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Thevariational sequence:
L ocal and global properties

M. Krbek, J. Musilova and J. KaSparova

Abstract. The aim of this paper is to discuss some aspects of local and global proper-
ties of the Euler—Lagrange and Helmholtz—Sonin mappings of the calculus of variations
in the r-th order field theory, i.e. on r-jet prolongations of fibered manifolds over a n-
dimensional base with n > 1, within the framework of the variational sequence, i.e. the
guotient of the De Rham sequence with respect to its subsequence of contact differential
forms. Such a discussion is, in general, based on the concept of sheaves of differential
forms. In the paper a globally defined representation of the variational sequence by forms
is constructed which is closely related to the standard concepts in the calculus of varia-
tions. There is a close relationship between elements of the quotient sheaves (classes of
forms) and the quotient mappings on one hand and the standard objects of the calculus
of variations, as lagrangians, Euler—Lagrange and Helmholtz—Sonin forms, and Euler—
Lagrange and Helmholtz—Sonin mappings on the other hand.

Keywords and phrases. Fibered manifold, r-jet prolongation, contact form, De Rham
sequence, variational sequence, Euler-Lagrange mapping, Helmholtz—Sonin mapping.
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1. Introduction

One of the most important questions in the calculus of variations is the charac-
terization of local and global properties of the Euler-Lagrange and Helmholtz—Sonin
mappings, especially their kernels and images. The general solution of this problem
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on an r-jet prolongation of a given fibered manifold can give the answers pertaining
to the problems of variationaly trivial lagrangians and variational equations of motion
in the r-th order field theory or mechanics. The close relationship between the exte-
rior derivative of a differential form and the Euler—Lagrange mapping in the classical
sense, formulated by Lepage and Dedecker, has been developed during the last two
decades by many authors (Anderson, Betounes, Duchamp, Gotay, Krupka, Krupkova,
Kuperschmidt, Olver, Pommaret, Saunders, Takens, Tulczyjew, Vinogradov etc.) and it
then led to the concept of the variational sequence on finite jet prolongations of fibered
manifolds, introduced and systematically studied by Krupka[8-10]. The variational se-
guence is constructed as the quotient of the well-known De Rham exact sequence of
spaces of differential forms with respect to its subsequence of certain spaces of con-
tact forms. This subsequence is chosen in such a way that the Euler—Lagrange and
Helmholtz—Sonin mappings, considered in the generalized concept, are contained in
the corresponding quotient sequence of mappings. The theoretical background for the
study of the variational sequenceis, among others, the theory of sheaves which was pre-
sented in details and elaborated for the purposes of the variational sequence calculus by
Krupka[11]. Some aspects of the variational sequence were studied by several authors
belonging to Krupka'’s school: Stefanek [17] found a “non-physical” local representa-
tion of the r-th order variational sequence in mechanics. Musilova [15] and Musilova
and Krbek [16] described the (global) “physical” representation of the physically rele-
vant part of the r -th order variational sequence in mechanics, including the reconstruc-
tion of classes of forms from their representatives. KaSparova [5, 6] has been studying
the first order variational sequence in field theory and found the global representatives
of physically relevant classes of forms. The problem of variationdlly trivial lagrangians
was solved by Krupka and Musilova[12]. Some results in the theory of representations
of the variational sequence in field theory, including studies of the trivial variational
problem, were presented by Grigorein [2] and [3]. In the first of these papers the repre-
sentation of g-formsisgivenfor1 < g < n+1,forg = n+ 2itisonly proved that the
class of 7"%-horizontal forms can be represented by the Helmholtz—Sonin form. The
representatives of general classes of (n + 2)-forms have not been sought. Some prob-
lems concerning the variational sequence in field theory were recently discussed also
by Vitolo in [18] and by Francaviglia, Palese and Vitolo in [1].

In this paper we discuss some properties of the r-th order variational sequence on
fibered manifolds over n-dimensional base. We construct its representation for classes
of g-forms, 1 < g < n + 2, especialy for the physically relevant part, i.e. for classes
of n-forms, (n + 1)-forms and (n + 2)-forms. Following the ideas of Krupka[10] for
mechanics, we present the representation of the variational sequence for 1 < q <
n + 2. We give the generalized definition of the Euler—Lagrange and Helmholtz—Sonin
form as well as the Euler—L agrange and Helmholtz—Sonin mapping. We show that our
representativesareglobal for1 < g <n+ 2.

2. Underlying structures and basic notations

Throughout the paper we use the following standard notation, used by Krupka (see
e.g. [10, 13]): Y is a (n + m)-dimensiona fibered manifold with the n-dimensional
base X and projection . For an arbitrary integer r > 0, J"Y isther-jet prolongation
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of Y, n" and z"S forr > s > 0 being the canonical projections of J'Y on X and
J°Y, respectively, Nr = dimJ'Y = n+ > M; = n+m("["), where M; =
m("*171). Moreover, we denote P, = >iso 1 M + 2n—1. By y and Jy we denote
a section of the fibered manifold Y (or sectlon of ) and itsr-jet at X, respectively.
The mapping J'y : x — J'y(X) = Jy isther-jet prolongation of y. I'q(x) isthe
set of al sections of 7 definedon @ c X. Let (V,¥), ¥ = (xi,y"), 1<i<n
and 1 < o < m be afibered chart on Y. Then we denote (U, ¢) and (V', ¥") the
associated chart on X and associated fibered chart on J"Y, respectively. Here U =
(V)¢ = (), 1<i<nV =@9)?V), ¢y =&,y y. ...y ;) 1<
ji, ..., Jr = n.Thevariablesys ; arecompletely symmetrical in all indices contained
inthe multiindex J = (j1--- jk). Theinteger k = |J| isthe length of the multiindex J.
(For y° the corresponding multiindex is considered to be of zero length.) Other kinds
of multiindices used in the paper are of theform (7) = (.7, ). 0 < J| <.

Let LV be the ring of smooth functions on V'. Denote by 4V the Q4V-module
of smooth differential g-forms on V', Q .V C @V, the submodule of contact g-
forms (for 1 < q < n) and strongly contact g- forms (forn+1 <qg < N), ad
d2_; .V C ©qV the subset of exterior derivatives of contact (strongly contact) (q —
1)- forms Let ®rV = dQy VvV +QV.For2 < g < nitholds d, , V C
QqcV.ie ®rV = QuV, and of course OV = QiV. OyV istrivid forq > P
In addltlon We denote by w% = dy§ — y5dx', 0 < |J| <r —1, contact 1-forms, and
by wi = (=) tdx* A - AdX TP AdX T AL ADXT, wo = dXT A - - - A dX" the most
frequently used horizontal forms. It holds dxi A wj = wo (without summati on over i)

anddof, ; | Awj =—0of ; Awo.
Any g-form o € Q’V |sgenerated by forms (dx', wJ,dyl) 1<i<nO0<|J <
r—1,/1] =r. Thenotatlon w3 and dyy means that 0§ = of ; for |[J| = k and

3. Contact forms

In this section we review the definitions and basic properties of the contact and
strongly contact forms on ther -jet prolongation of a fibered manifold. For a more de-
tailed description and proofs the reader is referred to the fundamental papers of Krupka
[13, 14].

Let usdenotedimX = nand letr > 0 be an integer. We can assign to every vector
g € TIHY at apoint Ity e J'+1Y atangent vector he € TJ'Y at the point
Jiy =TI y) € ITY by

he =T, J'yoTr"*t. &

The mapping h : TJ™Y — T J"Y defined by this formulais a vector bundle mor-
phism over the jet projection ' *1"; we call h the horizontalization. The tangent vector
h¢ isz"-horizontal and it is called the horizontal component of &. A tangent vector &
is " +1-vertical, if and only if h¢ = 0. Using complementary construction, one can
assign to every tangent vector £ € TJ" 1Y at apoint J! ™1y € J"*1Y atangent vector
pEeTIYaJyedYhby

Tal g = he 4 pe,
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p¢ isanm'-vertical vector, and & isz" 1" -vertical if and only if h¢ = 0, pf = 0.
Let ¢ € TJ"™Y be atangent vector at a point J; ™y € J™1Y, and let (V, ),
¥ = (X', y?) beafibered chart at the point y = y(x) € V. If £ hasan expression

§= 'f—'f‘ '8y
with summation through al multiindices | = (i1, 12, ...,ix) suchthat 0 <i; < i, <
- <ik, 0<k <r, then

9 =0 _\O ii
hé = 5( +y"8y.) P& = (&Y yﬂé)ayi,,

where |i isthe unique permutation (jq, jo, ..., jks1) Of theset (i1,i,, ..., 1k, 1) such
that j1 < j2 <+ < jky1.

For any open subset V of Y we denote, as in Section 2, 2V the ring of smooth
functionson V' = (z"%~1(V) c J"Y. The Q{V-module of smooth differential g-
forms on V' is denoted by Q’V LeeV CY be an open set. The horizontalization
h:TJHY - TJ'Y mducesadecompostlon of any g-form o € ©;V, whereq > 1,
inthefollowing sense: Let &1, &, . . ., &, betangent vectorsto J 1Y at apoint J’*ly €
V'+1, Let us decompose each of thwe vectors as above. The horizontal components all
belong to a n-dimensional vector subspace of the vector space tangent to J'Y at J; y
Thus the unique decomposition exists

q
(nr+1,r)*Q — Z PO,
k=0

P Y) (EL &2, ... L Eq)

R g2 1ao( I y)(h&iy, ..., NEiy s Pigrs - - - PEig)
g'1-1a being the generalized Levi-Civitta symbol. Especialy, pgo(Ji*iy) (&, ..., &)
= o(Jy)(Pé1, ..., P&y).

Itis, of course, evident, that forg > nitholds pko = 0forO <k <g—n-— 1
Obviously, for any function f € QV

p(fo) =@ )" f - po. 0<k<=a.

Theform pyo iscalled the k-contact component of theform o. If (z"+17)* = 373, pso
for somek, 0 <k <q,i.e. ppo =---= px_10 = O, theform g is caled k-contact. The
number K is the degree of contactness. The 0-contact component of the form is called
its horizontal component and it is denoted by ho. The form po = Y"_, pxo is called
the contact component of the form. It holds

(7"*")*0 = ho + po.

The form is caled ='-horizontal or contact if (x"*1")*0 = hpo (i.e. po = 0), or
(r"t1Y* o= po (i.e. ho = 0). For q > n every g-form is contact. Let g > n. The
form o for which pg_no = Oiscalled strongly contact. Let f : V' — R beafunction.
Then we define

f — (n,rJrl,r)* f
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For any fibered chart (V, ¥), ¥ = (X', y?) it holds

hdx' = dx', pdx' =0, hdyy = yj;dx', pdyf; = (z"*")*dyy — ypdx'.
For the 1-dimensional base the decompoasition of ak-form g into its contact components
isextremely simple:

(") 0 = pre10 + Pro-

Let us now present a brief review of basic properties of contact and strongly contact
formson J"Y inthe coordinate form, adapted for practical purposes of our calculations.
For a more detailed description and proofs the reader is referred to the fundamental
papers of Krupka[13, 14]. Theforms

1 (X' f v of, . dYf ), where of  =dyf = V], 0
define the contact base of 1-formson V'. For afunction f € 3V we denote by d; f
itstotal derivative with respect to the variable x',
of of of
df=—+4+—y =df4+—vy%, 0<|J|<r|l|=r.
! 8x'+8yjy3' i +8yf Yii <=l

Lemmal. Let W C Y bean openset, g > aninteger, and o € 2,V aq-form. Let
(V, ) beafibered chart on Y for which W C V. Let ¢ have the chart expression

) =Y AL i OYEAYTE A ADYPEAOX S AX2 A AdXS
s=0

with coefficients antisymmetrical in all multiindices (( ) ( )) O0<|lpl<r 1<

p < s, antisymmetrical inall indices (isy1, ..., iq) and symmetrlcal inall indiceswithin

each multiindex |1 ,. Then there exists the unlque decomposm on

®3) (7" 0 =ho + po =ho + pio + -+ + pqo,

inwhich for every 1 < k < q it holds

P@=Cl2 o o i @TEAGT A Af ADKEA X2 AL Ad
q
I11 I11 | Is Ok+1 Os

(4) Coiazz T Uk ikt+1ikt2--iq Xl; Aollffzz o o, ist1isi2.-iq y|k++1lk+1 Vigis?

S=

alt (ikrikp2- - -ig).

(Note, that the summations are taken over all independent choices of indices in each
multiindex, e.g. (i1---ip) = I, |I| = p). The proof can be found in [13].

In our calculations we frequently use the (q—n)-contact component of aq~ form o
forn < q < N;. For k = q — n the equation (4) gives

_ |1 lg—n ig-nt+1.-iq 01 -n
pq—nQ - C Uq,n,iq_n+1...iq8 6()|1 ARRRRA Cl)|q n N\ @o

©®)

—_nh 'q n og-n
=B, o @)} N Aoy A wo.

The following lemma describes the local structure of contact forms. (For the proof
see[13, 14].)
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Lemma?2. Le¢e W C Y beanopensetand o € QaW a g-form. Let (V, ¥) be any
fibered chart on Y for which V. c W. Then
(@ for 1 < g < ntheform g iscontact if and only if it can be expressed as

(6) 0=®)w} forq=1 and o=w5AV¥) +d¥ for2<q<n,

where @7 ¢ QuV are some functions, vl e Q{Hv some (g — 1) -forms, and ¥ ¢
Qf _,V isacontact (q— 1)-formwhich can be expressed as ¢ A x! for some (q — 2)-
forms x, € Q ,V,0< I/ <r -1 |I|=r -1

(b) for n < g < N; theform g isstrongly contact if and only if it can be expressed as

o1 Op+l Op+s Ji..Jplpta-lpss
(7 0=wy A- /\a)J Ao, 0 A A TN Poy oo opss
J1JIplpsilpts
where @1 oronii opre € R_p2sV,0 < [J] <1 =11 <1 < p,[lj| =1 -1,

p+1l1<j<p+s, andsummationismadeover such all p and s for which p+ s >
g—n+1p+2s<aq.

4. Variational sequence

For the case of field theory we follow in this section the general ideas of Krupka[8]
and basic concepts presented in [9, 10] for mechanics. Let Qf, g > 0O, be the direct
image of the sheaf of smooth g-formsover J'Y by thejet proj ectl on "0 (functions are
considered as 0-forms). Denote

Que=kerp forl<g=<n, Q. =kerpn, forqg>n and

8
®) O = Qi .+ d

q-1.c’

where pp and py—n are morphisms of sheaves induced by mappings po and py—n, as-
signing to aform o its horizontal and py—n, contact component, respectively. er _1cliS
theimage sheaf of 2, ; by d. For every openset W C Y, QW isthe Abelian group of
g-formson W' = (yrr 9)-1(W) and Qp W isthe Abelian group of contact and strongly
contact g-formsfor 1 < q <nandq > n, respectively, expressed locally by Lemma 2.
ds2;_; ;W is the subgroup of QW given as {o € Q Wlo = dn, n € @ ;W}. Letus
consider the sequence

9) 0} > O — - — 0, - 6, > 6, — 0 — (0},

with arrows (except the first one) given by exterior derivatives d. The following lemma
describes abasic property of this sequence.

Lemma3. Lee W C Y bean open set, and let ¢ € ®{4W beaform 1 <q < N,.
Then there exists the unique decomposition ¢ = oc + doc, where oc € €24 ;W and

Oc € Qq 1cW.

Proof. For 1 < g < nitholdsd, , .V C @ .V, andthusonly thecaseq > n+1
needs proof. Let o € ©yV. Then it |s evident that there exist forms o € € .V and
Oc € Q 1.V suchthat o = oc + doc. Let o = 0, i.e. oc = —do, i.e dQC—O We
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shall prove that both forms o, and g, vanish. Because o is a strongly contact g-form,
it holds pg—noc = 0.Then the chart expression of o is of the form

9

r+1rys J Jk o1 ok i i
( ) oc = Z A oikstiq @ N N ORN dx't A AdXd,
k=q—n+1
where coefficients A - € Q4"'V,q—n+1 <k < q areantisymmetrical in

multiindices (%), ..., (*)) andinindices (iks1, . . ., iq), and symmetrical inall indices

a o

within each multiind Jp, 1 < p < k. By the exterior derivative we obtain

0 — (T[r+l‘r)*dgc

q
- J ok o1 o2 A L ok [ N iq
= D dAR- L AOT AT A AT A AdX
k=q—n+1
b X o1 . 02 ok o1 o2 ok
+ AU1 o ket (da)Jl Aoy N Aoyl — @y A dwJ2 AN
q

oot CDMOP AR A AdT) A dXI A A dX

Taking into account that dw§ = —w?; A dx' and rearranging the summations, we have
for the k-contact component of o the following expression:

(nr+2,r+1)* pdeC

= (=D AL X LT AGE A AT AR A A dXTa

lg+1 “Oksikg1.-iq

+ (=DKAL X

_ %L o2 AL ok [ N ig+1
Sisiiq iy A @R A A@FEA A A A dX )

N 'Jk—l

+(_1)k—1 0 o1 Jk_;l(,ik+1...iq+1
3ka ).k
At (()--(3))

A X A LA dxiat

forg—n+2 < |kl <9+ 1 Fork = q—n+ 1thelast term is missing. All
summationsrange over 0 < |J,| <r,1 < p < k, with the exception of the last term, in
which | J| =r + 1. Especidly, fork = g — n + 1 we obtain

o1 ok
WP A A O

r42,r+1y% __1N\A(d . Janit o1 .. oq-n+1

(r ) Pg-n+10c = (-D (d'q+1 AUl 0q—n+1.ig-nt+2--iq Wy A A quan
ig-nt+2 A ... Ig+1 —19%qg — I e 2 A

A dx A Adx'att + (=D g —-n+1) A(71 Gqonstiqonsz-iq Pdigit

aq

AOF A Ao A XA LA dXa ),
For |J;| = r theform w3}, should be an element of Q&*ZV. Thus, taking into account
the antisymmetry of coefficients, the condition py_n+1doc = 0 leadsto the relation

N Jg-n+1 _
Aﬂl og—n+1:lg—n+2---lg — 0

as soon as any one of the multiindices |Jp|, 1 < p < K isof length r. We obtain the
chart expression of o asfollows

q
_ N Jk o1 02 ok ki1 i
Oc = Z Aol"'ak,ik+1...iqu1 Aoy N Aoy AdX* LA Lo A dX'e,
k=gq—n+1
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with 0 < |Jp| < r — 1. We can see that the form o is w-generated. Thus, in the
expression for (7" +2"+1)* p.do. the summation is made over 0 < |Jp| <r — 1theonly
exception being the term

gAL .. K1

k—1 o1 Ok—1,1k+1--Ig+1 o o]

(=D ( By s ) Wy A Aoy
I ( 1)...( )

AdXkH A LA dxiatr
inwhichitcould be |J| =r.Fork=q —n+ 2it holds

A, Jaeni .
A<Tl 0q—n+1;lg—n+3---Ig+1 -0
yffq n+2 -
Jo—
Tz A (- (o)

as soon as any one of theJmuItiindices Ji, ..., Jg—ns2 is of length r. This is caused
by the coefficients A ... n bei ng zero for some |J,| = r. Expressing

Uq n+1dg—n+3--ig+1

("2 pg n+2dgc we can repeat the procedure and finally obtain o = 0 (all co-
efficients are zeros) Then do. = 0 and the same argumentation as for o leads to the
conclusion that g = 0. This finishes the proof.

Thus, the sequence (9) is an exact subsequence of the de Rham segquence
0} = Q) = = Q= Q. — Q- = Qy — {0

The quotient sequence
{0} > Ry — Qp — Q/0] -

(10) — Qn/Oh = Q11/0O0h1 = Ui/ Onip = -+
- Qp /0F - Qp 3 — - = Q) — {0}

iscalled thevariational sequence of ther-th order. It is, of course, also exact. We denote
quotient mappings as follows

(11) Eq 1 Q4/0q 3 [e] — Eg([eD) = [do] € Qq1/Og, -

Themappings E{, and E} , , generalizethe classical concept of Euler-L agrange mapping
and Hel mhoItz—Sonln mapping of calculus of variations, respectively. They represent
“physically relevant” terms of the variational sequence.

Using the chart expressions of forms we can prove the following lemma:

Lemmad4. Let W C Y bean open set, and let ¢ € ®r+1W beaform 1 <qg < N;.
Let o be (7" *1")-projectable, i.e. ¢ = (" +1")*y for aformn € QuW. Then  isan
element of O W.

Proof. By hypothesisassumethat o = (7" +1")*5. Aided by Lemma3 we can further
write oc + doc = (" +1")*5. Taking the exterior derivative of this equation we obtain
doc = (" *1")*dn. Let us use the decomposition of dn:

g+1

doc = Z Prdn
k=1
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and

pdoc = (7" 2 pedn = ped (Pt + Pen)

using Lemma 3 of the second chapter in [13]. Applying thisidentity fork = gq+1, ..., 1
and using coordinate expressions (4) for pxn we recover (dueto the fact that the expres-
sions are polynomial in the jet coordinates yy, |K| = r + 1) the =" 1" -projectability
of gc. The complete result follows from linearity by reapplying the procedure to dpc.

Let us consider the following scheme:

{0} — Ot — Qt —— Qft/ett —— {0}

I I [

0 — O — Q — Q /0, — {0}

in which the first two “uparrows” represent the immersions by pullbacks and the third
one defines the quotient mapping

r+1r . r r r+1 r+1
Qi /ey — oift/ert

Using Lemma 4 we can immediately see that the mapping Q[ﬁ“ isinjective. The (in-
jective) mappings

12) QY :QL/OL— Q5/65, r<s

can be defined in a quite anal ogous way.

The study of global properties of the variational sequence is based on the following
facts proved by Krupka[8, 10]:

1. Each sheaf €2 isfine.

2. The variationa sequence (in the shortened notation denoted by {0} — Ry — V)
is an acyclic resolution from the constant sheaf Ry over Y.

3. Forevery g > Oitholds HA(I"(Ryv, V)) = HY(Y, R), where

T(Y,V): {0} - I'(Y,Ry) > T(Y, Q) — I'(Y, Q)
— = T(Y, Q) - {0)

isthe cochain complex of global sectionsand H4(T"(Ry, 1)) denotesits g-th cohomol-
ogy group.

5. Representation of the variational sequence

In this section we use the injectivity of mappings Qg" to discuss the problem of the
representation of the variational sequence by the appropriately chosen (exact) sequence
of mappings of spaces of forms. Let W be an open subset of Y. Two g-forms g, n €
§2,W belonging to the same class W/ ©; W are called equivalent. Two g-forms o €
Q;W and n € Q}]W are caled equivalent in the generalized sense if there exists an
integer s > r, t for which (75")*0 — (75Y)*n € OW. Any mapping

o' 1 QEW/ O W 3 [o] — @5 ([0]) = 00 € QW
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with oo € [(75")*0] (i.e. o is equivalent with g in the generalized sense), is called
representation of W/ ©,W. Because of the injectivity of mappings Q" (see Defini-
tion (12) and Lemma 4) the representation mappings CI>§r are injective too.

This injectivity enables us to define the representation of the variational sequence
by forms as the lower row of the following diagram:

. Qr/®r R Qq+1/®q+1 _s ...
— Q) — Q5 —

in which the upper row is the variational sequence, the “downarrows” represent the
mappings &g and mappings of the lower row are defined by

(13) E': Q@ — Q51 EYf =05, 0Eqo (@) Ep' =@} o Ey.

In the following we shall show that there exists such a representation of the variational
sequence (i.e. the integer s > r and mappings Eg") for WhICh E>" assigns to every
lagrangian of the r-th order its Euler-Lagrange form and En I <t <s assignsto
every dynamical form on J'Y its Helmholtz—Sonin form. Such a representation will be
called physical. It is given by following requirements for mappings (®g"):

(14) OT([AD = (x> *A,  Qpl([dA]) =&, P¥N(dE) =H

The key Theorem 1 characterizes locally a representation of the r-th order variational
sequence up to its physically relevant part, i.e. for 1 < q < n + 2. The Examples 1 and
2 succeeding this theorem show that the representation presented there is physical, i.e.
it fulfills conditions (14).

Now, let us construct the mappings &g".

It is evident that for every g, for which 1 < g < n, the g-forms ¢ and ho are
equivalent in the generalized sense. Thus, the form ho can be considered as the (global)
representative of the class [¢] and we can define

(15) ;" 1 Q/ 0 3 [o] — @5 ([e]) = (x> H*he € QF,

for arbitrary s > r + 1. Let W C Y be an open set and let ¢ € @ ,W. Let (V, ¥)
be a fibered chart on Y such that V. ¢ W. We shall find aiinteger s and aform « €

Q5.,V, such that o belongs to the class [(75")*0], and pi is 75t1-0-horizontal. The
first mentioned condition means that « is of the form o — (75")*0 = 6. + df, for
somef. € 5, .V, and some b € QF V. Then pio — (x5 thH*pro = prdh.. Let
(rS+19)*4. be expressed in the fibered chart V, ) as

aStL S)* 9 Z QJl ks 'a)Tl ik N @i + Z plec,

S

P1ddc = Z (hdQy-H A @, A - QDo f_ji A @0).
k=0
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Coefficients QJiIki are elements of QL'V and (jl . jk. 1) denotes the full sym-

metrization. Suppose pya to be of the form pra = Y p_o Atk of j. N wo and
pro =Y p_o Bl Jka)J _ix N\ @o. Then we obtain
S r
j1--k — j1--Jk
ZA w]l Ik/\a)O ZB w]l Jk/\wo
k=0 k=0
=—dQw” Awy— Z (di Q(JTLqu i Q(Jl ks Jk+1)) o, A @o
k=1
— Q((yjlmjs’JS+1)wj1...js+1 A wo,

which gives the following system of equations for coefficients Q{1 Jk-1):
Q(Jl dsdst) — = Qll dsidst1 — qll Js, Js+1
Whereq(“ s ds+1) =0,
Al g Qlr-dkd o QUr-lcrl) — 0 for r +1<k<s,
(Al — Bli-l) 4 ¢ Qlr-dkl 4 QUt-ltd) =0 for 1<k <,
A, — B, +d Q) =0.
Solving this system we obtain step by step:
Q[(rjl-<~]k—lvjk) = —d, Qil---ik»i _ A(irl--.jk
= Qi = glt-levik _ g Qit-dkl _ AlL-de for r 1<k <s,
where gl = 0, Then
lemjsfl»js — qj1-<~is—l~js —dj.,
Qir-ls-2ist = git-ds-2s1 _ g git-ls-tds 4 g d
Al gy Al

qu dssdsv1 Ajlmjs

j1.-Js]
J5+1q 1 S Js+1

and recurrently

s—k+1
j1oJk=10Jk — Iq.
Qlrlk-tk — Z (-1'dj, - dJk+Iqjl ket =15 Tk
=0

s—k+1

- Z (_1)Idjk+1 dJk+| 1AJl D1
1=1

forr +1 < k < s. Putting into this formulathe expressions (Al — BJ1--k) instead of
Alr-Jk we obtain the corresponding relationsfor 1 < k < r. Finaly, for k = 1 we have

Q 1 Z( 1) dJ2 . J|+1q]1 e

- Z(—l)ldiz - d (A(j71~~~jl _ B;lmjl),
I=1
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where BJi+I = Oforr 4+ 1 < k < s. Finaly
A, — B, = —d;, Q1

and thus

S
Ar =By = djyQ;" + ) (=D)'dy, - 000

=1
_ i(_]_)'(A{irlmil _ B;lmjl) -0
=1

Due to the symmetry of the operator d;, - - - d;,,, and the antisymmetry of q(il“'j"j'“ it
holds

S
Z(_l)ldjl T dj|+1qglmjl’jl+l =0.
=1
Without any loss of generality we put g/t = 0 and we finally obtain
S
> (-D'd;, - dj (Ald - Bl =0,
=0

The requirement of 7+19-horizontality of the representative gives Al = 0 for 1 <
k <sand

r
As = Z(_l)ldjl T djl B(ilmjl-
1=0

It is evident that the coefficients A, are elements of Q3 *V. The representative of the
class[p] hasthe form

r
Z(_l)ldjl T djl Brilmjl‘
1=0

Now, let us apply the analogous construction for ¢ = n + 2. Let o € Q_,V.

We wish to find an integer s and aform o € Q7 ,V such that o ~ [757)*0], i.e.
o — (m%")* 0 = 0. + df. for someformso. € @5, , V andd € @, V. Thisleadsto

the condition poar — (751" +1)* pp = p, dA.. Suppose that in the fibered chart (V, )
the forms p,a, poo and p,f. have the following chart expressions:
S
Poct = Z Aéijmjk)(kl---kl)wj?lmjk /\wﬁl...h A wo,
k=0

r

_ (ja--j(Ki..k) o v
P20 = Z Byy TV wf  Awy g A o,
KI1=0

S

o (oo j) (K. k), )
P2l = E Q- O i A Oy A i
k,I=0
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Then the requirement poa — (75t *1)* p0 = p, df., thefact that p1dd. = 0 and thus
(ST podfe = podpifc + P2dp2fc = padp2d. gives

S

Z (A(jl~»-jk)(kl~--kl) B(Jl ke kl))
ov
k,I=0

v
@iy ik N Wy g N @0

S
O 1 Ke ki
— Y (A QU takTyg L AW o Awo
k,|=0

+ Q(Jl SISEL DN
+ Q(Jl K. kl)'

v
j1 ki N @iy AN @0

v —
&f, o A ki A @o) =0,

where we consider B{1+W®i--k) — 0 as soon as any of indices (jy, ..., jk, K1, ..., K)
exceeds r. After some calculations we obtain the following system of equations for
coefficients Q{1 kK

Aav - Bav - di (;lv = Ov
L o S : (Jqeedp_ O
(Agl‘}-..lk)() _ B((Tlvlmlk)() —d Q((TJ&"'Jk)()'I — Qg Kt —k) =0

j1..-jk) (K1...k j1...jk) (K1...kg j1..-jk) (K1...kp),i
(A((rlv J( ) B(J J( ) di Q((y]u Jio( )il

av

(ygdy Kk, Jk (]'1.~.J'k)(Kl~~|_(|_1),K|) -0
ov =

forl<k,I<s, | <k, and

(gddOndg s

(J JPke k), j
ov - = Os 1

s+l=0

(ka.ki). ]
The “underlines” under indices denote the symmetrization. So, Q(Jl i) a0y de-
notes that the symmetrization is made over indices (|, .. ., jk-1, jk)-

Now, we shall solve the presented equations: We can express the coefficients
(11 0K K, jier 1 as

Uyqf) ke k), j i i
Q(Jl Joke k), ke — Qi K Sl é]ljlmlk)(klmkl)»lk-%—l’

Ugdykek)ajy g

where g,y =0,

Q(ilmik)(kl-ukl),kul — ng‘}"'ik)(Kl---'ﬁl)vKIJrl + q(11 ke k), |<|+1
ov

where gl Wa-k)Ma _ g golving the equations for Q's we obtain recurrently

Q(Jl o) ke k) jsp1 — (jl~~-js)(k1~--kl)‘js+l 1<|<s
Q(Jl J90 Js+1 — q(Jvl Js)() Ist1 for | = 0,
Q(Jl Js=DOsls — q(Jl Js=D O s d's+1 ;Jvl-»-]s)()’ls-f—l

+ A(Jlu-Js)() _ B(Ilsz)()
oV
Q(Jll-ul‘s—z)();js—l _ q(Jl Js—2)(O)sjs-1 dj (JrJs=1)Oss _ d: (J-J9) Oy Jst1
ov

sTlov s+1-lov

4+ (A((TJ'&-A-J's—D() _ Béjvlmjs—l)()) _ djs(Az(rjsij)() _ B((Tjuln-js)())’
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s—k+1
Q((TJ‘}..-lk—l)()ka _ Z( 1) dJk+l . ]k+lq(11 k=D Ok

s—k+1 o
— Z( D'dj,., - - djp,y, (A2 den-00O _ Bl dii-00),

1
()() 1 Z( 1) d]2 dJ|+ (Jl SDIQNIE

_ Z(_1)|d1.2 ...d (A(]1~--j|)() _ Ui )).

The last relation has been obtained for k = 1. Moreover, it holds
Aav - Bm) - dlegl( )1 = O,

and thus

Zdn A(Jl DO _ B((TIVJ.MJI)())

3, g P o

Taking again into account the symmetry of the operator dj, - - - d;

(72D O, ii,1 and the antisymme-
try of g0 +1 and putting q¢ )1t = 0, we obtain

Zdn ) A(Jl N0 _ Béj‘)l...j|)()):O.

Repeating the procedure for QU0 -J ywa optain

s—k+1

k | k
Q(Jl k=D ko), Jk — Z (-1'dj,., - dJk+Iq(Jl k- (K, e

s—k+1

| J1e Jka— k
+ Z (_1) djk+1 e dJ'k+|—1 Q((TJS- -0 0-ka
1=0

s—k+1
k 1. k1= (k
_ Z (— 1) dioy - Ay 1(A(11 kD k) B(glvl Jk1—1)( 1)).

QUi Iket=00-K1 gra determined by the proceeding set of relations. Finaly, for k = 1 we
obtain

k k
()( .01 Z( 1) d12 . J|+lq(Jl DK, i1

— Z(_l)ldiz .-, (A((jj]}-njl)(kl) _ B((ijl-njl)(kl))
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s—I

S
k
+Z(_l)|d]2 (Z( 1) d]|+2 . dJ|+p+lq(§‘J1} Jikajige- J|+p)()]|+p+l

p=0

_ Zd“ , “ A(j1<--jlk1j|+2~-<j|+p)() _ B(jl---jlkljl+2---j|+p)()))
+ +p .

Completing the procedure we finally obtain functions QU1K " For obtaining
such a representative which fulfills the relation (14) for the specially chosen class [7],
where 7 is the exterior derivative of a 7"%-horizontal form, we choose a form o ¢
[(z>")* o] with the 2-contact component given by the following chart expression

pzoz—C'l Jw? A @’ A wp.

JER

Then the representative of the class[o] is

52r+l) Z |:Z Z (— 1) ( _ p)dijﬂ . ..dip+| B(i,ll;"ip.ip+1...ip+l:|a)ialmij

p=0l=j-p
/\a)v/\a)o,

sym(iy...ij), s > 2r+1,istherepresentation of Q V. So, we can formulate

the following theorem:

n+2v/®n+2

Theorem 5. Let W C Y be an open set, and let q > be an integer. Let (V, ¢) bea
fibered chart on Y for whichV c W.
(@ Let1l <qg <nandleto € QW beaform. Then the mapping

(16) o' 1 QqV/OLV 3 0 — o5 ([o]) = (*)*ho € 4V, s>r1 +1

isthe representation of QfV/ OV
(b) Letq = n+1and|etg € Q
by the relation

n+1W be a form expressed in the fibered chart (V, ¥)
17)  pio = B;j w0 Ao,

in which coefficients By € Qf™V, 0 < |J| < r, are given by the chart expression of o
following egs. (2 — 5). Then the mapping

S,r

Dty V/0L V30— (o) =00 € 25,V s=2r+1
assigning to the class[p] the form
r
(18)  go=(@>**H* (Z(—l)ldjl - dj Bil"'j') ° A wo
=0

is the representation of Q| ,V /Oy ., V.
(cLetg=n+2andleto € 2 ,W beaformexpressed in the fibered chart (V, )
by the relation

(19) P20 = B2K w7 A 0% A wo,
oV J K



30 M. Krbek, J. Musilova and J. KaSparova

in which coefficients B)K € Q4*'V, 0 < |J| < r, are given by the chart expression of
o following egs. (2 — 5). Then the mapping

S,r

ool QnV/On,,V 30— DnL(eD) =00 € 9V, s=2r +1

assigning to the class [ o] the form

r

= (S Ly Z{Xj: > (- 1)< p)dij+1...dip+|
i-p

(20) P=01=

i1...ip,ips1...ipal
x Bgy PPt ’)Jri|a)|"1 i Ao’ A wp,

sym(iy...ij), s> 2r + 1, istherepresentation of Q[ ,V/0O] _,V.

n+2
Proof. The proof is constructive and precedes the stated theorem.

The representative (18) of aclass[p] of (n+1)-formsgenerated by o iscalled Euler—
Lagrange form of the class [p]. The representative (20) of aclass [¢] of (n + 2)-forms
generated by o is called its Helmholtz-Sonin form. Following the relation (13) which
defines the representation of the variational sequence we can use Theorem 1 for aform
do, 0 € QLW orp € Qf +1W, for obtaining the chart expressions of Euler—Lagrange
and Hel mholtz—Sonln mappings E>" and Eﬁil, respectively. These mappings represent
the generalization of the WeII-known ‘classical” Euler-Lagrange and Helmholtz—Sonin

mappings of the calculus of variations.

Example 1. Let W C Y be an open set. Let 2 € QW be alagrangian given in a
fibered chart (V, ), V C W, by the expression

A= £wo, L e QrOV.
Using Theorem 1(b) we obtain immediately
2r r oL o
21) & =¥ (dr]) = g( D'd;, - By )N

which is evidently the Euler—L agrange form of the lagrangian A.
Moregeneraly,let o € QLW beaformand [o] its class represented by the horizontal
form A, = @1 ([0]). A, has the chart expression

Ao=ho=Lowo,  LeQGMV,

where L, is affine in variables y;,,. Using Lemma 4 and Theorem 1(b) we obtain
immediately

O ([do]) = @XM ([dh]) = &,

where &, is determined by the function £, following the equation (21) fors = 2r +1
instead of 2r.

Example2. Now, let n € Q[ W beagenerally chosen n-form,i.e. [n] € QLW/O W
Let (V, ¢) beafibered chart on Y for whichV ¢ W. We have

O ([n]) = hn = La,
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where £ € QB“V. We shall find the representative (18) of the class[n]. We have

k=2

n
(7" dy = d (hn +pu+ Yy pkn>,

(@ 2 prdy = prdthy + pan).
Taking into account the chart expression of (hn + pin) intheform

r
-+ pun = Lon+ Y PE-RIGT L Ao,
k=0

where Pji-ikl ¢ QUHIV, we obtain

oL
prd(hn 4 pn) = (— —dP )a)g A wo

ay°
! oL
+Z(ay7 J —d |:>11 S p(J1 k= 1Jk)> o A @o
1--Jk
oL
+ (3y<’ p(Jl Jrs Jr+1)) wjl i A wp.
jaeedrea
Then the representative (18) is
2 r+1 o
SZA () = <Z<—1>'djl d B;L--“) o A wo,
1=0
where
BO‘ == % - dl PUI k)
ay°
B;L-.h _ ayaffﬁ —d ngl-njhi _ P;jlmjl—lvjl)’ for 1< <r,
ja--0i
B(il"'jr“ — 0L _ p§11~.~ir>1r+1)_
8yjl~--jr+1

Taking into account that
le i — p(Jl i) + le -t J|+1

(j--Jis1+2)

where p, = 0 and calculating the representative we obtain

2r+1r o 9L
OFL (D =3 (-1'd;, - J.<ay<,l “)

r42

+ Z( 1) d]l le i1 J|

The second sum vanishes because of the symmetry of the operator dj, - -

antisymmetry of functions py j1--- ji_1, ji-

-d;, and the
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Finally

o2 +L 3 oL
QXM ([ = > (-D'dj, - (a - )
=0 Yii.i

On the other hand, it holds p; d®y, = &n,, where ©y,, is a Lepagean equivalent of the
lagrangian hn = Lwo, and &, isits Euler—Lagrange form. Thus

ﬁli:i_lr(dn]) =P d®hn = ghn

This example shows that the representative of dr for an arbitrarily chosen n-form n (not
necessarily alagrangian) is directly obtained as the 1-contact component of the exterior
derivative of a Lepagean equivalent of the corresponding lagrangian hn.

Example 3. Let W C Y beanopenset. Let £ € @ ;W beadynamica form given
in the fibered chart (V, ¥), V € W, by the expression

E=¢e,0" Nwy, & € V.
Then

o=0d¢ = 9 A" A wop.

o<pJ|=r I

On the other hand, in general, we have

P20 = BJK w3 A wl A wo, B)X +BXJ =0
Thus,
1o0e
BOJ__BJOZ__ (r’ J=(ir---i ,1<k<r,
ov vo zay‘\; (Jl Jk) — —

8% ——8% = (5o) .
ay dt(ov)

other coefficients B X being zero. Using Theorem 1(c) we obtain
2r

1 e, . 0e
_ cI>2r+l,r d e ~1) .
He a1 ([dED) |:Z<8y,l ij - ayiv1~~-ij

ey
_ Z( 1)() JREL Il%)}a)ﬁ I]/\a) N\ wo,

I=j+1

(22)

which is the Helmholtz—Sonin form of the dynamical form £.
More generaly, let ¢ € ;W be aform and [] its class represented by the dy-
namical form

&y = PTI ([o]) = ()0’ Awo,  (g5)s € QITIV,

given by (18). Using Lemma4 and Theorem 1(c) we can obtain

Y1, ([do]) = @S (dE]) = He,, s> 2r +1.
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Theseresults are in agreement with those of Krupka (see[8]) and KaSparova ([5] for the
1-st order variational sequence). Examples 1 and 2 show that the obtained representation
of the variational sequence fulfills the requirement (14), i.e. it is physical.

6. Global propertiesof the representation

The construction of the representative mappings cpg*r in the previous section for
1 < g < nisgiven by the horizontalization h, and thus, it isglobal. Forq = n+ 1
the globality of the definition of the representatives of the type (18) is mentioned in [1]
with the reference to a proof using an integration method. For the 1-st order variational
sequence the globality of representatives (18) and (20) was proved in [4, 6], with the
use of the integration of appropriately chosen forms. Note that the construction method
given for representatives preceding Theorem 1 is manifestly correct since it is given
by subtraction of globaly defined differential forms. In this section though we follow
the idea of the integration method to prove the correctness (globality) of higher order
representatives (18) and, as a new result, (20).

Theorem 6. Let (V, ¢) beafiberedchartonY.Letl <q<n+2andp € QBY
be a form. Then the class [o] is represented by egs. (16), (18) and (20) globally, for
1<qgq=<nqg=n+landqg = n+ 2, respectively.

Proof. Because of globality of the horizontalization mapping h only the cases q =
n+ 1, n+ 2 need proof. Let ©2 be a piece of manifold X.

Letg =n+ landleto € Qf ,W beaform with the chart expression given by egs.
(2-5), (17),i.e.

n+1
3 @0 =BlwiAwo+ ) pw. summation over 0<|J|<r.
=2

Let £ beam-vertical vector field such that suppé C 771(Q), andlet £ = £7(3/9y°) be
its chart expressionin (V, ¥). Let us define (for s > r, in general)

o = [ "o (x5 hiyeo
Using the fact that £ is vertical we obtain
ne = /Q I%y* o ()i raae Pro.
Further
fg Iy* o (= (B - DyE7) wo,
We have denoted by D; the symbol dj, - - - dj, for J = (j1--- jx), 1 < k <r.Duetothe

properties of total derivative, the operator D is symmetrical in al indices contained in
multiindex J. By the properties of the pullback mapping it holds

no = /(Bj  DE) (I ) wo,
Q
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Using recursively the relation
((fdjg) o JH'ly) wo = ((dj(fg) —gd;f)o JH'ly)a)o
= (di(fg) o J”ly)Sij wo — ((gd; f) o Jr+ly) wo
= (di(fg) o I y) dx' Awj — ((gdj ) 0 Iy) wo
= Iy * (@) d((fg) A @) — (gd; ) o)

for functions f, g, Stokes theorem and the assumption concerning the support of & we
have

e = fQ (%"-Z(—l)'djl -d; BJ- “)uzf“y)wo
=1
=/ <Z(_1)Idjldj| B;l'”j')w”(32r+1§)(J2r+1)/)/\a)o,
2 \I=1

(24) na =/(32r+17/)*i32'+1sQ0-
Q

Since this expression was defined in a coordinate-free way the expression inside of
the integral defines the representative oo of a form ¢ globally and the representation
mapping is thus defined correctly.

Letg=n+2andletp € 2 Y beaform, for which

n+2
n+2
25 r+1r . BJK o v
(25) o =By, o Awg Awo+ ) o,
k=3

with coefficients B’K given by (2-5). Let ¢ be another vector field which fulfills the
same conditions as &£. We define

(26)  ng =/ I8y * o (@ hi e grc0.
Q
Then

ng = / JSy* o (ns’r+l)*i‘]r+1§i\]r+1§ P20
Q
/ JSV*(H_SI‘-Q-l) (ZSJ é‘K BJK)

— [ 027 (2835 D) (),
with the operator D, previousdly defined as d;, ---dj,, J = (j1--- jx). Applying the

procedure used for g = n+ 1 in thefirst part of the proof to the n-form (2BK Dy ¢” wo)
we have

no = / 2(=1)"! (D3 (BYX - DY) (37 y)
Q
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summation over |J|, |K| < r. Calculating the expression D;(B XDk ¢") step by step
we obtain

nng (250 DYDY Dyt DJZBJK>
Q 1Jl=<r IK|<r |31+ J21=13]

o (J2r+1y) wo,

summation over |J|, |[K| <.

o= (25 Y3 Z,(E) oyl

=1 k=0 p+l

] ] Ik 2ok joize ik s
X dlk+p+1"'dlk+j B(TV )(‘] )/)CUO,

sym(iy, ..., ikt+j). Rearranging the summations we obtain
SEETN 0335 ST RN LTS
(27) j=0 k=01=j—k

% B|1 kiK1 |k+|$ n >(J2r+1y)w0
I1.. 1

2r r r
ne —/ ( Z Z -1~ ( k> dij+1 . dik+| B(iyll;"ik’ikJrl"'ik-H)

j=0 k=01=j—k

x Aw (JZH-IS J2r+l§)(JZr+ly) A wp

I1I

and finally rearrange the expression so that

(28) N = f(JZH_l)/)*ierH;iJ2r+1§Qo.
Q

The argumentation leading to the conclusion that the representative is defined correctly
(globally) is quite analogous to the one presented in the first part of the proof.

Another way to ascertain that the expressions defined locally by (16), (18) giveriseto
globally defined objects is to check the transformation properties of these expressions.
The proof using the transformation properties can be found in the Appendix.

It remains to discuss the following problem: Find the criteria for recognizing the
representatives of classes of formsin ther -th order variational sequence and the recon-
struction of classes from their representatives. This problem is solved for the physically
relevant part of the variational sequence in mechanics (see [9] and [16]). For the field
theory the calculations are technically difficult and are not finished up to now.

Appendix. Transformation rulesfor representatives

Let (V, y) and (V, ) beany two fibered charts. Wewill consider thetransformation
properties of various objects over the intersection V N V.
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_ Thetransformation propertiesof total derivativesof functions. Let f € Q4(V N
V), then it holds that with the obvious notation

- axk
di f =def - —.
R

We shall generalize this result.

Theorem A. With the above used conventions it holds that

~ aalxil aamxim
DJ f = D| f ( — —— .- _ : ) )
IIIZ:IJI NSRRI ) S N SL IS I ¢ (Rl ey

There are ([}/) summands pertaining to the given length of the muitiindex 1. ordJ

means that the summation is taken over all multiindices J such that j; < --- < ja,
v Jayg <00 < Jay, theindicesay < --- < ayy) taking all admissible values.

Proof is donein a straightforward manner by induction on |J|.

Total derivatives of products of functions. Let f, g € QyV. Then

|
Dk (f @) =dyg - d(f-9) = "(dy -y, F)(de - Ay 0),
q=0

where the primed sum runs over al indices kq, ..., k in which the ordering in the
subindices of the total derivatives is decreasing. There are exactly (c']) summands for a
givenq.

The transformation properties of representatives of n + 1-forms. The forms
pio = PJw3 A wo are defined in a coordinate-free way. The representative is given
by (16). The transformation properties of representatives will be given by induction
with respecttor. Forr = 1it holds

- j 5 j
00 = {3){” det(a)fl) P, — Dk |:8)~/§ det(a)fl) P(;Jj|}d)u/\c~00,
ay aX Yk aX

where the summation is taken over |J| = 0, 1. Using Theorem A we see directly that
the coefficients

o j )
W et (ai) (P, —d;P))

9y ax!

have the correct transformation properties of components of n + 1-forms of the type
Qva)“ A .
Now we can proceed by induction with respect tor .

r ~ ~ ys dX
=|>_(=D¥d,---d, D = det{ = )P/
00 |:k:0( ) di, I = (8)?) -

IKI=[J]

- ~ Y9 X\ 53|~ . -
+ (—].)I'Jrld|r cee d| — det <—~) PU o A @g.
+1 1 J;+1 vy 9% 0
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The part which has been added to ¢¢ by raising the order by 1 reads

{Z( 1By yJ det( )P;
X

|K|<r

~ X -
+ (=)D, aiil det(8X> Pa'i|a) A @o,

where|J| = |L| =r + 1. Now we shall use the result from the previous paragraph and
obtain

> DR[HYJ det( )}DSPJ
IK|<r ayRS aX
IRI+ISI=IK|

F (=1 Z/ D |: ayff (BX)] DsP }(Z)V A @,

IRI+[S|=r+1 8yRS

where |J| =r +1and0 < |I| <r. Let usdefine the numbersa; j for j <i recursively
byai:=1a; = 1landaiij1 = (j +Da ja1 + & . Using the properties of
the primed sum and the transformation rules for total derivatives for DSP' we obtain
precisely the numbers ag) s as coefficients in both sums. Recursively canceling the
terms starting from the highest one we recover the needed additional term

(— 1)r+1 oy’ det<a ) D;P&" A dyp.
ay" X

The transformation properties of representatives of (n + 2)-forms. We shall
procced in an analogous manner as in the case of representatives of n + 1-forms. We
again check directly that the transformation formula holds for r = 1 and assume that
it holds for orders from 1 up to r. Writing down the additiona terms for r + 1-order
and using the same properties asin the case of representatives of n + 1 forms we again
recover the required transformation rules.
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