ≤ r ≤ m, let
x ∈ W be a point. The following two conditions are equivalent:

(1) In a neighborhood of x in U there exist semisprays ξ1, . . . , ξr (not necessarily
continuous) possessing the following properties:

(1a) ξ1, . . . , ξr are linearly independent at x,
(1b) ξ j (x) ∈ �α(x), 1 ≤ j ≤ r ,
(1c) if ξ is another semispray in a neighborhood of x such that ξ(x) ∈ �α(x) then

the vectors ξ1(x), . . . , ξr (x), ξ(x) are linearly dependent.
(2) rank B(x) = rank (B|A)(x) = m + 1 − r .

Proof. Suppose (1) and denote for i = 1, . . . , r by βi = (βσ
i ) the components

of ξi at ∂/∂qσ
s−1, 1 ≤ σ ≤ m, at the point x . The βi ’s satisfy the equations A(x) +

B(x)βi = 0, which means that rank B(x) = rank (B|A)(x), and it holds β2 = β1 +
β̄2, . . . , βr = β1 + β̄r where β̄2, . . . , β̄r are solutions of the homogeneous equations
B(x)β̄ = 0. If

∑r
l=2 al β̄l = 0 then

∑r
l=2 al(βl − β1) = −(

∑
l al)β1 + ∑

l alβl = 0,
i.e., by assumption, a2 = · · · = ar = 0, proving the linear independence of the β̄i ’s. Let
ξ be another semispray such that ξ(x) ∈ �(x). Then ξ(x) = ∑r

j=1 b jξ j (x) for some
constants b1, . . . , br such that b1 +· · ·+br = 1. Hence β = b1β1 +∑r

l=2 bl(β1 + β̄l) =
β1 + ∑r

l=2 β̄l , proving that β̄2, . . . , β̄r form a basis of solutions of the system of the
homogeneous equations with the matrix B(x). This means that r − 1 = m − rank B(x).

Conversely, taking a basis β̄2, . . . , β̄r of solutions of B(x)β̄ = 0 and a particular
solution β1 of A(x) + B(x)β = 0, and putting β2 = β1 + β̄2, . . . , βr = β1 + β̄r we
get similarly as in the proof of the preceding theorem a system of semisprays ξ1, . . . , ξr

satisfying (1b). Now, if
∑

b jξ j (x) = 0 for some constants b j , 1 ≤ j ≤ r , then
∑

b j =
0 and

∑
b jβ j = 0, i.e., (

∑
b j )β1 + ∑r

l=2 bl β̄l = ∑r
l=2 bl β̄l = 0, which means that

bl = 0 for 2 ≤ l ≤ r , and consequently also b1 = 0, proving (1a). If ξ is another
semispray such that ξ(x) ∈ �(x) then β = β1 + ∑

bl β̄l = β1 + ∑
bl(βl − β1); now,

ξ(x) = (1 − ∑r
l=2 bl)ξ1(x) + ∑r

l=2 blξl(x), proving (1c). �
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We shall use the following terminology suggested by Theorems 5.2 and 5.4.
If α is a Hamiltonian system defined on an open set W ⊂ J s−1Y , then

(5.13) P̃ = {
x ∈ J s−1Y | rank F = rank (F|A)

} ⊂ W

will be called primary constraint set, and the set P ⊂ P̃ defined by

(5.14) P = {
x ∈ J s−1Y | rank B = rank (B|A)

}
will be called primary semispray-constraint set of α. Notice that P and P̃ need not be
submanifolds of W ⊂ J s−1Y . Clearly P̃ has the meaning of a “set of admissible initial
conditions for the Hamilton equations”, while the meaning of P is “a set of admissible
initial conditions” for the equations of paths of E = p1α in W .

If J s−1Y − P̃ = ∅ we say that the Hamiltonian system α carries primary dynamical
constraints. Similarly if J s−1Y − P = ∅ we say that α carries primary semispray
constraints.

A Hamiltonian system α will be called semiregular if �α is weakly horizontal and of
a locally constant rank. Apparently semiregular Hamiltonian systems carry no primary
dynamical constraints. If, moreover, �α is completely integrable then we have a regular
foliation Fα of W with (dimJ s−1Y − rank α)-dimensional leaves; every Hamilton path
is then an embedding of an open subset of the base X into a leaf of Fα and, conversely,
every section of πs−1 which ends in a leaf of Fα is a Hamilton path. Every point in the
phase space W is an initial point for a non-uniquely determined extended motion which
develops within a leaf of F passing through the initial point.

Let s ≥ 2. If α has no primary semispray constraints, and rank B is locally constant
we say that α is weakly regular. Notice that by Theorem 5.2, �α is weakly horizontal
and coincides with the characteristic distribution Dα of α. By Theorem 5.5, �α has
a subdistribution �̃ of rank r = m + 1 − rank B, which can be locally spanned by
semisprays. Unfortunately, this subdistribution is completely integrable if and only if
rank B = m. If this is the case, i.e., if det B = 0, then �̃ is a rank 1 subdistribution
of �α spanned by the following semispray, respectively, annihilated by the following
1-forms,

(5.15)

∂

∂t
+

s−2∑
i=0

qσ
i+1

∂

∂qσ
i

− Bσρ Aρ

∂

∂qσ
s−1

,

Aσ dt + Bσν dqν
s−1, ω

σ , . . . , ωσ
s−2, 1 ≤ σ ≤ m,

where (Bσρ) is the inverse matrix to B. A Hamiltonian system α on W ⊂ J s−1Y , s ≥ 2,
such that rank �̃ = 1 will be called regular. In the case s = 1 we shall speak about a
regular Hamiltonian system whenever it is semiregular and rank �α = 1. Summarizing
the “dynamical picture” of a regular Hamiltonian system α on W we get that through
every point in W there passes exactly one maximal Hamilton path of α, and the set of
Hamilton paths coincides with the set of paths of the dynamical form E = p1α.

Notice that a weakly regular Hamiltonian system need not be semiregular, and con-
versely, a semiregular Hamiltonian system need not be weakly regular. If α is both
semiregular and weakly regular, we call it strongly semiregular. The “dynamical pic-
ture” for completely integrable strongly semiregular systems shows that there is no sub-
foliation of F corresponding to the “semispray subdistribution”, i.e., the proper motion
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itself cannot be characterized by leaves; however, choosing initial conditions, the proper
motion proceeds within a leaf of F passing through the initial point (cannot leave the
“enveloping” leaf).

6. Geometric classification of ODE

For a geometric classification of higher-order ODE we can use the above properties
and classification of Hamiltonian extensions of ODE, as follows:

A dynamical form E (respectively, a mechanical system [α]) will be called regular
if in a neighborhood of every point x ∈ J s−1Y it has a regular Hamiltonian extension. A
dynamical form (respectively, a mechanical system) which is not regular will be called
singular.

Obviously, regular dynamical forms are representable by semisprays. More pre-
cisely, they are characterized as follows:

6.1. Theorem. Let ms be even. Let E ∈ �2
a f (J sY ) be a dynamical form, Consider

the corresponding class [�α] of dynamical distributions. In a fiber chart (V, ψ) on Y ,
ψ = (t, qσ ), denote E = (Aσ + Bσνqν

s ) ωσ ∧ dt. The following conditions are equiva-
lent:

(1) The mechanical system [α] is regular.
(2) The matrix (Bσν) is everywhere regular.
(3) There is a unique dynamical distribution of rank 1 on Vs−1 belonging to [�α],

and it is of the form

(6.1) �̃ = span

{
∂

∂t
+

s−2∑
i=0

qσ
i+1

∂

∂qσ
i

− Bσρ Aρ

∂

∂qσ
s−1

}
,

�̃0 = span
{

Aσ dt + Bσνdqν
s−1, ω

σ , . . . , ωσ
s−2, 1 ≤ σ ≤ m

}
,

where (Bσν) is the inverse matrix to (Bσν).
The equations for paths of E have an equivalent form

(6.2) qσ
s = −Bσρ Aρ, 1 ≤ σ ≤ m.

6.2. Remark. If s = 1 then the formula (6.1) in the condition (3) of the above
theorem takes the form

�̃ = span

{
∂

∂t
− Bσρ Aρ

∂

∂qσ

}
,

�̃0 = span
{

Aσ dt + Bσνdqν, 1 ≤ σ ≤ m
}
.

Proof. We shall prove the theorem for s ≥ 2; for s = 1 the proof is analogous and
simple.

Suppose (1), and consider the related dynamical distributions defined on Vs−1. There
is a distribution �α of rank 1, i.e., such that the generators (3.7) are linearly independent
at each point of Vs−1. This means that both the matrices (Bσν) and (Fi j

σν) where 1 ≤ i ,
j ≤ s − 2, are regular on Vs−1.
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Let (2) hold. Then every dynamical codistribution of [α] on Vs−1 is spanned by the
1-forms

(6.3) Aσ dt +
s−2∑
j=1

2F0 j
σν ων

j + Bσν dqν
s−1, ωσ ,

s−2∑
j=1

Fi j
σν ων

j , 1 ≤ i ≤ s − 2.

Since we suppose ms even, the antisymmetric square matrix (Fi j
σν) has an even number

of rows (columns), i.e., it is possible to make a choice such that det(Fi j
σν) = 0. For the

corresponding 2-form α we then get �α = �̃. We can see that under assumption that
B is regular, the condition det(Fi j

σν) = 0 is necessary and sufficient for the correspond-
ing dynamical distribution be of rank 1. This implies uniqueness of the arising rank 1
distribution.

If (3) is satisfied, then (1) follows trivially.
The assertion (4) follows immediately from (3). Finally, if (4) holds, then the matrix

B is everywhere regular, and we are done. �

Notice that for a regular dynamical form on J sY such that sm is even, the distribution
�̃ coincides with the characteristic distribution of any of the equivalent 2-forms of the
maximal rank belonging to the Lepage class [α] of E . This means that for � ∈ �̃ and
every α′ ∈ [α] such that dom α = dom α′ and rank α′ = dimJ s−1Y − 1,

(6.4) i�α′ = 0.

Next, notice that for s ≥ 2, �̃ is a semispray distribution (i.e., the associated connection
is a semispray connection).

Taking into account the generators of the form (6.3) we can see that if the number
sm is odd then the matrix (Fi j

σν) where 1 ≤ i, j ≤ s − 2, is singular (since it is an
antisymmetric (m(s − 2) × m(s − 2))-matrix). Consequently, the generators (6.3) are
linearly dependent. Similarly, for s = 1 the corresponding generators (6.3) take the
form

Aσ dt + Bσν dqν,

where the matrix B is antisymmetric (Theorem 3.2). Summarizing, we get that if E is a
regular dynamical on J sY and ms is odd, s ≥ 2, then for every Hamiltonian extension
α of E , �̃ = �α.

More precisely,

6.3. Theorem. Let ms be odd, s > 2. Let E ∈ �2
a f (J sY ) be a dynamical form, and

let [�α] be the corresponding class of dynamical distributions. In a fiber chart (V, ψ)

on Y , ψ = (t, qσ ), denote E = (Aσ + Bσνqν
s ) ωσ ∧ dt. The following conditions are

equivalent:
(1) The matrix (Bσν) is everywhere regular.
(2) On Vs−1, every dynamical distribution in [�α] has a unique rank 1 semispray

subdistribution, (6.1).
(3) The equations for paths of E have an equivalent form (6.2).

A dynamical form for which the set J s−1Y − P is nonempty will be called a me-
chanical system with primary semispray constraints. We can also say that systems with
primary semispray constraints do not admit a “global” proper dynamics (in the sense
that there are a priori restrictions on initial points of the proper motion).
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A dynamical form will be called weakly regular if it carries no primary semispray
constraints and rank B is locally constant on the phase space. We have seen that pro-
longations of paths of a weakly regular dynamical form can be interpreted as integral
sections of a distribution of constant rank which is representable by semisprays: namely,
it is locally spanned by m + 1 − rank B semisprays, and is not completely integrable (if
rank B = m). Prolonged extremals coincide with integral sections of this distribution.
Consequently, the dynamical picture for weakly regular systems is the following. Every
point in the phase space is an initial point for a non-uniquely determined proper motion
(it is “indeterministic” in the sense that the motion cannot be uniquely determined by
initial conditions). Since the “semispray distribution” does not give rise to a foliation,
the proper motion starting from a fixed initial point cannot be represented as proceed-
ing within a leaf. Consequently, the dynamical picture cannot be obtained by standard
techniques, and one must apply the constraint algorithm described below.

7. Structure of solutions of ODE

Within the standard theory of distributions of a constant rank, the integration prob-
lem has two steps:

(1) to clarify the structure of solutions of the distribution in question (namely, if it is
completely integrable then the maximal integral manifolds form a foliation of the given
manifold),

(2) to find the maximal integral manifolds, which, in case of involutive distributions,
practically means to find adapted charts to the foliation (= complete sets of independent
first integrals).

For involutive distributions, the first problem is completely solved by the Frobenius
theorem; the second problem is rather complicated and means to apply some of the
known integration methods based on symmetries of the distribution and relations with
first integrals. If the distribution happens not to be involutive then no general theory,
clarifying the structure of solutions and providing methods for finding them explicitly,
is known.

We have shown that every system of (generally higher order) ordinary differential
equations can be locally interpreted as a system of equations for holonomic integral
sections of a dynamical distribution. Consequently, the problem of integration of such
equations identifies with the problem of integration of a distribution. However, it is
highly nontrivial, since only in the case of regular mechanical systems it is reduced to
the known case of finding maximal integral manifolds of an involutive distribution of a
constant rank.

To be able to deal with all mechanical systems, we have to clarify aspects of the
integration problem in a general situation. Notice that if the order of the equations is
≥ 2, one can distinguish (at least locally) two levels of the integration problem:

(1) finding extended dynamics, i.e., Hamilton paths of an associated Hamiltonian
system,

(2) finding proper dynamics, i.e., prolonged paths.
The first level of the problem precisely means to find integral sections of a distribution.
On the other hand, the second level means to pick up only those solutions which are
holonomic. Obviously, every path defines a one-dimensional (immersed) submanifold
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M of the phase space and a semispray ξ along M such that for every y ∈ M , ξ(y)

belongs to a dynamical distribution �α at y. Conversely, every vector field ξ (even not
continuous!) belonging to a dynamical distribution �α, i.e., satisfying the Hamilton
equation iξα = 0, and such that ξ is a semispray along an at least one-dimensional
immersed submanifold M of the phase space, defines a solution of the equations for
paths. It should be stressed that ξ need not be a semispray everywhere on the phase
space. This means that for finding proper dynamics it is generally not sufficient to find
the subdistribution of a dynamical distribution, spanned by semisprays. We shall call
the problem of distinguishing holonomic solutions of a distribution the (higher-order)
semispray problem.

Let us turn to describe a general procedure which enables one to find explicitly inte-
gral sections of non-integrable dynamical distributions of generally non-constant rank.
We shall call this procedure the constraint algorithm. As mentioned above, this algo-
rithm has two levels—including and non-including the higher-order semispray problem.

7.1. Extended dynamics. First, we shall describe an algorithm for finding explicitly
the dynamics of a Hamiltonian system α, associated with a given (s − 1)-th order me-
chanical system. In general it is not possible to characterize the dynamics by a system
of continuous vector fields. On the other hand, as mentioned above, Hamilton paths de-
fine one-dimensional (immersed) submanifolds of the phase space such that the vector
fields along these submanifolds belong to dynamical distributions. Clearly, such sub-
manifolds can have nonempty intersections. Hence, the problem to be solved is to find
at each point x of the phase space the bunch of submanifolds where an extended mo-
tion “is allowed to develop”, i.e., such that every section of each of these submanifolds
is a Hamilton path, and conversely, every Hamilton path passing through x is locally
embedded in a manifold of this bunch.

Step 1. Find the primary constraint set set P̃ for α (recall that P̃ need not be a
submanifold of the phase space). If P̃ = ∅, there is no extended dynamics, hence no
dynamics at all. If P̃ = ∅, choose a point x ∈ P̃ , and proceed to the next step.

Step 2. Denote S(1) = P̃ , and M(1) = ∪ιM(1)ι the union of all connected maximal
submanifolds M(1)ι ⊂ U , where U is a neighborhood of x , lying in S(1) and pass-
ing through x (here “maximal” means that if N is a connected submanifold passing
through x , lying in S(1) ∩ U , and M(1)ι ⊂ N then M(1)ι = N ).

Suppose that M(1) = {x}. For each ι consider the restriction of the dynamical dis-
tribution �α to M(1)ι, i.e., the distribution �(1)ι = �α ∩ T M(1)ι (called the constrained
to M(1)ι dynamical distribution). If �(1)ι is weakly horizontal at each point of M(1)ι, we
call the manifold M(1)ι a final constraint submanifold at x ; the problem now is reduced
to the problem of integration of the distribution �(1)ι. Otherwise, one of the following
two possibilities occurs: (i) �(1)ι is trivial at x , or is not weakly horizontal at x ; then
exclude the manifold M(1)ι from the bunch M(1). (ii) �(1)ι is weakly horizontal at x but
is not weakly horizontal on M(1)ι; then proceed to the next step.

Step 3. Exclude the points where �(1)ι is not weakly horizontal from M(1)ι, and
denote the resulting set by S(2)ι; clearly, x ∈ S(2)ι. Repeat the procedure described in
Step 2 with S(2) = ∩ιS(2)ι instead of S(1).

After sufficiently many steps we obtain either a bunch of final constraint submani-
folds at x , or we find that there is no final constraint submanifold passing through x . If
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there exists a point such that there is no final constraint submanifold passing through x ,
we say that the system possesses secondary dynamical constraints.

Collecting the points where there exists a bunch of final constraint submanifolds we
obtain a subset of the phase space where the extended motion proceeds, we call it the
set of admissible initial conditions for the Hamilton equations. The structure of this
set can be complicated; in particular, it need not be a submanifold of the phase space.
Considering then the collection of final constraint submanifolds together with to them
constrained dynamical distributions, we get the dynamical picture corresponding to the
solutions of the Hamilton equations. Typically, this dynamical picture will be rather
complicated, measuring the “rate of singularity” of a given mechanical system.

7.2. Proper dynamics: the higher-order semispray problem. Now, we shall be
interested in an explicit description of the proper dynamics of the mechanical system.
The procedure is as follows:

Find the set P (recall that P need not be a submanifold of the phase space). If P = ∅,
there is no motion. If P = ∅, choose a point x ∈ P . Denote R(1) = P . Proceed in the
same way as described in 7.1, replacing S(1) by R(1), etc.

As a result of the procedure one gets at each admissible initial point x ∈ P (i) the
bunch Mx of final constraint submanifolds, and (ii) a system Vx of vector fields along
the manifolds of the bunch Mx which belong to the dynamical distribution �α (at the
points of Mx ); by construction, all these vector fields are nonvertical.

Let N ∈ Mx , and let ξ be the vector field in Vx tangent to N . We shall say that
ξ can be identified with a semispray along a submanifold N0 ⊂ N if there exists a
submanifold N0 of N , a neighborhood U of N0 and a semispray ζ on U such that at
each point y ∈ N0, ξ(y) = ζ(y). Let x ∈ P be a point. We shall call the point x
admissible if there exists a neighborhood Ux of x and a vector field ξ ∈ Vx such that
ξ can be identified with a semispray along a submanifold of an element of the bunch
Mx . If every point in P is admissible we say that the mechanical system possesses no
secondary semispray constraints. Otherwise, we shall say that the mechanical system
possesses secondary semispray constraints.

Collecting the admissible points of P we obtain a subset of the phase space where
the proper motion proceeds; we call this set the set of admissible initial conditions for
the equations for paths. As expected, this set need not be a submanifold of the phase
space. Now, consider the family {Vx} where x runs over the set of admissible points. To
get the dynamical picture corresponding to the solutions of the equations for paths, it is
sufficient to pick up those elements of {Vx} which (in the above sense) can be identified
with semisprays along at least one-dimensional submanifolds of elements of the {Mx}.

7.3. Remarks. The algorithm described above (proposed in [32]) can be viewed as
a generalization and re-interpretation of the constraint algorithm developed within the
range of Dirac’s theory of constrained systems [16], [17], and later generalized to time-
dependent and higher-order Lagrangians [9], [40]. In this context, the (higher-order)
semispray problem (which in our understanding means a problem of finding holonomic
sections of a distribution of a non-constant rank which cannot be spanned by contin-
uous vector fields) is parallel to the problem of distinguishing solutions of the Euler–
Lagrange equations in the set of solutions of the Hamilton equations in presymplectic
mechanics, called the SODE and HODE problem (= “second-order” and “higher-order
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differential equation problem”), respectively (cf. [4], [5], [6], [16], [17], [40], and oth-
ers). Similarly, our concepts of primary and secondary dynamical constraints, resp. of
primary and secondary semispray constraints are based on the geometric understanding
of the dynamics by means of dynamical distributions (with not a direct correspondence
with the more-or-less heuristic concepts of “primary” and “secondary constraints” of
Dirac’s theory of constrained systems [12]).

We can see that while solutions of regular systems of ODE define a one-dimensional
foliation of the phase space (i.e., each point of the phase space represents admissible ini-
tial conditions for a uniquely determined motion), solutions of systems of ODE which
are not regular are usually (but not always!) restricted to a certain subset (not gener-
ally a submanifold) of the phase space. Therefore non-regular systems are often called
constrained systems. Since the “constraints” are a property of the system itself (they
have nothing to do with the underlying structure) they should be better referred to as
internal constraints, to distinguish them from external constraints which are put on the
underlying fibered manifold (e.g., holonomic and nonholonomic constraints of classical
mechanics); the latter case is studied in Sections 10, 11.

8. Lagrangian systems

Now, we shall discuss the particular but important case of mechanical systems de-
fined by dynamical forms which arise as Euler–Lagrange forms in the calculus of vari-
ations.

Recall that a local Lagrangian of order r for a fibered manifold π : Y → X is a πr -
horizontal 1-form defined on an open subset of Jr Y . A dynamical form E ∈ �2

af(J sY )

is called (globally) variational if there exists an integer r ≥ 1 and a Lagrangian λ on
Jr Y such that E coincides (possibly up to a projection) with the Euler–Lagrange form
of λ. E is called locally variational if J sY can be covered by open sets Uι in such a
way that, for every ι, E |Uι

is variational. Note that a locally variational form need not
be globally variational.

Paths of a locally variational form are called extremals, and the equations for ex-
tremals are called the Euler–Lagrange equations.

The Lepage class (of order s − 1) associated to a locally variational form will be
called a Lagrangian system (of order s − 1). By the following theorem (cf. e.g. [35])
every Lagrangian system can be uniquely represented by a global closed two-form.

8.1. Theorem. Let E ∈ �2
a f (J sY ) be locally variational. Then the Lepage class [α]

of E contains a unique closed 2-form, defined on J s−1Y .
Conversely, if in a neighborhood of every point x ∈ J s−1Y , the Lepage class of E

contains a closed 2-form α then α is unique, is defined on J s−1Y , and the form E is
locally variational.

The above theorem directly follows from the following Lemmas (for complete
proofs we refer to [36]).
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8.2 Lemma [1], [24], [60]. A dynamical form E on J sY , s ≥ 1, is locally variational
if and only if in each fiber chart the components Eσ , 1 ≤ σ ≤ m, of E satisfy the
following identities:

(8.1)
∂ Eσ

∂qν
l

− (−1)l ∂ Eν

∂qσ
l

−
s∑

k=l+1

(−1)k

(
k

l

)
dk−l

dtk−l

∂ Eν

∂qσ
k

= 0,

for all 0 ≤ l ≤ s and 1 ≤ σ, ν ≤ m.

8.3. Lemma [21], [30]. Let α be a two-form on J s−1Y , s ≥ 1. The following two
conditions are equivalent:

(1) p1α is a dynamical form and dα = 0,
(2) p1α is locally variational, and in each fiber chart,

(8.2) π∗
s,s−1 α = Eσ ωσ ∧ dt +

s−1∑
j,k=0

F jk
σν ωσ

j ∧ ων
k , F jk

σν = −Fkj
νσ ,

where

(8.3)
F jk

σν = 1

2

s− j−k−1∑
l=0

(−1) j+l

(
j + l

l

)
dl

dtl

∂ Eσ

∂qν
j+k+l+1

, 0 ≤ j + k ≤ s − 1,

F jk
σν = 0, s ≤ j + k ≤ 2s − 2.

8.4. Lemma [30]. Let E be a locally variational form on J sY , s ≥ 1. Then there
exists a unique closed two-form α such that p1α = E; this two-form is projectable onto
J s−1Y .

If E is a locally variational form then the closed two-form belonging to the Lepage
class of E will be called a Lepagean equivalent of E , and denoted by αE .

8.5. Remark. The identities (8.1) represent necessary and sufficient conditions for
a system of higher-order ordinary differential equations to come from a Lagrangian as
a system of its Euler–Lagrange equations. This problem, known as the local inverse
problem of the calculus of variations, was first studied by H. Helmholtz [18] for sec-
ond order ordinary differential equations. The solution for higher-order ODE is due to
A.L. Vanderbauwhede [60]; the general case (higher-order PDE) has been solved inde-
pendently by D. Krupka [24], and I. Anderson and T. Duchamp [1]. In what follows we
shall call (8.1) Anderson–Duchamp–Krupka conditions.

If the conditions (8.1) are satisfied then the Eσ are the Euler–Lagrange expressions
of the Lagrange function

(8.4) L = qσ

∫ 1

0
Eσ (t, uqν, . . . , uqν

s ) du,

which can be constructed in a neighborhood of every point in J sY . This formula has
been discovered in 1913 by Volterra for the second order case, and later subsequently
generalized by M. M. Vainberg [57] and E. Tonti [56]. It is called Vainberg–Tonti La-
grangian. Notice that the function L is of the same order as the Eσ ’s.
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Taking into account Lemma 8.3 we easily obtain

8.6. Corollary. Every locally variational form E on J sY , s ≥ 1, (which is not
projectable onto J kY for some k < s) is affine in the derivatives of order s, i.e., in every
fiber chart,

Eσ = Aσ + Bσνqν
s ,

where Aσ = Aσ (t, qρ, . . . , qρ

s−1), Bσν = Bσν(t, qρ, . . . , qρ

s−1). The matrix (Bσν) is
symmetric if s is even and antisymmetric if s is odd. Moreover, for the Lepagean equiv-
alent αE of E (8.2) one has

F0,s−1
σν = Bσν, F1,s−2

σν = −Bσν, F2,s−3
σν = Bσν, . . . , Fs−1,0

σν = (−1)s−1 Bσν.

Denote by Lep the mapping, assigning to a locally variational form its Lepagean
equivalent.

8.7. Corollary [36]. The mapping Lep of the set of locally variational forms to the
set of closed Lepagean two-forms is bijective and inverse to the mapping p1.

8.8. Remark. Since the form αE is closed, Poincaré Lemma gives us that in a neigh-
borhood of every point there is a (non-unique) 1-form theta such that αE = dθ . Such
1-forms are called Cartan forms, or Lepagean 1-forms related with E . Notice that the
1-form λ = hθ is a Lagrangian for E , and that θ is uniquely determined by λ (therefore
it is denoted by θλ). If λ is of order r then θλ generally is of order 2r − 1. In fibered
coordinates where λ = L dt we have

θλ = L dt +
r−1∑
i=0

(
r−i−1∑

k=0

(−1)k dk

dtk

∂L

∂qσ
i+k+1

)
ωσ

i .

Since E is uniquely determined by λ, we denote E = Eλ, and call Eλ the Euler–
Lagrange form of λ. Recall that two Lagrangians, λ1, λ2, with the same domain of
definition are called equivalent if Eλ1 = Eλ2 . For more details on geometric foundations
of the calculus of variations on fibered manifolds, and to the general theory of Lepagean
equivalents of Lagrangians we refer to the work of Krupka [22–26].

All important specific features and properties (both mathematical and physical) of
Lagrangian systems come from the fact that the form αE is closed. This leads to many
fundamental results; let us mention very briefly at least some of them below (for a
comprehensive exposition we refer the reader to [36]).

By Theorem 8.1 to every locally variational dynamical form E one has a distin-
guished global Hamiltonian extension αE which is completely determined by the form
E itself. Accordingly, the corresponding (global) dynamical distribution is uniquely de-
termined by E . It is denoted by �E and called the Euler–Lagrange distribution of the
locally variational form E . Therefore, working with Lagrangian systems namely the
form αE and the corresponding characteristic distribution DE and dynamical distribu-
tion �E are used to study extremals and Hamilton extremals. Naturally, all structure and
classification properties of mechanical systems introduced and studied in the previous
sections apply to the particular case of Lagrangian systems.

Moreover, taking into account Corollary 8.6 and Theorems 6.1 and 6.3 we can see
that if ms is odd then no Lagrangian system is regular. Consequently, we have
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8.9. Theorem. For Lagrangian systems the conditions
(1) E is regular
(2) the Euler–Lagrange distribution �E has rank one

are equivalent.

Accordingly, one has the following geometric definition of a regular Lagrangian. A
Lagrangian λ of order r ≥ 1 is called regular if the associated Euler–Lagrange distri-
bution has rank one [30]. Expressing this condition in fibered coordinates we get

det

(
∂ Eσ

∂qν
s

)
= 0,

where E = Eσωσ ∧ dt is the dynamical form corresponding to the Lagrangian system
defined by the Lagrangian λ (notice that s ≤ 2r is the “true order” of E , i.e., the lowest
order where Eλ is projectable; equivalently, s − 1 is the order of the Lagrangian system
defined by the Lagrangian λ).

8.10. Remark. It should be stressed that compared with the standard definition of a
regular Lagrangian of order r , namely

det

(
∂2L

∂qσ
r ∂qν

r

)
= 0,

(cf. e.g. [3], [12], [17], [43], [54] and many others), our concept of regularity redefines
regularity to be a property of the class of equivalent Lagrangians, and covers many
Lagrangians usually considered singular (and processed as singular, e.g., within Dirac’s
theory of constrained systems). If explicitly rewritten for particular Lagrangians the
new definition gives many concrete regularity conditions for Lagrangians. For example,
a first-order Lagrangian L(t, qρ, qρ

1 ) is regular if and only if one of the following two
conditions is satisfied:

(i) det

(
∂2L

∂qσ
1 ∂qν

1

)
= 0,

(ii)
∂2L

∂qσ
1 ∂qν

1

= 0 ∀σ, ν, and det

(
∂2L

∂qσ ∂qν
1

− ∂2L

∂qσ
1 ∂qν

)
= 0.

Apparently, the first condition describes all regular first-order Lagrangians the Euler–
Lagrange equations of which are nontrivially of second order, i.e., define regular first-
order Lagrangean systems, while the second condition refers to all regular first-order
Lagrangians which are affine in the velocities, i.e., of the form L = f (t, qρ) +
gν(t, qρ)qν

1 ; their Euler–Lagrange equations are first-order ODE, hence these La-
grangians define regular zero-order Lagrangean systems.

For more details and other examples we refer to [36].

Also semiregular Lagrangian systems turn to be much more simple than general
mechanical systems. Due to Cartan Theorem for closed 2-forms of constant rank, the
corank of the characteristic distribution DE is a constant equal to an even number,
and the distribution DE is completely integrable. Hence, the same holds for the Euler–
Lagrange distribution.
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8.11. Theorem. Let αE be a semiregular Lagrangian system. Then the Euler–
Lagrange distribution �E is completely integrable and corank of �E is even.

By the above theorem it is clear that for semiregular Lagrangian systems one can
effectively apply integration methods based on relations between symmetries of closed
2-forms and complete sets of independent first integrals of their characteristic distribu-
tions (Liouville or Hamilton–Jacobi integration methods). For more details on these in-
tegration methods, their applications and different generalizations we refer e.g. to [20],
[31], [33], [34], [36], [39], [62-64]. In the regular case these integration methods give
a complete solution of the Euler–Lagrange equations. For non-regular semiregular La-
grangian systems they provide us with a complete solution of the Hamilton equations.
Extremals are then obtained by an additional application of the constraint algorithm
(Sec. 7).

Finally, the property dαE = 0 leads to a local representation of Lagrangian systems
in a certain “normal form” as follows. As we shall see below, this is closely related to
the possibility of lowering the order of the corresponding Lagrangians.

Let us denote

s = 2c if s is even,

s = 2c + 1 if s is odd.

8.12. Theorem (Canonical form of a closed Lepagean two-form) [30]. Let E be a
locally variational form of order s, s ≥ 1, let αE be its Lepagean equivalent. Then there
is an open covering O of J s−1Y such that

(1) for each W ∈ O there is a fiber chart (V, ψ) on Y such that W ⊂ Vs−1,
(2) on each W ∈ O there are defined functions H, pk

ν, 1 ≤ ν ≤ m, 0 ≤ k ≤ s −c−1,
such that the restriction of αE to W is expressed in the form

(8.5) αE = −d H ∧ dt +
s−c−1∑

k=0

dpk
ν ∧ dqν

k .

Proof. Since the form αE is closed, there exists a covering O satisfying (1) such that
on each W ∈ O it holds αE = dρ for a one-form ρ defined on W . Using Lemma 8.3
and the Poincaré Lemma we obtain (up to a projection)

(8.6) ρ =
(

qσ

∫ 1

0
(Eσ ◦ χs) du

)
dt +

s−1∑
k=0

(
s−1∑
j=0

2qσ
j

∫ 1

0
(F jk

σν ◦ χs−1) u du

)
ων

k .

We shall show that there are functions f, H, pk
ν, 1 ≤ ν ≤ m, 0 ≤ k ≤ s − c − 1, on W

such that (8.6) can be equivalently expressed in the form

(8.7) ρ = −H dt +
s−c−1∑

k=0

pk
ν dqν

k + d f.

Consider the mapping χs−1,s−c : [0, 1] × W → W ,

(8.8) χs−1,s−c
(
v, (t, qσ , . . . , qσ

s−1)
) = (t, qσ , . . . , qσ

s−c−1, vqσ
s−c, . . . , vqσ

s−1).
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Put

(8.9)
f =

s−1∑
k=s−c

s−1−k∑
j=0

2qν
k qσ

j

∫ 1

0

( ∫ 1

0
(F jk

σν ◦ χs−1) u du

)
◦ χs−1,s−c dv

+ φ(t, qρ, . . . , qρ

s−c−1),

where φ is an arbitrary but fixed function, and define

(8.10)
pk

ν =
s−k−1∑

j=0

2qσ
j

∫ 1

0
(F jk

σν ◦ χs−1) u du − ∂ f

∂qν
k

,

1 ≤ ν ≤ m, 0 ≤ k ≤ s − c − 1,

(8.11)

H = −qσ

∫ 1

0
(Eσ ◦ χs) du +

s−1∑
k=0

s−k−1∑
j=0

2qσ
j qν

k+1

×
∫ 1

0
(F jk

σν ◦ χs−1) u du + ∂ f

∂t
.

Using the identity

(8.12)
∂ f

∂qν
k

=
s−k−1∑

j=0

2qσ
j

∫ 1

0

(
F jk

σν ◦ χs−1
)

u du, s − c ≤ k ≤ s − 1,

we get

(8.13) H = −qσ

∫ 1

0
(Eσ ◦ χs) du +

s−c−1∑
k=0

pk
ν qν

k+1 + d f

dt
.

Substituting into (8.7) we obtain (8.6). This completes the proof. �

For any fixed function φ(t, qρ, . . . , qρ

s−c−1), the functions H and pk
ν , 1 ≤ ν ≤

m, 0 ≤ k ≤ s − c −1, defined by (8.11) and (8.10), are called the Hamiltonian and mo-
menta of the locally variational form E . The function φ itself is called a gauge function.
Notice that Hamiltonian and momenta are functions related directly to a given dynami-
cal form E , i.e., they refer to the whole class of equivalent Lagrangians. We stress that
different choices of φ’s in (8.9) lead to different sets of Hamiltonian and momenta for
a given Lagrangian system, but all of them are of order s − 1.

Let λ1 and λ2 be two equivalent Lagrangians, λ1 of order k and λ2 of order r . If k > r ,
we shall say that the order of the Lagrangian λ1 can be reduced to r . Lagrangians of the
lowest possible order are called minimal-order Lagrangians.

8.13. Corollary (Order-reduction) [60], [30]. Every Lagrangian can be locally re-
duced to the lowest possible order, i.e., to the order s/2 if the order s of the Euler–
Lagrange equations is even, and to (s + 1)/2 if the order s of the Euler–Lagrange
equations is odd.
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Proof. The result is obtained by putting

(8.14) λmin = λ − h d f

where λ is the Vainberg–Tonti Lagrangian of E , and f is defined by (8.9). It is an easy
exercise to show that this Lagrangian is of order c = s/2 (respectively, c+1 = (s+1)/2)
if s is even (respectively, odd). �

The formulas (8.11) and (8.10) can be interpreted in a way which relates them to
(local) minimal-order Lagrangians. Then different sets of a Hamiltonian and momenta
correspond to different equivalent minimal-order Lagrangians. Namely, it holds

(8.15)

pk
ν =

s−c−k−1∑
j=0

(−1) j d j

dt j

∂Lmin

∂qν
k+1+ j

, 1 ≤ ν ≤ m, 0 ≤ k ≤ s − c − 1,

H = −Lmin +
s−c−1∑

k=0

pk
ν qν

k+1,

where λmin = Lmindt is a minimal-order Lagrangian for αE .

8.14. Remark. Let us discuss an important particular family of Lagrangian sys-
tems which are frequently considered in higher-order mechanics, namely, the time-
independent Lagrangian systems. To this end, consider a fibered manifold π : R×M →
R. We say that a Lagrangian system αE is autonomous, or time-independent if in a
neighborhood of every point it possesses local time-independent minimal-order La-
grangians (i.e., such that ∂Lmin/∂t = 0, where t is the global coordinate on R). It
is easy to see that Hamiltonians corresponding to different equivalent time-independent
minimal-order Lagrangians differ only by a constant. Consequently, a time-independent
Lagrangean system on π : R × M → R possesses a unique up to a constant time-
independent Hamiltonian. In fibered coordinates we have this Hamiltonian represented
in the form

H = −qσ

∫ 1

0
(Eσ ◦ χs) du

+
s−1∑
k=0

s−k−1∑
j=0

2qσ
j qν

k+1

∫ 1

0

(
F jk

σν ◦ χs−1
)

u du + c.

It is natural to call this Hamiltonian the total energy of the time-independent Lagrangian
system αE .

While time-independent Lagrangian systems on R × T s−1 M are characterized by
a unique up to a constant Hamiltonian, time-dependent Lagrangian systems (even on
π : R × M → R), possess no distinguished Hamiltonians.

9. Examples of dynamics of highly singular systems

In this section we denote ωi = dqi − q̇ i dt . The examples are taken from [32], [36].
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9.1. Consider the Lagrangian

(9.1) L = 1
2

(
(q̇1)2 + (q1)2q2

)
on R× R2× R2 [3]. This Lagrangian defines a singular first-order Lagrangian system α.
Since

p1 = q̇1, p2 = 0, H = 1
2

(
(q̇1)2 − (q1)2q2

)
,

we get

α = −d H ∧ dt + dp1 ∧ dq1

= −(
q̇1 dq̇1 − 1

2(q
1)2 dq2 − q1q2 dq1

) ∧ dt + dq̇1 ∧ dq1.

The annihilators of the Euler–Lagrange and the characteristic distribution are, respec-
tively,

�0
α = span

{
1
2(q

1)2 dt, ω1, dq̇1 − q1q2 dt
}
,

D0
α = span

{
1
2(q

1)2 dt, ω1, dq̇1 − q1q2 dt, q̇1 dq̇1

− 1
2(q

1)2 dq2 − q1q2 dq1
}
.

(A) Extended dynamics. Obviously, �α is weakly horizontal at the points q1 = 0,
i.e., the primary constraint set is

P̃ = {
x ∈ J 1Y | q1(x) = 0

}
.

In other words, this Lagrangian system possesses primary dynamical constraints.
The set P̃ is a submanifold of the phase space. At each point of P̃ ,

�α = Dα = span

{
∂

∂t
+ q̇1 ∂

∂q1 ,
∂

∂q2 ,
∂

∂ q̇2

}
= annih {ω1, dq̇1}.

Let us compute the constrained to P̃ Euler–Lagrange distribution. At the points of P̃
where q̇1 = 0 we have

�α|P̃ = span

{
∂

∂q2 ,
∂

∂q̇2

}
,

which is a vertical distribution, and at the points of P̃ where q̇1 = 0 we get a weakly
horizontal distribution

�α|P̃ = span

{
∂

∂t
,

∂

∂q2 ,
∂

∂ q̇2

}
.

This means that the Lagrangian system possesses secondary dynamical constraints. The
(final) constraint set is the manifold M = {x ∈ J 1Y | q1(x) = 0, q̇1(x) = 0} ⊂ J 1Y .

Summarizing, we get the following dynamical picture for the Hamiltonian system
associated with our Lagrangian system α: the extended dynamics is constrained to a
submanifold M = {x ∈ J 1Y | q1(x) = q̇1(x) = 0} of the phase space. On this sub-
manifold, the extended motion is indeterministic (being not uniquely determined by the
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initial conditions), and is given by a weakly horizontal distribution of rank 3, spanned
by the vector fields

∂

∂t
+ f

∂

∂q2 + g
∂

∂ q̇2 ,

where f, g are arbitrary functions on M .
(B) Proper dynamics. Computing the semispray-constraint set we get

P = {
x ∈ J 1Y | q1(x) = 0

}
,

i.e., P = P̃ . This means that the Lagrangian system possesses primary semispray con-
straints, which identify with the primary dynamical constraints. Similarly as above we
get

�α|P = span

{
∂

∂q2 ,
∂

∂q̇2

}

at the points of P where q̇1 = 0, and

�α|P = span

{
∂

∂t
,

∂

∂q2 ,
∂

∂ q̇2

}

at the points of P where q̇1 = 0, i.e., the Lagrangian system possesses secondary semis-
pray constraints. As above, denote M = {x ∈ J 1Y | q1(x) = q̇1(x) = 0}. The preced-
ing weakly horizontal distribution along M which is of rank 3 has a subdistribution of
rank 2, spanned by the following semisprays along M

(9.2)
∂

∂t
+ q̇2 ∂

∂q2 + g
∂

∂q̇2 ,

where g is a function on M . Hence, the proper dynamics is constrained to M and is
indeterministic there: prolongations of extremals coincide with the integral sections of
the distribution spanned by the vector fields (9.2).

The above dynamical picture gives us also information about properties of extremals
on the configuration space. Namely, we can see that all solutions of the Euler–Lagrange
equations are embedded in the submanifold Q = {x ∈ Y | q1(x) = 0}, and that every
section lying in this submanifold is an extremal.

9.2. Consider Cawley’s Lagrangian

(9.3) L = q̇1q̇3 + 1
2(q

2)2q3

on R × R3 × R3 [7], [6]. This Lagrangian defines a first order Lagrangian system

α = (
q2q3ω2 + 1

2(q
2)2ω3

) ∧ dt − ω1 ∧ dq̇3 − ω3 ∧ dq̇1.

Computing the distributions Dα and �α we get

Dα = annih
{
q2q3 dt, ω1, q2q3 ω2, ω3, dq̇1 − 1

2(q
2)2 dt, dq̇3

}
,

�α = annih
{
q2q3 dt, ω1, ω3, dq̇1 − 1

2(q
2)2 dt, dq̇3

}
.
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We can see that Dα ⊂ �α and Dα = �α. The function f = q̇3 is a first integral of the
distributions Dα and �α.

(A) Extended dynamics. It holds rank F = rank (F|A) if and only if q2q3 = 0, i.e.,
the Lagrangian system possesses primary dynamical constraints, and

P̃ = {
x ∈ J 1Y | q2q3 = 0

}
,

which is not a submanifold of the phase space.
(i) Let x /∈ P̃ . The Euler–Lagrange distribution is at x spanned by vertical vectors,

hence, there is no dynamics at this point.
(ii) Let x ∈ P̃ . Then we have

Dα = �α = span

{
∂

∂t
+ q̇1 ∂

∂q1 + q̇3 ∂

∂q3 + 1

2
(q2)2 ∂

∂q̇1 ,
∂

∂q2 ,
∂

∂ q̇2

}

= annih

{
ω1, ω3, dq̇1 − 1

2
(q2)2 dt, dq̇3

}
,

i.e., rankDα = rank �α = 3 at x .
For x ∈ P̃, q2 = 0 we get that the bunch of submanifolds in P̃ passing through

x consists from a single submanifold Mx = {q3 = 0}. The constrained to Mx Euler–
Lagrange distribution is

�α|Mx = span

{
∂

∂q2 ,
∂

∂ q̇2

}
,

at the points of Mx where q̇3 = 0, which is nowhere weakly horizontal, and

�α|Mx = span

{
∂

∂t
+ q̇1 ∂

∂q1 + 1

2
(q2)2 ∂

∂q̇1 ,
∂

∂q2 ,
∂

∂q̇2

}
,

at the points of Mx where q̇3 = 0, which is weakly horizontal. This means that the
Lagrangian system possesses secondary dynamical constraints, and we must exclude
from P̃ the points such that q2 = 0, q3 = 0, q̇3 = 0. At each of the remaining points
we have a (unique) final constraint submanifold M1 = {y ∈ Mx | q̇3 = 0}. Along M1,
the Euler–Lagrange distribution is reduced to the completely integrable distribution of
rank 3, spanned by

∂

∂t
+ q̇1 ∂

∂q1 + 1

2
(q2)2 ∂

∂ q̇1 ,
∂

∂q2 ,
∂

∂ q̇2 .

Suppose that x ∈ P̃ , q3 = 0. We get Mx = {q2 = 0}, and the constrained to Mx

Euler–Lagrange distribution is

�α|Mx = span

{
∂

∂t
+ q̇1 ∂

∂q1 + q̇3 ∂

∂q3 ,
∂

∂q̇2

}
;

it is weakly horizontal. Mx is a (unique) final constraint submanifold at the point x and
�α|Mx is a completely integrable distribution of rank 2.

The only remaining points in the phase space to be considered are x ∈ P̃ , q2 = 0,
q3 = 0. The bunch of submanifolds at x now consists of two manifolds, M1

x = {q3 = 0}
and M2

x = {q2 = 0}. The Euler–Lagrange distribution �α is weakly horizontal in the
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points of M1
x where q̇3 = 0. Along M2

x , �α is weakly horizontal and of rank 2, hence
M2

x is a final constraint submanifold at x .
Summarizing the results we get the following picture of the extended dynamics:

extended motion is constrained to the subset

(9.4) {q2 = 0} ∪ {q3 = q̇3 = 0}
of the phase space, which is a union of two intersecting closed submanifolds. Along
the submanifold {q2 = 0}, Hamilton extremals are integral sections of the completely
integrable distribution of rank 2, spanned by the vector fields

(9.5)
∂

∂t
+ q̇1 ∂

∂q1 + q̇3 ∂

∂q3 ,
∂

∂ q̇2 ,

i.e., the extended motion there is semiregular and proceeds within two-dimensional
leaves. Along the submanifold {q3 = q̇3 = 0} we get Hamilton extremals as integral
sections of the completely integrable distribution

(9.6)
∂

∂t
+ q̇1 ∂

∂q1 + 1

2
(q2)2 ∂

∂ q̇1 ,
∂

∂q2 ,
∂

∂ q̇2

of rank 3, i.e., the extended motion there is semiregular and proceeds within three-
dimensional leaves of the corresponding foliation.

(B) Proper dynamics. The system possesses primary semispray constraints which
coincide with the primary dynamical constraints, since

rank B = rank (B|A) if and only if q2q3 = 0.

This means that we are lead to consider the semispray problem for the subset (9.4)
and the distributions (9.5) and (9.6). We can see that the system possesses secondary
semispray constraints: to a point x ∈ {q2 = 0} there is a semispray ζ such that ζ(x)

belongs to the distribution (9.5) at x if and only if q̇2(x) = 0. The Euler–Lagrange
distribution constrained to the closed submanifold {q2 = q̇2 = 0} is of rank 1, and it is
spanned by the vector field

(9.7)
∂

∂t
+ q̇1 ∂

∂q1 + q̇3 ∂

∂q3

(which is a semispray along {q2 = q̇2 = 0}). The distribution (9.6) on {q3 = q̇3 = 0}
has a semispray subdistribution of rank 2, spanned by the vector fields

(9.8)
∂

∂t
+ q̇1 ∂

∂q1 + q̇2 ∂

∂q2 + 1

2
(q2)2 ∂

∂q̇1 + g
∂

∂q̇2 ,

where g is a function on {q3 = q̇3 = 0}.
In other words, the proper motion is constrained to the subset

(9.9) {q2 = q̇2 = 0} ∪ {q3 = q̇3 = 0}
of the phase space. On the submanifold {q2 = q̇2 = 0} it is regular, described by
the vector field (9.7) (through each point there passes exactly one maximal integral
section = 1-jet prolongation of an extremal). Consequently, on this subset the motion is
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uniquely determined by the initial conditions. On the submanifold {q3 = q̇3 = 0} it is
weakly regular, described by the vector fields (9.8). Since the distribution (9.8) is not
completely integrable, we do not have a foliation defined by this distribution. However,
since (9.8) is a subdistribution of the semiregular completely integrable distribution
(9.6), the Lagrangian system is in fact strongly semiregular on {q3 = q̇3 = 0}, which
means that the prolonged extremals are embedded in the 3-dimensional leaves of the
foliation of (9.6).

Notice that on the configuration space, the solutions of the Euler–Lagrange equa-
tions (extremals) are constrained to the subset {q2 = 0} ∪ {q3 = 0}.

10. Constraint structure on a fibered manifold

In what follows, r ≥ 1, 1 ≤ k ≤ m − 1.
By a constraint in Jr Y we shall mean a fibered submanifold of the fibered manifold

πr,r−1. If Q is a constraint in Jr Y , codimQ = k, locally given by the equations

(10.1) f i = 0, 1 ≤ i ≤ k,

then by definition

(10.2) rank

(
∂ f i

∂qσ
r

)
= k.

Notice that (10.2) means that the equations (10.1) can be “locally solved” with respect to
k of the functions qσ

r . Without loss of generality one may consider the qm−k+1
r , . . . , qm

r
as functions of the (t, qσ , . . . , qσ

r−1, q1
r , . . . , qm−k

r ). Thus, from the definition one im-
mediately gets that every constraint of codimension k can be covered by a family of
adapted fiber charts (U, χ), χ = (t, qσ , . . . , qσ

r−1, q1
r , . . . , qm−k

r , f 1, . . . , f k), where
(t, qσ ) are fibered coordinates on πr (U ). In particular one has normal charts where Q
is described by the equations

(10.3) f i ≡ qm−k+i
r − gi

(
t, qσ , . . . , q1

r , . . . , qm−k
r

) = 0.

A section γ of π defined on an open set I ⊂ X will be called a holonomic path in Q
if Jrγ (x) ∈ Q for every x ∈ I .

Consider on Q an atlas A of adapted fiber charts. For every (U, χ) ∈ A put

C0
U,ϕ = span

{
ϕi , d f i , 1 ≤ i ≤ k

}
,

where ϕi are linearly independent 1-forms such that

(10.4) hϕi = f i dt, 1 ≤ i ≤ k.

CU,ϕ is a distribution of rank rm+m+1−2k on U , in general not completely integrable.
Holonomic integral sections of the distribution CU,ϕ , i.e. solutions of the “constraint
equations” f i ◦ Jrγ = 0 and their prolongations (d f i/dt) ◦ Jr+1γ = 0, coincide with
the holonomic paths in Q ∩ U .
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The above construction provides us, for a fixed U , with a family of distributions
CU,ϕ with the same holonomic integral sections. However, there is a unique and natural
choice for the ϕi ’s, namely ϕi = f i dt + ϕi

σωσ , where

(10.5) ϕi
σ = ∂ f i

∂qσ
r

, 1 ≤ i ≤ k.

Such forms will be called constraint 1-forms. The meaning of these forms comes from
the following lemma which is proved by an easy computation.

10.1. Lemma [38]. Let F be the canonical morphism of the module VU (π) of π -
vertical vector fields on πr,0(U ) over the ring of functions on πr,0(U ) to the module
VU (πr,0) of πr,0-vertical vector fields over the ring of πr,0-projectable functions on U,
defined by

F(∂/∂qσ ) = ∂/∂qσ
r , F(gξ) = (g ◦ πr,0)F(ξ).

One-forms ϕi , 1 ≤ i ≤ k, on U are constraint 1-forms if and only if for 1 ≤ i ≤ k,
(1) hϕi = f i dt ,
(2) pϕi are πr,0-horizontal, and
(3) for every π -vertical vector field ξ on πr,0(U ),

(10.6) i Jr ξϕ
i = iF(ξ)d f i .

We shall call (10.5) generalized Chetaev expressions, and the corresponding distri-
bution constraint distribution associated with U ; it will be denoted by CU .

In this way, in a neighborhood of a constraint Q there is a canonical system of
local constraint distributions, subordinate to a cover of Q by adapted fiber charts. Along
the constraint Q each of these distributions is tangent to Q, and holonomic paths in
Q piecewise coincide with holonomic integral sections of these distributions. Taking
another cover of Q by adapted fiber charts one gets in a neighborhood of the constraint
a different system of local constraint distributions. However, by the following theorem,
all these local distributions give rise to a unique (global) distribution on the constraint.

10.2. Theorem [35], [38]. Let Q ⊂ Jr Y be a constraint. Let {Uι}ι∈I be a cover of
Q by adapted fiber charts, and {CUι

} the subordinate system of local constraint distri-
butions. Then for every ι, κ ∈ I ,

CUι
= CUκ

on Uι ∩ Uκ ∩ Q.

Proof. One has to show that if ι : Q → Jr Y is the canonical embedding, and {ηp
ι }

and {ηp
κ }, 1 ≤ p ≤ 2k, are linearly independent annihilators of CUι

and CUκ
, respectively,

then ηp
ι = ∑

s bp
s ηs

κ for some regular matrix (bp
s ) on Uι ∩ Uκ ∩ Q. Suppose that Q is

defined by f i = 0 and f̄ i = 0 on Uι and Uκ , respectively. Then on Uι ∩ Uκ , C0
Uι

is
spanned by the 1-forms d f i and the constraint 1-forms ϕi , and C0

Uκ
is spanned by d f̄ i

and ϕ̄i , where

ϕi = f i dt + ∂ f i

∂qσ
r

ωσ , respectively, ϕ̄i = f̄ i d t̄ + ∂ f̄ i

∂ q̄σ
r

ω̄σ ,
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1 ≤ i ≤ k. Since at each point x ∈ Q (belonging to Uι ∩ Uκ ) both d f i and d f̄ i define
the tangent distribution TxQ, we must have d f̄ i (x) = ai

j (x)d f j , where (ai
j ) is a regular

matrix. Consequently, since ω̄σ = (∂ q̄σ /∂qν)ων , we get(
∂ f̄ i

∂ q̄σ
r

)
x

(
∂q̄σ

∂qν

)
x

= c(x) ai
j (x)

(
∂ f j

∂qν
r

)
x

where c(x) = 0. Hence, on the constraint submanifold,

ι∗ϕ̄i = ∂ f̄ i

∂ q̄σ
r

∂q̄σ

∂qν ι∗ων = c ai
j

∂ f j

∂qν
r

ι∗ων = (c ai
j ) ι∗ϕ j ,

and we are done. �

The obtained distribution on Q is called the canonical distribution of the constraint,
or Chetaev bundle over Q [38]. Note that corank C with respect to Q is k, and that by
definition

C = annih
{
ι∗ϕi , 1 ≤ i ≤ k

}
.

In keeping with the first-order case, horizontal rank 1 subdistributions of C are called
constraint connections. They are locally spanned by constraint semisprays which in
normal coordinates take the form

� = ∂

∂t
+

r−2∑
p=0

qσ
p+1

∂

∂qσ
p

+
m−k∑
l=1

ql
r

∂

∂ql
r−1

+
k∑

i=1

gi ∂

∂qm−k+i
r−1

+
m−k∑
l=1

�l ∂

∂ql
r

.

In accordance with [35], [38], the pair (Q, C) where Q is a constraint in Jr Y and C
is the canonical distribution of the constraint is called a constraint structure of order r .
The ideal on Q generated by the 1-forms annihilating the canonical distribution is called
the constraint ideal and is denoted by I(C0). Every p-form on Q, p ≥ 1, belonging to
the constraint ideal is then called a constraint p-form.

10.3. Remark (Geometrical models for classical constraints). Let us show relations
of the above model of constraints with some frequently used geometric representations
of classical (i.e., holonomic and linear non-holonomic) constraints.

(i) Constraints which are realized as a fibered submanifold Q0 of Y of codimension
k < m are called holonomic. Locally they are given by equations ui (t, qσ ) = 0, 1 ≤
i ≤ k, such that rank (∂ui/∂qσ ) = k. Within our scheme this means that f i = dui/dt ,
and

ϕi = dui

dt
dt + ∂ui

∂qσ ωσ = π∗
1,0dui ,

i.e., all the constraint 1-forms are π1,0-projectable and closed. Consequently, the cor-
responding constraint ideal is a differential ideal, the canonical distribution C is com-
pletely integrable, and along J 1Q0 it is nothing but the tangent distribution T J 1Q0.
Its projection is the tangent distribution to Q0, giving sense to the classical concepts
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of degrees of freedom, possible displacements, and virtual displacements defined to be
the dimension of the manifold Q0, the tangent distribution to Q0, and its π -vertical
subdistribution, respectively. The constraint structure for holonomic systems becomes
(J 1Q0, T J 1Q0).

(ii) Consider a completely integrable distribution D of corank k < m on Y . This
means that in a neighborhood of every point in Y there are k linearly independent 1-
forms dui spanning the annihilator D0. Such a distribution represents constraints usually
called semiholonomic or linear integrable (referring to the equations of the constraints
which are affine in velocities). In our notations, f i = dui/dt , ϕi = π∗

1,0dui . Thus,
the constraint 1-forms are π1,0-projectable and closed, i.e., the corresponding constraint
ideal is a differential ideal, and the corresponding constraint distribution is completely
integrable and projects onto D. The constraint structure on J 1Y is (Q, C), where Q is
locally defined by

dui

dt
= ∂ui

∂t
+ ∂ui

∂qσ q̇σ = 0, 1 ≤ i ≤ k,

and C0 = span{ι∗π∗
1,0dui , 1 ≤ i ≤ k}.

(iii) The constraints are given by a distribution D of corank k < m on Y which is
not supposed to be completely integrable. They are called simple non-holonomic [35]
or linear nonintegrable. Denote D0 = span{ηi = ai dt + bi

σ dqσ , 1 ≤ i ≤ k}. Then in
our notations,

ϕi = π∗
1,0η

i = (
ai + bi

σ q̇σ
)

dt + bi
σωσ , f i = ai + bi

σ q̇σ ,

i.e., the constraint 1-forms are π1,0-projectable (the corresponding constraint distribu-
tion projects onto D). The constraint structure on J 1Y is (Q, C), where Q is locally
defined by

ai + bi
σ q̇σ = 0, 1 ≤ i ≤ k,

and C0 = span{ι∗π∗
1,0η

i , 1 ≤ i ≤ k}.

11. Constrained systems

With help of the canonical distribution, mechanical systems subject to constraints
can be intrinsically characterized as mechanical systems on constraint submani-
folds [38].

If [α] is a mechanical system on J s−1Y , s ≥ 2, corresponding to a dynamical form
E of order s, one can consider a constraint submanifold of Jr Y with r ≥ 1, possibly
different from s − 1. First, let us suppose that constraints are given on the phase space
J s−1Y where the unconstrained dynamics proceeds.

Let [α] be a mechanical system on J s−1Y , and let (Q, C) be a constraint structure on
J s−1Y . Denote by ι the embedding of Q into J s−1Y , and by I(C0) the constraint ideal
on Q. For α ∈ [α] put

(11.1) αQ = ι∗α mod I(C0),
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and denote by [αQ] the mechanical system generated by the class αQ. Hence, by defi-
nition, every element of the class [αQ] is a 2-form on Q equal to

ι∗α + constraint 2-form + 2-contact 2-form.

It is easy to see that if α1, α2 ∈ [α] then [(α1)Q] = [(α2)Q]. This means that by
(11.1) we have assigned to a mechanical system on J s−1Y a mechanical system on the
constraint Q. Naturally, we shall call the class [αQ] the constrained system related to
the mechanical system [α] and the constraint structure (Q, C).

The following proposition brings an intrinsic form of the equations of motion of the
constrained system.

11.1. Proposition [38]. Let [α] be a mechanical system on J s−1Y , (Q, C) a con-
straint structure on J s−1Y , and [αQ] the corresponding constrained system. A section
γ of π is a path of the constrained system [αQ] if and only if J s−1γ is an integral section
of the canonical distribution C, and for every πs−1-vertical vector field ξ ∈ C it satisfies
the equation

(11.2) J s−1γ ∗iξαQ = 0,

where αQ is (any) 2-form belonging to [αQ].

We shall find a coordinate expression for the constrained system [αQ] [38]. Let x ∈
Q be a point and consider fibered coordinates (t, qσ , qσ

1 , . . . , qσ
s−1) in a neighborhood U

of x . For simplicity, suppose that the constraint Q is in U given by equations in normal
form,

f i ≡ qm−k+i
s−1 − gi

(
t, qσ , . . . , q1

s−1, . . . , qm−k
s−1

) = 0, 1 ≤ i ≤ k.

First of all, notice that on U we have the following basis of 1-forms:

(11.3)

(
dt, ω1, . . . , ωm−k, ϕ1, . . . , ϕk, ωσ

1 , . . . , ωσ
s−2,

dq1
s−1, . . . , dqm−k

s−1 , d f 1, . . . d f k
)
,

where (ϕi , d f i ), 1 ≤ i ≤ k, are generators of the constraint codistribution C0
U on U ,

(11.4) ϕi = (
qm−k+i

s−1 − gi
)

dt −
m−k∑
l=1

∂gi

∂ql
s−1

ωl + ωm−k+i .

Expressing a representative α of the class [α] in the basis (11.3) using

ωm−k+i = ϕi − (
qm−k+i

s−1 − gi
)

dt +
m−k∑
l=1

∂gi

∂ql
s−1

ωl,

dqm−k+i
s−1 = d f i + dgi ,

computing ι∗α and omitting constraint forms and 2-contact forms we get a representa-
tive of the constrained system [αQ] in the form

(11.5) αQ =
m−k∑
l=1

A′
lω

l ∧ dt +
m−k∑

l,p=1

B ′
lpω

l ∧ dq p
s−1,
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where

(11.6)

A′
l = (Al ◦ ι) +

k∑
i=1

(Am−k+i ◦ ι)
∂gi

∂ql
s−1

+
k∑

j=1

(Bl,m−k+ j ◦ ι)
d̂g j

dt
+

k∑
i, j=1

(Bm−k+i,m−k+ j ◦ ι)
∂gi

∂ql
s−1

d̂g j

dt
,

B ′
lp = (Blp ◦ ι) +

k∑
j=1

(Bl,m−k+ j ◦ ι)
∂g j

∂q p
s−1

+
k∑

i=1

(Bm−k+i,p ◦ ι)
∂gi

∂ql
s−1

+
k∑

i, j=1

(Bm−k+i,m−k+ j ◦ ι)
∂gi

∂ql
s−1

∂g j

∂q p
s−1

,

and

d̂gi

dt
= ∂gi

∂t
+

s−2∑
r=0

∂gi

∂qσ
r

qσ
r+1 = dgi

dt
−

m−k∑
p=1

q p
s

∂gi

∂q p
s−1

.

Now, the equations of motion of the constrained system [αQ] have the following
form of a mixed system of m − k ODE of order s

(11.7) A′
l +

m−k∑
j=1

B ′
l j q

j
s = 0 along J sγ ,

and k ODE of order s − 1, f i ◦ J s−1γ = 0, for the components γ 1, . . . γ m of sections
γ of π .

Another family of non-holonomic systems is characterized by the property that the
constraints depend on higher derivatives than those corresponding to the phase space.
In particular, a problem of this kind has been originally studied within classical me-
chanics (s = 2) when constraints on accelerations have been considered (r = 2) [11],
[13], [19], [48], [58], [59], and others. Within our approach this case, however, can be
viewed as a particular case of constrained systems studied above.

If E ∈ �2
a f (J sY ) is a dynamical form, [α] its Lepage class, and Q ⊂ Jr Y , r ≥ s, a

non-holonomic constraint, we put

αQ = ι∗π∗
r,s−1α mod I(C0),

and we call the arising class [αQ] the constrained system, related to the mechanical sys-
tem [α] on J s−1Y and the constraint structure (Q, C) on Jr Y . Now, equations of motion
in both the intrinsic and coordinate form are obtained analogously to the preceding case.

Finally, it remains to investigate the case r < s − 1. Consider a non-holonomic
constraint Qr ⊂ Jr Y , and suppose that locally it is given by the equations

ui
r (t, qσ , . . . , qσ

r ) = 0.

Qr naturally prolongs to a submanifold P of J s−1Y , given by the equations

(11.8) ui
r = 0, ui

r+1 ≡ dui
r

dt
= 0, . . . , ui

s−1 ≡ ds−1−r ui
r

dts−1−r
= 0.
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Put f i = ui
s−1. The submanifold Q of J s−1Y given by the equations f i = 0 is a non-

holonomic constraint of order s − 1, and P ⊂ Q. Denote by ιP and ι the canonical
embedding P → Q and Q → J s−1Y , respectively. The canonical distribution C on Q
is spanned by the 1-forms

(11.9) ι∗ϕi =
(

∂ui
r

∂qσ
r

◦ ι

)
ωσ = ι∗π∗

s−1,r ϕi
r , 1 ≤ i ≤ k,

where ϕi
r are the constraint 1-forms referring to Qr . Denote by CP the subdistribution

of the canonical distribution C, restricted to P , which is tangent to P . In other words,
for every x ∈ P , put

(11.10) CP(x) = C(x) ∩ TxP.

CP will be called the induced canonical distribution.

11.2. Proposition [38]. At every x ∈ P ,

(11.11) C0
P = ι∗PC0 = span

{
ι∗P ι∗ϕi

}
.

Proof. Let ξx ∈ CP(x). Then iξx ι
∗
P ι∗ϕi (x) = 0, since ξx ∈ C. Conversely, let ξx ∈

TxP annihilate C0
P at x . Then iξx ι

∗ϕi (x) = ι∗ϕi (x)(ξx) = ι∗P ι∗ϕi (x)(ξx) = 0, i.e.,
ξx ∈ C(x). Consequently, ξx ∈ C(x) ∩ TxP . �

Let [α] be a mechanical system on J s−1Y . If αQ is a representative of the constrained
system [αQ] on Q related to [α] and the constraint structure (Q, C), put

(11.12) αP = ι∗P αQ mod I(C0
P)

Due to Proposition 11.2, the class [αQ] is pulled back to the class [αP ], hence, this
procedure gives us a constrained system on P , related to the mechanical system [α] on
J s−1Y and the non-holonomic constraint Qr ⊂ Jr Y . The equations of motion are now
easily obtained in the following form:

11.3. Proposition. Let [α] be a mechanical system on J s−1Y , Qr a non-holonomic
constraint in J r Y , 1 ≤ r < s − 1. Let as above, (P, CP) be the induced constraint
structure on J s−1Y . A section γ : I → Y of π is a path of the constrained system [αP ]
if and only if J s−1γ (I ) ⊂ P , and for every πs−1-vertical vector field ξ ∈ CP and every
αP ∈ [αP ] such that J s−1γ (I ) ∩ dom αP = ∅, it satisfies the equation

(11.13) J s−1γ ∗iξαP = 0.

Propositions 11.1 and 11.3 mean that dynamics of constrained systems can be repre-
sented by means of distributions on the constraints. Namely, by a constraint dynamical
distribution �αQ we understand a subdistribution of the canonical distribution C, anni-
hilated by means of the 1-forms iξαQ, where ξ runs over all vertical vector fields on
Q belonging to C. Now, Hamiltonian extensions of constrained systems can be studied.
In analogy with the unconstrained case, by constraint Hamilton paths we understand
integral sections of constraint dynamical distributions.

The concept of regularity, resp., semiregularity for constrained systems is introduced
and studied in the same way as in the unconstrained case, providing analogous results.
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Notice that a constrained system related with a regular mechanical system need not
be regular, and conversely, a singular mechanical system may become regular under a
suitable constraint. In particular, notice that all constrained systems which arise from
mechanical systems of order s − 1 and are subject to constraints of order greater than
s − 1 are singular (as mechanical systems on Q ⊂ Jr Y ).

Applying the theory of Lagrangian systems to constrained systems we immediately
get the following results:

11.4. Theorem. A constrained system [α] is Lagrangian if and only if the class [αQ]
contains a closed representative.

11.5. Corollary. A constrained system arising from a Lagrangian system is La-
grangian.

11.6. Mechanical systems with holonomic constraints. Within the presented set-
ting, higher-order holonomic systems can be easily treated as a particular case of non-
holonomic systems (cf. [38]).

Recall that a holonomic constraint (or a system of k (k < m) independent holonomic
constraints) is a fibered submanifold of codimension k in the fibered manifold π :
Y → X .

Let ι0 : Q0 → Y be a a holonomic constraint of codimension k. Then at each point
x ∈ Y there is a chart (U, χ), χ = (t, q1, . . . , qm−k, u1, . . . , uk) such that Q0 is on U
defined by the equations

ui = 0, 1 ≤ i ≤ k,

and the functions ui satisfy the condition

(11.14) rank

(
∂ui

∂qσ

)
= k.

The submanifold Q0 of Y prolongs to a submanifold P ≡ J s−1Q0 ⊂ J s−1Y of the
codimension sk. J s−1Q0 is locally defined by the equations

ui = 0,
dui

dt
= 0, . . . ,

ds−1ui

dts−1 = 0, 1 ≤ i ≤ k,

i.e., it can be covered by adapted fiber coordinates (t, q j , ui
0, q j

1 , ui
1, . . . , q j

s−1, f i ),
where 1 ≤ j ≤ m − k, 1 ≤ i ≤ k, and

ui
0 = ui , ui

1 = dui

dt
, . . . , f i ≡ ui

s−1 = ds−1ui

dts−1 .

In this way, J s−1Q0 is a submanifold of the non-holonomic constraint Q ⊂ J s−1Y of
codimension k, locally defined by the equations f i = 0, 1 ≤ i ≤ k. Using similar
notations as above, we have ι : Q → J s−1Y , ιP : J s−1Q0 → Q, and J s−1ι0 = ι ◦ ιP .

Theorem.

CP = T J s−1Q0.
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Proof. If Q0 is a holonomic constraint, we get for the constraint 1-forms on the
associated non-holonomic constraint Q ⊂ J s−1Y ,

ι∗ϕi = ∂ui

∂qσ ωσ .

Hence, for the canonical distribution C on Q we have C0 = span{ι∗π∗
s−1,0 p dui }. Now,

the induced canonical distribution CP on P = J s−1Q0 is annihilated by the 1-forms
J s−1ι∗0ϕ

i = J s−1ι∗0 p dui = J s−1ι∗0dui − J s−1ι∗0h dui = 0, since along J s−1ι0 the
equations ui = 0 and dui/dt = 0 hold. Thus C0

P = {0}, and we are done. �

The above theorem means that holonomic constraints are not “true” constraints,
since they induce no constraints in the tangent bundle to the constraint submanifold.
As a consequence we get the well-known result saying that holonomic constrained sys-
tems are nothing but pull-backs of unconstrained systems to the corresponding fibered
submanifolds. More precisely, for a holonomic constrained system on J s−1Q0 we have

αP = J s−1ι∗0α,

where α represents the unconstrained system on J s−1Y .
Now it is easy to see that if the unconstrained mechanical system is Lagrangian, and

λ is its (possibly local) Lagrangian of order r (i.e., if the class [α] on J s−1Y has a unique
closed representative locally equal to dθλ), we have

Corollary.

αP = J s−1ι∗0dθλ = d J s−1ι∗0θλ = dθJr ι∗0λ.

11.7. Semiholonomic constraints. A nonholonomic constraint in Jr Y is called
semiholonomic of degree p if

f i = d pui

dt p

for some functions ui , 1 ≤ i ≤ k. Since semiholonomic constraints represent a partic-
ular case of non-holonomic constraints, the geometric setting for mechanical systems
subject to semiholonomic constraints (of any order and degree) is quite obvious and
means no difficulties at all.
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[30] O. Krupková, Lepagean 2-forms in higher order Hamiltonian mechanics, I. Regularity,

II. Inverse problem, Arch. Math. (Brno) 22 (1986) 97–120; 23 (1987) 155–170.
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