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The variational sequence:
Local and global properties1

M. Krbek, J. Musilová and J. Kašparová

Abstract. The aim of this paper is to discuss some aspects of local and global proper-
ties of the Euler–Lagrange and Helmholtz–Sonin mappings of the calculus of variations
in the r -th order field theory, i.e. on r -jet prolongations of fibered manifolds over a n-
dimensional base with n > 1, within the framework of the variational sequence, i.e. the
quotient of the De Rham sequence with respect to its subsequence of contact differential
forms. Such a discussion is, in general, based on the concept of sheaves of differential
forms. In the paper a globally defined representation of the variational sequence by forms
is constructed which is closely related to the standard concepts in the calculus of varia-
tions. There is a close relationship between elements of the quotient sheaves (classes of
forms) and the quotient mappings on one hand and the standard objects of the calculus
of variations, as lagrangians, Euler–Lagrange and Helmholtz–Sonin forms, and Euler–
Lagrange and Helmholtz–Sonin mappings on the other hand.
Keywords and phrases. Fibered manifold, r -jet prolongation, contact form, De Rham
sequence, variational sequence, Euler–Lagrange mapping, Helmholtz–Sonin mapping.
MS classification. 49F05, 58A15, 58E99.

1. Introduction

One of the most important questions in the calculus of variations is the charac-
terization of local and global properties of the Euler–Lagrange and Helmholtz–Sonin
mappings, especially their kernels and images. The general solution of this problem
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of the Ministry of Education, Youth and Sports of Czech Republic and by the Grant 1467/2000 of
the Fund of Development of Universities of the Ministry of Education, Youth and Sports of Czech
Republic.
This paper is in final form and no part of it will be published elsewhere.
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on an r -jet prolongation of a given fibered manifold can give the answers pertaining
to the problems of variationally trivial lagrangians and variational equations of motion
in the r -th order field theory or mechanics. The close relationship between the exte-
rior derivative of a differential form and the Euler–Lagrange mapping in the classical
sense, formulated by Lepage and Dedecker, has been developed during the last two
decades by many authors (Anderson, Betounes, Duchamp, Gotay, Krupka, Krupková,
Kuperschmidt, Olver, Pommaret, Saunders, Takens, Tulczyjew, Vinogradov etc.) and it
then led to the concept of the variational sequence on finite jet prolongations of fibered
manifolds, introduced and systematically studied by Krupka [8–10]. The variational se-
quence is constructed as the quotient of the well-known De Rham exact sequence of
spaces of differential forms with respect to its subsequence of certain spaces of con-
tact forms. This subsequence is chosen in such a way that the Euler–Lagrange and
Helmholtz–Sonin mappings, considered in the generalized concept, are contained in
the corresponding quotient sequence of mappings. The theoretical background for the
study of the variational sequence is, among others, the theory of sheaves which was pre-
sented in details and elaborated for the purposes of the variational sequence calculus by
Krupka [11]. Some aspects of the variational sequence were studied by several authors
belonging to Krupka’s school: Štefánek [17] found a “non-physical” local representa-
tion of the r -th order variational sequence in mechanics. Musilová [15] and Musilová
and Krbek [16] described the (global) “physical” representation of the physically rele-
vant part of the r -th order variational sequence in mechanics, including the reconstruc-
tion of classes of forms from their representatives. Kašparová [5, 6] has been studying
the first order variational sequence in field theory and found the global representatives
of physically relevant classes of forms. The problem of variationally trivial lagrangians
was solved by Krupka and Musilová [12]. Some results in the theory of representations
of the variational sequence in field theory, including studies of the trivial variational
problem, were presented by Grigore in [2] and [3]. In the first of these papers the repre-
sentation of q-forms is given for 1 ≤ q ≤ n + 1, for q = n + 2 it is only proved that the
class of π r,0-horizontal forms can be represented by the Helmholtz–Sonin form. The
representatives of general classes of (n + 2)-forms have not been sought. Some prob-
lems concerning the variational sequence in field theory were recently discussed also
by Vitolo in [18] and by Francaviglia, Palese and Vitolo in [1].

In this paper we discuss some properties of the r -th order variational sequence on
fibered manifolds over n-dimensional base. We construct its representation for classes
of q-forms, 1 ≤ q ≤ n + 2, especially for the physically relevant part, i.e. for classes
of n-forms, (n + 1)-forms and (n + 2)-forms. Following the ideas of Krupka [10] for
mechanics, we present the representation of the variational sequence for 1 ≤ q ≤
n + 2. We give the generalized definition of the Euler–Lagrange and Helmholtz–Sonin
form as well as the Euler–Lagrange and Helmholtz–Sonin mapping. We show that our
representatives are global for 1 ≤ q ≤ n + 2.

2. Underlying structures and basic notations

Throughout the paper we use the following standard notation, used by Krupka (see
e.g. [10, 13]): Y is a (n + m)-dimensional fibered manifold with the n-dimensional
base X and projection π . For an arbitrary integer r ≥ 0, Jr Y is the r -jet prolongation
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of Y , π r and π r,s for r ≥ s ≥ 0 being the canonical projections of Jr Y on X and
J sY , respectively, Nr = dim Jr Y = n + ∑r

j=0 M j = n + m
(n+r

n

)
, where M j =

m
(n+ j−1

j

)
. Moreover, we denote Pr = ∑r−1

j=0 M j + 2n − 1. By γ and Jr
x γ we denote

a section of the fibered manifold Y (or section of π ) and its r-jet at x , respectively.
The mapping Jrγ : x → Jrγ (x) = Jr

x γ is the r-jet prolongation of γ . �	(π) is the
set of all sections of π defined on 	 ⊂ X . Let (V, ψ), ψ = (xi , yσ ), 1 ≤ i ≤ n
and 1 ≤ σ ≤ m be a fibered chart on Y . Then we denote (U, ϕ) and (V r , ψr ) the
associated chart on X and associated fibered chart on Jr Y , respectively. Here U =
π(V ), ϕ = (xi ), 1 ≤ i ≤ n, V r = (π r,0)−1(V ), ψr = (xi , yσ , yσ

j1
, . . . , yσ

j1... jr
), 1 ≤

j1, . . . , jr ≤ n. The variables yσ
j1... jk

are completely symmetrical in all indices contained
in the multiindex J = ( j1 · · · jk). The integer k = |J | is the length of the multiindex J .
(For yσ the corresponding multiindex is considered to be of zero length.) Other kinds
of multiindices used in the paper are of the form

(
σ

J

) = (
σ

j1... jk

)
, 0 ≤ |J | ≤ r .

Let 	r
0V be the ring of smooth functions on V r . Denote by 	r

q V the 	r
0V -module

of smooth differential q-forms on V r , 	r
q,cV ⊂ 	r

q V , the submodule of contact q-
forms (for 1 ≤ q ≤ n) and strongly contact q-forms (for n + 1 ≤ q ≤ Nr ), and
d	r

q−1,cV ⊂ 	r
q V the subset of exterior derivatives of contact (strongly contact) (q −

1)-forms. Let �r
q V = d	r

q−1,cV + 	r
q,cV . For 2 ≤ q ≤ n it holds d	r

q−1,cV ⊂
	r

q,cV , i.e. �r
q V = 	r

q,cV , and of course, �r
1V = 	r

1V . �r
q V is trivial for q > Pr .

In addition we denote by ωσ
J = dyσ

J − yσ
J i dxi , 0 ≤ |J | ≤ r − 1, contact 1-forms, and

by ωi = (−1)i−1dx1 ∧ · · · ∧ dxi−1 ∧ dxi+1 ∧ · · · ∧ dxn, ω0 = dx1 ∧ · · · ∧ dxn the most
frequently used horizontal forms. It holds dxi ∧ ωi = ω0 (without summation over i)
and dωσ

j1... jk−1
∧ ω jk = −ωσ

j1... jk
∧ ω0.

Any q-form � ∈ 	r
q V is generated by forms (dxi , ωσ

J , dyσ
I ), 1 ≤ i ≤ n, 0 ≤ |J | ≤

r − 1, |I | = r . The notation ωσ
J and dyσ

I means that ωσ
J = ωσ

j1... jk
for |J | = k and

dyσ
I = dyσ

j1... jr
.

3. Contact forms

In this section we review the definitions and basic properties of the contact and
strongly contact forms on the r -jet prolongation of a fibered manifold. For a more de-
tailed description and proofs the reader is referred to the fundamental papers of Krupka
[13, 14].

Let us denote dimX = n and let r ≥ 0 be an integer. We can assign to every vector
ξ ∈ T Jr+1Y at a point Jr+1

x γ ∈ Jr+1Y a tangent vector hξ ∈ T Jr Y at the point
Jr

x γ = π r+1,r (Jr+1
x γ ) ∈ Jr Y by

hξ = Tx Jrγ ◦ T π r+1 · ξ.

The mapping h : T Jr+1Y → T Jr Y defined by this formula is a vector bundle mor-
phism over the jet projection π r+1,r ; we call h the horizontalization. The tangent vector
hξ is π r -horizontal and it is called the horizontal component of ξ . A tangent vector ξ

is π r+1-vertical, if and only if hξ = 0. Using complementary construction, one can
assign to every tangent vector ξ ∈ T Jr+1Y at a point Jr+1

x γ ∈ Jr+1Y a tangent vector
pξ ∈ T Jr Y at Jr

x γ ∈ Jr Y by

T π r+1,r · ξ = hξ + pξ,
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pξ is a π r -vertical vector, and ξ is π r+1,r -vertical if and only if hξ = 0, pξ = 0.
Let ξ ∈ T Jr+1Y be a tangent vector at a point Jr+1

x γ ∈ Jr+1Y , and let (V, ψ),
ψ = (xi , yσ ) be a fibered chart at the point y = γ (x) ∈ V . If ξ has an expression

ξ = ξ i ∂

∂xi + �σ
I

∂

∂yσ
I

,

with summation through all multiindices I = (i1, i2, . . . , ik) such that 0 ≤ i1 ≤ i2 ≤
· · · ≤ ik, 0 ≤ k ≤ r , then

hξ = ξ i

(
∂

∂xi + yσ
I i

∂

∂yσ
I

)
, pξ = (�σ

I − yσ
I iξ

i )
∂

∂yσ
I

,

where I i is the unique permutation ( j1, j2, . . . , jk+1) of the set (i1, i2, . . . , ik, i) such
that j1 ≤ j2 ≤ · · · ≤ jk+1.

For any open subset V of Y we denote, as in Section 2, 	r
0V the ring of smooth

functions on V r = (π r,0)−1(V ) ⊂ Jr Y . The 	r
0V -module of smooth differential q-

forms on V r is denoted by 	r
q V . Let V ⊂ Y be an open set. The horizontalization

h : T Jr+1Y → T Jr Y induces a decomposition of any q-form � ∈ 	r
q V , where q ≥ 1,

in the following sense: Let ξ1, ξ2, . . . , ξq be tangent vectors to Jr+1Y at a point Jr+1
x γ ∈

V r+1. Let us decompose each of these vectors as above. The horizontal components all
belong to a n-dimensional vector subspace of the vector space tangent to Jr Y at Jr

x γ .
Thus the unique decomposition exists

(π r+1,r )∗� =
q∑

k=0

pk�,

pk�(Jr+1
x γ )(ξ1, ξ2, . . . , ξq)

= 1

(q − k)!k!
εi1i2...iq �(Jr

x γ )(hξi1, . . . , hξiq−k , pξiq−k+1, . . . , pξiq )

εi1...,iq being the generalized Levi-Civitta symbol. Especially, pq�(Jr+1
x γ )(ξ1, . . . , ξq)

= �(Jr
x γ )(pξ1, . . . , pξq).

It is, of course, evident, that for q > n it holds pk� = 0 for 0 ≤ k ≤ q − n − 1.
Obviously, for any function f ∈ 	r

0V ,

pk( f �) = (π r+1,r )∗ f · pk�, 0 ≤ k ≤ q.

The form pk� is called the k-contact component of the form �. If (π r+1,r )∗ = ∑q
s=k ps�

for some k, 0 ≤ k ≤ q, i.e. p0� =· · ·= pk−1� = 0, the form � is called k-contact. The
number k is the degree of contactness. The 0-contact component of the form is called
its horizontal component and it is denoted by h�. The form p� = ∑q

k=1 pk� is called
the contact component of the form. It holds

(π r+1,r )∗� = h� + p�.

The form is called π r -horizontal or contact if (π r+1,r )∗� = h� (i.e. p� = 0), or
(π r+1,r )∗�= p� (i.e. h� = 0). For q > n every q-form is contact. Let q > n. The
form � for which pq−n� = 0 is called strongly contact. Let f : V r → R be a function.
Then we define

h f = (π r+1,r )∗ f.
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For any fibered chart (V, ψ), ψ = (xi , yσ ) it holds

hdxi = dxi , pdxi = 0, hdyσ
I = yσ

I i dxi , pdyσ
I i = (π r+1,r )∗dyσ

I − yσ
I i dxi .

For the 1-dimensional base the decomposition of a k-form � into its contact components
is extremely simple:

(π r+1,r )∗� = pk−1� + pk�.

Let us now present a brief review of basic properties of contact and strongly contact
forms on Jr Y in the coordinate form, adapted for practical purposes of our calculations.
For a more detailed description and proofs the reader is referred to the fundamental
papers of Krupka [13, 14]. The forms

(1)
(
dxi , ωσ

j1
, . . . , ωσ

j1... jr−1
, dyσ

j1... jr

)
, where ωσ

j1... jk = dyσ
j1... jk − yσ

j1... jk i dxi ,

define the contact base of 1-forms on V r . For a function f ∈ 	r
0V we denote by di f

its total derivative with respect to the variable xi ,

di f = ∂ f

∂xi + ∂ f

∂yσ
J

yσ
J i = d′

i f + ∂ f

∂yσ
I

yσ
I i , 0 ≤ |J | ≤ r, |I | = r.

Lemma 1. Let W ⊂ Y be an open set, q ≥ an integer, and � ∈ 	r
q V a q-form. Let

(V, ψ) be a fibered chart on Y for which W ⊂ V . Let � have the chart expression

(2) � =
q∑

s=0

AI1 I2
σ1σ2

· · ·Is
σs , is+1is+2...iq

dyσ1
I1

∧dyσ2
I2

∧· · ·∧dyσs
Is

∧dxis+1∧dxis+2∧· · ·∧dxiq

with coefficients antisymmetrical in all multiindices
(( I1

σ1

)
, . . . ,

( Is
σs

))
, 0 ≤ |Ip| ≤ r, 1 ≤

p ≤ s, antisymmetrical in all indices (is+1, . . . , iq) and symmetrical in all indices within
each multiindex Ip. Then there exists the unique decomposition

(3) (π r+1,r )∗� = h� + p� = h� + p1� + · · · + pq�,

in which for every 1 ≤ k ≤ q it holds

(4)

pk� = C I1 I2
σ1σ2

· · · Ik
σk ,ik+1ik+2...iq

ω
σ1
I1

∧ω
σ2
I2

∧· · ·∧ω
σk
Ik

∧dxik+1 ∧dxik+2 ∧· · ·∧dxiq ,

C I1 I2
σ1σ2

· · · Ik
σk , ik+1ik+2...iq

=
q∑

s=k

(s
k

)
AI1 I2

σ1σ2
· · · Ik

σk
· · · Is

σs , is+1is+2...iq
yσk+1

Ik+1ik+1
· · · yσs

Is is
,

alt (ik+1ik+2 · · · iq).

(Note, that the summations are taken over all independent choices of indices in each
multiindex, e.g. (i1 · · · i p) = I , |I | = p). The proof can be found in [13].

In our calculations we frequently use the (q−n)-contact component of a q− form �

for n < q ≤ Nr . For k = q − n the equation (4) gives

(5)
pq−n� = C I1

σ1
· · · Iq−n

σq−n ,iq−n+1...iq
εiq−n+1...iq ω

σ1
I1

∧ · · · ∧ ω
σq−n

Iq−n
∧ ω0

= B I1
σ1

· · ·Iq−n
σq−n ω

σ1
I1

∧ · · · ∧ ω
σq−n

Iq−n
∧ ω0.

The following lemma describes the local structure of contact forms. (For the proof
see [13, 14].)
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Lemma 2. Let W ⊂ Y be an open set and � ∈ 	r
q W a q-form. Let (V, ψ) be any

fibered chart on Y for which V ⊂ W . Then
(a) for 1 ≤ q ≤ n the form � is contact if and only if it can be expressed as

(6) � = �J
σ ωσ

J for q = 1, and � = ωσ
J ∧ � J

σ + d� for 2 ≤ q ≤ n,

where �J
σ ∈ 	r

0V are some functions, � J
σ ∈ 	r

q−1V some (q −1)-forms, and � ∈
	r

q−1V is a contact (q−1)-form which can be expressed as ωσ
I ∧ χ I

σ for some (q − 2)-
forms χ I

σ ∈ 	r
q−2V, 0 ≤ |J | ≤ r − 1, |I | = r − 1.

(b) for n < q ≤ Nr the form � is strongly contact if and only if it can be expressed as

(7) � = ω
σ1
J1

∧ · · · ∧ ω
σp

Jp
∧ dω

σp+1
Ip+1

∧ · · · ∧ dω
σp+s

Ip+s
∧ �

J1...Jp Ip+1...Ip+s
σ1...σpσp+1...σp+s ,

where �
J1...Jp Ip+1...Ip+s
σ1...σpσp+1...σp+s ∈ 	r

q−p−2s V, 0 ≤ |Jl | ≤ r − 1, 1 ≤ l ≤ p, |I j | = r − 1,
p + 1 ≤ j ≤ p + s, and summation is made over such all p and s for which p + s ≥
q − n + 1, p + 2s ≤ q.

4. Variational sequence

For the case of field theory we follow in this section the general ideas of Krupka [8]
and basic concepts presented in [9, 10] for mechanics. Let 	r

q , q ≥ 0, be the direct
image of the sheaf of smooth q-forms over Jr Y by the jet projection π r,0 (functions are
considered as 0-forms). Denote

(8)
	r

q,c = ker p0 for 1 ≤ q ≤ n, 	r
q,c = ker pq−n for q > n and

�r
q = 	r

q,c + d	r
q−1,c,

where p0 and pq−n are morphisms of sheaves induced by mappings p0 and pq−n , as-
signing to a form � its horizontal and pq−n contact component, respectively. d	r

q−1,c is
the image sheaf of 	r

q−1,c by d. For every open set W ⊂ Y , 	r
q W is the Abelian group of

q-forms on W r = (π r,0)−1(W ) and 	r
q,cW is the Abelian group of contact and strongly

contact q-forms for 1 ≤ q ≤ n and q > n, respectively, expressed locally by Lemma 2.
d	r

q−1,cW is the subgroup of 	r
q W given as {� ∈ 	r

q W |� = dη, η ∈ 	r
q,cW }. Let us

consider the sequence

(9) {0} → �r
1 → · · · → �r

n → �r
n+1 → �r

n+2 → · · · → �r
Pr

→ {0},
with arrows (except the first one) given by exterior derivatives d. The following lemma
describes a basic property of this sequence.

Lemma 3. Let W ⊂ Y be an open set, and let � ∈ �r
q W be a form, 1 ≤ q ≤ Nr .

Then there exists the unique decomposition � = �c + d�c, where �c ∈ 	r
q,cW and

�c ∈ 	r
q−1,cW .

Proof. For 1 ≤ q ≤ n it holds d	r
q−1,cV ⊂ 	r

q,cV , and thus only the case q ≥ n + 1
needs proof. Let � ∈ �r

q V . Then it is evident that there exist forms �c ∈ 	r
q,cV and

�c ∈ 	r
q−1,cV such that � = �c + d�c. Let � = 0, i.e. �c = −d�c, i.e. d�c = 0. We
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shall prove that both forms �c and �c vanish. Because �c is a strongly contact q-form,
it holds pq−n�c = 0.Then the chart expression of �c is of the form

(π r+1,r )∗�c =
q∑

k=q−n+1

AJ1
σ1

· · ·Jk
σk ,ik+1...iq

ω
σ1
J1

∧ · · · ∧ ω
σk
Jk

∧ dxik+1 ∧ · · · ∧ dxiq ,

where coefficients AJ1
σ1

· · ·Jk
σk ,ik+1...iq

∈ 	r+1
0 V, q − n + 1 ≤ k ≤ q are antisymmetrical in

multiindices
((J1

σ1

)
, . . . ,

(Jk
σk

))
and in indices (ik+1, . . . , iq), and symmetrical in all indices

within each multiindex Jp, 1 ≤ p ≤ k. By the exterior derivative we obtain

0 = (π r+1,r )∗d�c

=
q∑

k=q−n+1

dAJ1
σ1

· · ·Jk
σk ,ik+1...iq

∧ ω
σ1
J1

∧ ω
σ2
J2

∧ · · · ∧ ω
σk
Jk

∧ dxik+1 ∧ · · · ∧ dxiq

+ AJ1
σ1

· · ·Jk
σk ,ik+1...iq

(
dω

σ1
J1

∧ ω
σ2
J2

∧ · · · ∧ ω
σk
Jk

− ω
σ1
J1

∧ dω
σ2
J2

∧ · · · ∧ ω
σk
Jk

+ · · · + (−1)k+1ω
σ1
J1

∧ ω
σ2
J2

∧ · · · ∧ dω
σk
Jk

) ∧ dxik+1 ∧ · · · ∧ dxiq .

Taking into account that dωσ
J = −ωσ

J i ∧ dxi and rearranging the summations, we have
for the k-contact component of �c the following expression:

(π r+2,r+1)∗ pkd�c

= (−1)q
(
diq+1 AJ1

σ1
· · ·Jk

σk ,ik+1...iq
ω

σ1
J1

∧ ω
σ2
J2

∧ · · · ∧ ω
σk
Jk

∧ dxik+1 ∧ · · · ∧ dxiq+1

+ (−1)qk AJ1
σ1

· · ·Jk
σk ,ik+1...iq

ω
σ1
J1iq+1

∧ ω
σ2
J2

∧ · · · ∧ ω
σk
Jk

∧ dxik+1 ∧ · · · ∧ dxiq+1
)

+ (−1)k−1

(
∂ AJ1

σ1
· · ·Jk−1

σk−1,ik+1...iq+1

∂yσk
Jk

)
alt

(
(J1

σ1
)···(Jk

σk
)
)ωσ1

J1
∧ · · · ∧ ω

σk
Jk

∧ dxik+1 ∧ · · · ∧ dxiq+1

for q − n + 2 ≤ |Jk | ≤ q + 1. For k = q − n + 1 the last term is missing. All
summations range over 0 ≤ |Jp| ≤ r ,1 ≤ p ≤ k, with the exception of the last term, in
which |Jk | = r + 1. Especially, for k = q − n + 1 we obtain

(π r+2,r+1)∗ pq−n+1�c = (−1)q
(
diq+1 AJ1

σ1
· · ·Jq−n+1

σq−n+1,iq−n+2...iq
ω

σ1
J1

∧ · · · ∧ ω
σq−n+1
Jq−n+1

∧ dxiq−n+2 ∧ · · · ∧ dxiq+1 + (−1)q(q − n + 1)AJ1
σ1

· · ·Jq−n+1
σq−n+1,iq−n+2...iq

ω
σ1
J1iq+1

∧ ω
σ2
J2

∧ · · · ∧ ω
σq−n+1
Jq−n+1

∧ dxiq−n+1 ∧ · · · ∧ dxiq+1
)
.

For |J1| = r the form ω
σ1
J1iq+1 should be an element of 	r+2

1 V . Thus, taking into account
the antisymmetry of coefficients, the condition pq−n+1d�c = 0 leads to the relation

AJ1
σ1

· · ·Jq−n+1
σq−n+1,iq−n+2...iq

= 0

as soon as any one of the multiindices |Jp|, 1 ≤ p ≤ k is of length r . We obtain the
chart expression of �c as follows

�c =
q∑

k=q−n+1

AJ1
σ1

· · ·Jk
σk ,ik+1...iq

ω
σ1
J1

∧ ω
σ2
J2

∧ · · · ∧ ω
σk
Jk

∧ dxik+1 ∧ · · · ∧ dxiq ,
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with 0 ≤ |Jp| ≤ r − 1. We can see that the form �c is ω-generated. Thus, in the
expression for (π r+2,r+1)∗ pkd�c the summation is made over 0 ≤ |Jp| ≤ r − 1 the only
exception being the term

(−1)k−1

(
∂ AJ1

σ1
· · ·Jk−1

σk−1,ik+1...iq+1

∂yσk
Jk

)
alt

(
(J1

σ1
)···(Jk

σk
)
)ωσ1

J1
∧ · · · ∧ ω

σk
Jk

∧ dxik+1 ∧ · · · ∧ dxiq+1

in which it could be |Jk | = r . For k = q − n + 2 it holds(
AJ1

σ1
· · ·Jq−n+1

σq−n+1,iq−n+3...iq+1

∂y
σq−n+2
Jq−n+2

)
alt

(
(J1

σ1
)···(Jq−n+2

σq−n+2
)
) = 0,

as soon as any one of the multiindices J1, . . . , Jq−n+2 is of length r . This is caused
by the coefficients AJ1

σ1
· · ·Jq−n+1

σq−n+1,iq−n+3...iq+1
being zero for some |Jp| = r . Expressing

(π r+2,r+1)∗ pq−n+2d�c we can repeat the procedure and finally obtain �c = 0 (all co-
efficients are zeros). Then d�c = 0 and the same argumentation as for �c leads to the
conclusion that �c = 0. This finishes the proof.

Thus, the sequence (9) is an exact subsequence of the de Rham sequence

{0} → 	r
1 → · · · → 	r

n → 	r
n+1 → 	r

n+2 → · · · → 	r
Nr

→ {0}.
The quotient sequence

(10)

{0} → RY → 	r
0 → 	r

1/�r
1 → · · ·

→ 	r
n/�r

n → 	r
n+1/�r

n+1 → 	r
n+2/�r

n+2 → · · ·
→ 	r

Pr
/�r

Pr
→ 	r

Pr +1 → · · · → 	r
Nr

→ {0}
is called the variational sequence of the r-th order. It is, of course, also exact. We denote
quotient mappings as follows

(11) Er
q : 	r

q/�r
q � [�] −→ Er

q([�]) = [d�] ∈ 	r
q+1/�r

q+1.

The mappings Er
n and Er

n+1 generalize the classical concept of Euler–Lagrange mapping
and Helmholtz–Sonin mapping of calculus of variations, respectively. They represent
“physically relevant” terms of the variational sequence.

Using the chart expressions of forms we can prove the following lemma:

Lemma 4. Let W ⊂ Y be an open set, and let � ∈ �r+1
q W be a form, 1 ≤ q ≤ Nr .

Let � be (π r+1,r )-projectable, i.e. � = (π r+1,r )∗η for a form η ∈ 	r
q W . Then η is an

element of �r
q W .

Proof. By hypothesis assume that � = (π r+1,r )∗η. Aided by Lemma 3 we can further
write �c + d�c = (π r+1,r )∗η. Taking the exterior derivative of this equation we obtain
d�c = (π r+1,r )∗dη. Let us use the decomposition of dη:

d�c =
q+1∑
k=1

pkdη
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and

pkd�c = (π r+2,r+1)∗ pkdη = pkd (pk−1η + pkη)

using Lemma 3 of the second chapter in [13]. Applying this identity for k = q+1, . . . , 1
and using coordinate expressions (4) for pkη we recover (due to the fact that the expres-
sions are polynomial in the jet coordinates yν

K , |K | = r + 1) the π r+1,r -projectability
of �c. The complete result follows from linearity by reapplying the procedure to dρc.

Let us consider the following scheme:

{0} −−−→ �r+1
q −−−→ 	r+1

q −−−→ 	r+1
q /�r+1

q −−−→ {0}
 
 

{0} −−−→ �r

q −−−→ 	r
q −−−→ 	r

q/�r
q −−−→ {0}

in which the first two “uparrows” represent the immersions by pullbacks and the third
one defines the quotient mapping

Qr+1,r
q : 	r

q/�r
q −→ 	r+1

q /�r+1
q .

Using Lemma 4 we can immediately see that the mapping Qr+1,r
q is injective. The (in-

jective) mappings

(12) Qs,r
q : 	r

q/�r
q −→ 	s

q/�s
q, r < s

can be defined in a quite analogous way.
The study of global properties of the variational sequence is based on the following

facts proved by Krupka [8, 10]:

1. Each sheaf 	r
q is fine.

2. The variational sequence (in the shortened notation denoted by {0} → RY → V)
is an acyclic resolution from the constant sheaf RY over Y .

3. For every q ≥ 0 it holds Hq(�(RY ,V)) = Hq(Y,R), where

�(Y,V) : {0} → �(Y,RY ) → �(Y, 	r
0) → �(Y, 	r

1)

→ · · · → �(Y, 	r
Nr

) → {0}
is the cochain complex of global sections and Hq(�(RY ,V)) denotes its q-th cohomol-
ogy group.

5. Representation of the variational sequence

In this section we use the injectivity of mappings Qs,r
q to discuss the problem of the

representation of the variational sequence by the appropriately chosen (exact) sequence
of mappings of spaces of forms. Let W be an open subset of Y . Two q-forms �, η ∈
	r

q W belonging to the same class 	r
q W/�r

q W are called equivalent. Two q-forms � ∈
	r

q W and η ∈ 	t
q W are called equivalent in the generalized sense if there exists an

integer s ≥ r, t for which (π s,r )∗� − (π s,t)∗η ∈ �s
q W . Any mapping

�s,r
q : 	r

q W/�r
q W � [�] −→ �s,r

q ([�]) = �0 ∈ 	s
q W
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with �0 ∈ [(π s,r )∗�] (i.e. � is equivalent with �0 in the generalized sense), is called
representation of 	r

q W/�r
q W . Because of the injectivity of mappings Qs,r

q (see Defini-
tion (12) and Lemma 4) the representation mappings �s,r

q are injective too.
This injectivity enables us to define the representation of the variational sequence

by forms as the lower row of the following diagram:

· · · −−−→ 	r
q/�r

q −−−→ 	r
q+1/�r

q+1 −−−→ · · ·� �
· · · −−−→ 	s

q −−−→ 	s
q+1 −−−→ · · ·

in which the upper row is the variational sequence, the “downarrows” represent the
mappings �s,r

q and mappings of the lower row are defined by

(13) Es,r
q : 	s

q −→ 	s
q+1, Es,r

q = �
s,r
q+1 ◦ Er

q ◦ (�s,r
q )−1, Es,r

0 = �
s,r
1 ◦ Er

0.

In the following we shall show that there exists such a representation of the variational
sequence (i.e. the integer s ≥ r and mappings Es,r

q ) for which Es,r
n assigns to every

lagrangian of the r -th order its Euler–Lagrange form and Es,t
n+1, r ≤ t ≤ s, assigns to

every dynamical form on J t Y its Helmholtz–Sonin form. Such a representation will be
called physical. It is given by following requirements for mappings (�s,r

q ):

(14) �s,r
n ([λ]) = (π s,r )∗λ, �

s,r
n+1([dλ]) = Eλ, �s,t(dE) = HE .

The key Theorem 1 characterizes locally a representation of the r -th order variational
sequence up to its physically relevant part, i.e. for 1 ≤ q ≤ n + 2. The Examples 1 and
2 succeeding this theorem show that the representation presented there is physical, i.e.
it fulfills conditions (14).

Now, let us construct the mappings �s,r
q .

It is evident that for every q, for which 1 ≤ q ≤ n, the q-forms � and h� are
equivalent in the generalized sense. Thus, the form h� can be considered as the (global)
representative of the class [�] and we can define

(15) �s,r
q : 	r

q/�r
q � [�] −→ �s,r

q ([�]) = (π s,r+1)∗h� ∈ 	s
q,

for arbitrary s ≥ r + 1. Let W ⊂ Y be an open set and let � ∈ 	r
n+1W . Let (V, ψ)

be a fibered chart on Y such that V ⊂ W . We shall find a integer s and a form α ∈
	s

n+1V , such that α belongs to the class [(π s,r )∗�], and p1α is π s+1,0-horizontal. The
first mentioned condition means that α is of the form α − (π s,r )∗� = θc + dθ c for
some θc ∈ 	s

n+1,cV , and some θ c ∈ 	s
n,cV . Then p1α − (π s+1,r+1)∗ p1� = p1dθ c. Let

(π s+1,s)∗θ c be expressed in the fibered chart (V, ψ) as

(π s+1,s)∗θ c =
s∑

k=0

Q j1... jk ,i
σ ωσ

j1... jk ∧ ωi +
n∑

l=2

plθ c,

i.e.

p1dθ c =
s∑

k=0

(
h dQ j1... jk ,i

σ ∧ ωσ
j1... jk ∧ ωi − Q( j1... jk ,i)

σ ωσ
j1... jk i ∧ ω0

)
.
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Coefficients Q j1... jk ,i
σ are elements of 	r+1

0 V and ( j1 . . . jk, i) denotes the full sym-
metrization. Suppose p1α to be of the form p1α = ∑s

k=0 A j1... jk
σ ωσ

j1... jk
∧ ω0 and

p1� = ∑s
k=0 B j1... jk

σ ωσ
j1... jk

∧ ω0. Then we obtain

s∑
k=0

A j1... jk
σ ωσ

j1... jk ∧ ω0 −
r∑

k=0

B j1... jk
σ ωσ

j1... jk ∧ ω0

= −di Q ,i
σ ωσ ∧ ω0 −

s∑
k=1

(
di Q j1... jk ,i

σ + Q( j1... jk , jk+1)
σ

)
ωσ

j1... jk ∧ ω0

− Q( j1... js , js+1)
σ ω j1... js+1 ∧ ω0,

which gives the following system of equations for coefficients Q( j1... jk ,i)
σ :

Q( j1... js , js+1)
σ = 0 ⇒ Q j1... js , js+1

σ = q j1... js , js+1
σ ,

where q( j1... js , js+1)
σ = 0,

A j1... jk
σ + di Q j1... jk ,i

σ + Q( j1... jk−1, jk )
σ = 0 for r + 1 ≤ k ≤ s,(

A j1... jk
σ − B j1... jk

σ

) + di Q j1... jk ,i
σ + Q( j1... jk−1, jk )

σ = 0 for 1 ≤ k ≤ r,

Aσ − Bσ + di Q ,i
σ = 0.

Solving this system we obtain step by step:

Q( j1... jk−1, jk )
σ = −di Q j1... jk ,i

σ − A j1... jk
σ

⇒ Q j1... jk−1, jk
σ = q j1... jk−1, jk

σ − di Q j1... jk ,i
σ − A j1... jk

σ for r + 1 ≤ k ≤ s,

where q( j1... jk ,i)
σ = 0. Then

Q j1... js−1, js
σ = q j1... js−1, js

σ − d js+1q j1... js , js+1
σ − A j1... js

σ ,

Q j1... js−2, js−1
σ = q j1... js−2, js−1

σ − d js q
j1... js−1, js
σ + d js d js+1q j1... js , js+1

σ

− A j1... js−1
σ + d js A j1... js

σ ,

and recurrently

Q j1... jk−1, jk
σ =

s−k+1∑
l=0

(−1)ld jk+1 · · · d jk+l q
j1... jk+l−1, jk+l
σ

−
s−k+1∑

l=1

(−1)ld jk+1 · · · d jk+l−1 A j1... jk+l−1
σ

for r +1 ≤ k ≤ s. Putting into this formula the expressions (A j1... jk
σ − B j1... jk

σ ) instead of
A j1... jk

σ we obtain the corresponding relations for 1 ≤ k ≤ r . Finally, for k = 1 we have

Q , j1
σ =

s∑
l=0

(−1)ld j2 · · · d jl+1q j1... jl , jl+1
σ

−
s∑

l=1

(−1)ld j2 · · · d jl

(
A j1... jl

σ − B j1... jl
σ

)
,
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where B j1... jl
σ = 0 for r + 1 ≤ k ≤ s. Finally

Aσ − Bσ = −d j1 Q , j1
σ

and thus

Aσ − Bσ = d j1q , j1
σ +

s∑
l=1

(−1)ld j1 · · · d jl+1q j1... jl , jl+1
σ

−
s∑

l=1

(−1)l
(

A j1... jl
σ − B j1... jl

σ

) = 0.

Due to the symmetry of the operator d j1 · · · d jl+1 and the antisymmetry of q j1... jl , jl+1
σ it

holds
s∑

l=1

(−1)ld j1 · · · d jl+1q j1... jl , jl+1
σ = 0.

Without any loss of generality we put q , j1
σ = 0 and we finally obtain

s∑
l=0

(−1)ld j1 · · · d jl

(
A j1... jl

σ − B j1... jl
σ

) = 0.

The requirement of π s+1,0-horizontality of the representative gives A j1... jk
σ = 0 for 1 ≤

k ≤ s and

Aσ =
r∑

l=0

(−1)ld j1 · · · d jl B j1... jl
σ .

It is evident that the coefficients Aσ are elements of 	2r+1
0 V . The representative of the

class [�] has the form

r∑
l=0

(−1)ld j1 · · · d jl B j1... jl
σ .

Now, let us apply the analogous construction for q = n + 2. Let � ∈ 	r
n+2V .

We wish t0 find an integer s and a form α ∈ 	s
n+2V such that α ∼ [π s,r )∗�], i.e.

α − (π s,r )∗� = θc + dθ c for some forms θc ∈ 	s
n+2,cV and θ ∈ 	s

n+1,cV . This leads to
the condition p2α − (π s+1,r+1)∗ p2� = p2 dθ c. Suppose that in the fibered chart (V, ψ)

the forms p2α, p2� and p2θ c have the following chart expressions:

p2α =
s∑

k,l=0

A( j1... jk )(k1...kl )
σν ωσ

j1... jk ∧ ων
k1...kl

∧ ω0,

p2� =
r∑

k,l=0

B( j1... jk )(k1...kl )
σν ωσ

j1... jk ∧ ων
k1...kl

∧ ω0,

p2θ c =
s∑

k,l=0

Q( j1... jk )(k1...kl ),i
σν ωσ

j1... jk ∧ ων
k1...kl

∧ ωi .
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Then the requirement p2α − (π s+1,r+1)∗ p2� = p2 dθ c, the fact that p1dθ c = 0 and thus
(π s+1,r+1)∗ p2dθ c = p2dp1θ c + p2dp2θ c = p2dp2θ c gives

s∑
k,l=0

(
A( j1... jk )(k1...kl )

σν − B( j1... jk )(k1...kl )
σν

)
ωσ

j1... jk ∧ ων
k1...kl

∧ ω0

−
s∑

k,l=0

(
di Q( j1... jk )(k1...kl ),i

σν ωσ
j1... jk ∧ ων

k1...kl
∧ ω0

+ Q( j1... jk )(k1...kl ),i
σν ωσ

j1... jk i ∧ ων
k1...kl

∧ ω0

+ Q( j1... jk )(k1...kl ),i
σν ωσ

j1... jk ∧ ων
k1...kl i ∧ ω0

) = 0,

where we consider B( j1... jk )(k1...kl )
σν = 0 as soon as any of indices ( j1, . . . , jk, k1, . . . , kl)

exceeds r . After some calculations we obtain the following system of equations for
coefficients Q( j1... jk )(k1...kl )

σν :

Aσν − Bσν − di Q ,i
σν = 0,(

A( j1... jk )( )
σν − B( j1... jk )( )

σν − di Q( j1... jk )( ),i
σν − Q

( j
1
... j

k−1
)( ), j

k
σν

) = 0

for 1 ≤ k ≤ s,(
A( j1... jk )(k1...kl )

σν − B( j1... jk )(k1...kl )
σν − di Q( j1... jk )(k1...kl ),i

σν

− Q
( j

1
... j

k−1
)(k1...kl ), j

k
σν − Q

( j1... jk )(k1...kl−1),kl
σν

) = 0

for 1≤ k, l ≤ s, l ≤ k, and

Q
( j

1
... j

s
)( ), j

s+1
σν = 0, Q

( j
1
... j

s
)(k1...kl ), j

s+1
σν = 0.

The “underlines” under indices denote the symmetrization. So, Q
( j

1
... j

k−1
)(k1...kl ), j

k
σν de-

notes that the symmetrization is made over indices ( j1, . . . , jk−1, jk).
Now, we shall solve the presented equations: We can express the coefficients

Q( j1... jk )(k1...kl ), jk+1
σν as

Q( j1... jk )(k1...kl ), jk+1
σν = Q

( j
1
... j

k
)(k1...kl ), j

k+1
σν + q( j1... jk )(k1...kl ), jk+1

σν ,

where q
( j

1
... j

k
)(k1...kl ), j

k+1
σν = 0,

Q( j1... jk )(k1...kl ),kl+1
σν = Q

( j1... jk )(k1...kl ),kl+1
σν + q( j1... jk )(k1...kl ),kl+1

σν ,

where q
( j1... jk )(k1...kl ),kl+1
σν = 0. Solving the equations for Q′s we obtain recurrently

Q( j1... js )(k1...kl ), js+1
σν = q( j1... js )(k1...kl ), js+1

σν , 1 ≤ l ≤ s,

Q( j1... js )( ), js+1
σν = q( j1... js )( ), js+1

σν for l = 0,

Q( j1... js−1)( ), js
σν = q( j1... js−1)( ), js

σν − d js+1q( j1... js )( ), js+1
σν

+ A( j1... js )( )
σν − B( j1... js )( )

σν ,

Q( j1... js−2)( ), js−1
σν = q( j1... js−2)( ), js−1

σν − d js q
( j1... js−1)( ), js
σν − d js+1q( j1... js )( ), js+1

σν

+ (
A( j1... js−1)( )

σν − B( j1... js−1)( )
σν

) − d js

(
A( j1... js )( )

σν − B( j1... js )( )
σν

)
,
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Q( j1... jk−1)( ), jk
σν =

s−k+1∑
l=0

(−1)ld jk+1 · · · d jk+l q
( j1... jk+l−1)( ), jk+l
σν

−
s−k+1∑

l=1

(−1)ld jk+1 · · · d jk+l−1

(
A( j1... jk+l−1)( )

σν − B( j1... jk+l−1)( )
σν

)
,

Q( )( ), j1
σν =

s∑
l=0

(−1)1d j2 · · · d jl+1q( j1... jl )( ), jl+1
σν

−
s∑

l=1

(−1)ld j2 · · · d jl

(
A( j1... jl )( )

σν − B( j1... jl )( )
σν

)
.

The last relation has been obtained for k = 1. Moreover, it holds

Aσν − Bσν − d j1 Q( )( ), j1
σν = 0,

and thus
s∑

l=0

d j1 · · · d jl

(
A( j1... jl )( )

σν − B( j1... jl )( )
σν

)

−
s∑

l=0

(−1)ld j1 · · · d jl+1q( j1... jl )( ), jl+1
σν = 0.

Taking again into account the symmetry of the operator d j1 · · · d jl+1 and the antisymme-
try of q( j1... jl )( ), jl+1

σν , and putting q( )( ), j1
σν = 0, we obtain

s∑
l=0

d j1 · · · d jl

(
A( j1... jl )( )

σν − B( j1... jl )( )
σν

) = 0.

Repeating the procedure for Q( j1... jk−1)(k1), jk
σν we obtain

Q( j1... jk−1)(k1), jk
σν =

s−k+1∑
l=0

(−1)ld jk+1 · · · d jk+l q
( j1... jk+l−1)(k1), jk+l
σν

+
s−k+1∑

l=0

(−1)ld jk+1 · · · d jk+l−1 Q( j1... jk+l−1)( ),k1
σν

−
s−k+1∑

l=1

(−1)ld jk+1 · · · d jk+l−1

(
A( j1... jk+l−1)(k1)

σν − B( j1... jk+l−1)(k1)
σν

)
.

Q( j1... jk+l−1)( ),k1
σν are determined by the proceeding set of relations. Finally, for k = 1 we

obtain

Q( )(k1), j1
σν =

s∑
l=0

(−1)ld j2 · · · d jl+1q( j1... jl )(k1), jl+1
σν

−
s∑

l=1

(−1)ld j2 · · · d jl

(
A( j1... jl )(k1)

σν − B( j1... jl )(k1)
σν

)
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+
s∑

l=1

(−1)ld j2 · · · d jl

(
s−l∑
p=0

(−1)pd jl+2 · · · d jl+p+1q
( j1... jl k1 jl+2... jl+p)( ), jl+p+1
σν

−
s−l∑
p=1

d jl+2 · · · d jl+p

(
A( j1... jl k1 jl+2... jl+p)( ) − B( j1... jl k1 jl+2... jl+p)( )

))
.

Completing the procedure we finally obtain functions Q( j1... jk )(k1...kl ),i
σν . For obtaining

such a representative which fulfills the relation (14) for the specially chosen class [η],
where η is the exterior derivative of a π r,0-horizontal form, we choose a form α ∈
[(π s,r )∗�] with the 2-contact component given by the following chart expression

p2α = C j1... jk
σν ωσ

j1... jk ∧ ων ∧ ω0.

Then the representative of the class [�] is

(π s,2r+1)∗
2r∑

j=0

[
j∑

p=0

r∑
l= j−p

(−1)l

(
l

j − p

)
di j+1 · · · di p+l B

i1...i p,i p+1...i p+l
σν

]
ωσ

i1...i j

∧ ων ∧ ω0,

sym (i1 . . . i j ), s ≥ 2r+1, is the representation of 	r
n+2V/�r

n+2V . So, we can formulate
the following theorem:

Theorem 5. Let W ⊂ Y be an open set, and let q ≥ be an integer. Let (V, ψ) be a
fibered chart on Y for which V ⊂ W .

(a) Let 1 ≤ q ≤ n and let � ∈ 	r
q W be a form. Then the mapping

(16) �s,r
q : 	r

q V/�r
q V � � −→ �s,r

q ([�]) = (π s,r )∗h� ∈ 	s
q V, s ≥ r + 1

is the representation of 	r
q V/�r

q V .
(b) Let q = n +1 and let � ∈ 	r

n+1W be a form expressed in the fibered chart (V, ψ)

by the relation

(17) p1� = B J
σ ωσ

J ∧ ω0,

in which coefficients B J
σ ∈ 	r+1

0 V , 0 ≤ |J | ≤ r , are given by the chart expression of �

following eqs. (2 − 5). Then the mapping

�
s,r
n+1 : 	r

n+1V/�r
n+1V � � −→ �

s,r
n+1([�]) = �0 ∈ 	s

n+1V, s ≥ 2r + 1

assigning to the class [�] the form

(18) �0 = (π s,2r+1)∗
(

r∑
l=0

(−1)ld j1 · · · d jl B j1··· jl
σ

)
ωσ ∧ ω0

is the representation of 	r
n+1V/�r

n+1V .
(c) Let q = n +2 and let � ∈ 	r

n+2W be a form expressed in the fibered chart (V, ψ)

by the relation

(19) p2� = B J K
σν ωσ

J ∧ ων
K ∧ ω0,
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in which coefficients B J K
σν ∈ 	r+1

0 V , 0 ≤ |J | ≤ r , are given by the chart expression of
� following eqs. (2 − 5). Then the mapping

�
s,r
n+2 : 	r

n+2V/�r
n+2V � � −→ �

s,r
n+2([�]) = �0 ∈ 	s

n+2V, s ≥ 2r + 1

assigning to the class [�] the form

(20)

�0 = (π s,2r+1)∗
2r∑

j=0

[
j∑

p=0

r∑
l= j−p

(−1)l

(
l

j−p

)
di j+1 · · · di p+l

× B
i1...i p,i p+1...i p+l
σν

]
ωσ

i1···i j
∧ ων ∧ ω0,

sym (i1 . . . i j ), s ≥ 2r + 1, is the representation of 	r
n+2V/�r

n+2V .

Proof. The proof is constructive and precedes the stated theorem.

The representative (18) of a class [�] of (n+1)-forms generated by � is called Euler–
Lagrange form of the class [�]. The representative (20) of a class [�] of (n + 2)-forms
generated by � is called its Helmholtz–Sonin form. Following the relation (13) which
defines the representation of the variational sequence we can use Theorem 1 for a form
d�, � ∈ 	r

nW or � ∈ 	r
n+1W , for obtaining the chart expressions of Euler–Lagrange

and Helmholtz–Sonin mappings Es,r
n and Es,r

n+1, respectively. These mappings represent
the generalization of the well-known “classical” Euler–Lagrange and Helmholtz–Sonin
mappings of the calculus of variations.

Example 1. Let W ⊂ Y be an open set. Let λ ∈ 	r
nW be a lagrangian given in a

fibered chart (V, ψ), V ⊂ W , by the expression

λ = Lω0, L ∈ 	r
0V .

Using Theorem 1(b) we obtain immediately

(21) Eλ = �
2r,r
n+1([dλ]) =

(
r∑

l=0

(−1)ld j1 · · · d jl

∂L
∂yσ

j1... jl

)
ωσ ∧ ω0

which is evidently the Euler–Lagrange form of the lagrangian λ.
More generally,let � ∈ 	r

nW be a form and [�] its class represented by the horizontal
form λ� = �r+1,r

n ([�]). λ� has the chart expression

λ� = h� = L� ω0, L ∈ 	r+1
0 V,

where L� is affine in variables yσ
r+1. Using Lemma 4 and Theorem 1(b) we obtain

immediately

�
2r+1,r
n+1 ([d�]) = �

2r+1,r+1
n+1 ([dλ�]) = Eλ�

,

where Eλ�
is determined by the function L� following the equation (21) for s = 2r + 1

instead of 2r .

Example 2. Now, let η ∈ 	r
nW be a generally chosen n-form, i.e. [η] ∈ 	r

nW/�r
nW .

Let (V, ψ) be a fibered chart on Y for which V ⊂ W . We have

�r+1,r
n ([η]) = hη = Lω0,
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where L ∈ 	r+1
0 V . We shall find the representative (18) of the class [η]. We have

(π r+1,r )∗ dη = d

(
hη + p1η +

n∑
k=2

pkη

)
,

(π r+2,r+1)∗ p1 dη = p1 d(hη + p1η).

Taking into account the chart expression of (hη + p1η) in the form

hη + p1η = Lω0 +
r∑

k=0

P j1... jk ,i
σ ωσ

j1... jk ∧ ωi ,

where P j1... jk ,i
σ ∈ 	r+1

0 V , we obtain

p1 d(hη + p1η) =
(

∂L
∂yσ − di P i

σ

)
ωσ ∧ ω0

+
r∑

k=1

(
∂L

∂yσ
j1... jk

− di P j1... jk ,i
σ + P ( j1... jk−1, jk )

σ

)
ωσ

j1... jk ∧ ω0

+
(

∂L
∂yσ

j1... jr+1

− P ( j1... jr , jr+1)
σ

)
ωσ

j1... jr+1
∧ ω0.

Then the representative (18) is

�
2r+1,r
n+1 ([dη]) =

(
r+1∑
l=0

(−1)ld j1 · · · d jl B j1... jl
σ

)
ωσ ∧ ω0,

where

Bσ = ∂L
∂yσ − di P ,i

σ ,

B j1... jl
σ = ∂L

∂yσ
j1... jl

− di P j1... jl ,i
σ − P ( j1... jl−1, jl )

σ , for 1 ≤ l ≤ r,

B j1... jr+1
σ = ∂L

∂yσ
j1... jr+1

− P ( j1... jr , jr+1)
σ .

Taking into account that

P j1... jl , jl+1
σ = P ( j1... jl , jl+1)

σ + p j1... jl , jl+1
σ ,

where p( j1... jl , jl+1)
σ = 0 and calculating the representative we obtain

�
2r+1,r
n+1 ([dη]) =

r+1∑
l=0

(−1)ld j1 · · · d jl

(
∂L

∂yσ
j1··· jl

)

+
r+2∑
l=2

(−1)ld j1 · · · d jl p j1... jl−1, jl
σ .

The second sum vanishes because of the symmetry of the operator d j1 · · · d jl and the
antisymmetry of functions pσ j1 · · · jl−1, jl .
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Finally

�
2r+1,r
n+1 ([dη]) =

r+1∑
l=0

(−1)ld j1 · · · d jl

(
∂L

∂yσ
j1... jl

)
.

On the other hand, it holds p1 d�hη = Ehη, where �hη is a Lepagean equivalent of the
lagrangian hη = Lω0, and Ehη is its Euler–Lagrange form. Thus

�
2r+1,r
n+1 (dη]) = p1 d�hη = Ehη.

This example shows that the representative of dη for an arbitrarily chosen n-form η (not
necessarily a lagrangian) is directly obtained as the 1-contact component of the exterior
derivative of a Lepagean equivalent of the corresponding lagrangian hη.

Example 3. Let W ⊂ Y be an open set. Let E ∈ 	r
n+1W be a dynamical form given

in the fibered chart (V, ψ), V ⊂ W , by the expression

E = εσ ωσ ∧ ω0, εσ ∈ 	r
0V .

Then

� = dE =
∑

0≤|J |≤r

∂εν

∂yσ
J

ωσ
J ∧ ων ∧ ω0.

On the other hand, in general, we have

p2� = B J K
σν ωσ

J ∧ ων
K ∧ ω0, B J K

σν + BK J
νσ = 0.

Thus,

B0J
σν = −B J0

νσ = −1

2

∂εσ

∂yν
J

, J = ( j1 · · · jk), 1 ≤ k ≤ r,

B00
σν = −B00

νσ =
(

∂εν

∂yσ

)
alt(σν)

,

other coefficients B J K
σν being zero. Using Theorem 1(c) we obtain

(22)

HE = �
2r+1,r
n+1 ([dE]) = 1

2

[
2r∑

j=0

(
εν

∂yσ
i1...i j

− (−1) j ∂εσ

∂yν
i1...i j

−
r∑

l= j+1

(−1)l

(
l

j

)
di j+1 · · · dil

∂εσ

∂yν
i1...il

)]
ωσ

i1...i j
∧ ων ∧ ω0,

which is the Helmholtz–Sonin form of the dynamical form E .
More generally, let � ∈ 	r

n+1W be a form and [�] its class represented by the dy-
namical form

E� = �
2r+1,r
n+1 ([�]) = (ε�)σωσ ∧ ω0, (ε�)σ ∈ 	2r+1

0 V,

given by (18). Using Lemma 4 and Theorem 1(c) we can obtain

�
s,r
n+2([d�]) = �

s,2r+1
n+2 ([dE�]) = HE�

, s ≥ 2r + 1.
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These results are in agreement with those of Krupka (see [8]) and Kašparová ([5] for the
1-st order variational sequence). Examples 1 and 2 show that the obtained representation
of the variational sequence fulfills the requirement (14), i.e. it is physical.

6. Global properties of the representation

The construction of the representative mappings �s,r
q in the previous section for

1 ≤ q ≤ n is given by the horizontalization h, and thus, it is global. For q = n + 1
the globality of the definition of the representatives of the type (18) is mentioned in [1]
with the reference to a proof using an integration method. For the 1-st order variational
sequence the globality of representatives (18) and (20) was proved in [4, 6], with the
use of the integration of appropriately chosen forms. Note that the construction method
given for representatives preceding Theorem 1 is manifestly correct since it is given
by subtraction of globally defined differential forms. In this section though we follow
the idea of the integration method to prove the correctness (globality) of higher order
representatives (18) and, as a new result, (20).

Theorem 6. Let (V, ψ) be a fibered chart on Y . Let 1 ≤ q ≤ n + 2 and � ∈ 	r
qY

be a form. Then the class [�] is represented by eqs. (16), (18) and (20) globally, for
1 ≤ q ≤ n, q = n + 1 and q = n + 2, respectively.

Proof. Because of globality of the horizontalization mapping h only the cases q =
n + 1, n + 2 need proof. Let 	 be a piece of manifold X .

Let q = n + 1 and let � ∈ 	r
n+1W be a form with the chart expression given by eqs.

(2–5), (17), i.e.

(23) (π r+1,r )∗� = B J
σ ωσ

J ∧ ω0 +
n+1∑
k=2

pk�, summation over 0 ≤ |J | ≤ r.

Let ξ be a π -vertical vector field such that supp ξ ⊂ π−1(	), and let ξ = ξσ (∂/∂yσ ) be
its chart expression in (V, ψ). Let us define (for s ≥ r , in general)

η	 =
∫

	

J sγ ∗ ◦ (π s,r+1)∗hiJr ξ�

Using the fact that ξ is vertical we obtain

η	 =
∫

	

J sγ ∗ ◦ (π s,r+1)∗i Jr+1ξ p1�.

Further ∫
	

J sγ ∗ ◦ (π s,r+1)∗ (
B J

σ · DJ ξ
σ
)
ω0,

We have denoted by DJ the symbol d j1 · · · d jk for J = ( j1 · · · jk), 1 ≤ k ≤ r . Due to the
properties of total derivative, the operator DJ is symmetrical in all indices contained in
multiindex J . By the properties of the pullback mapping it holds

η	 =
∫

	

(B J
σ · DJ ξ

σ )(Jr+1γ ) ω0,
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Using recursively the relation(
( f d j g) ◦ Jr+1γ

)
ω0 = (

(d j ( f g) − gd j f ) ◦ Jr+1γ
)
ω0

= (
di ( f g) ◦ Jr+1γ

)
δi

j ω0 − (
(gd j f ) ◦ Jr+1γ

)
ω0

= (
di ( f g) ◦ Jr+1γ

)
dxi ∧ ω j − (

(gd j f ) ◦ Jr+1γ
)
ω0

= Jr+1γ ∗((π r+1,r )∗d(( f g) ∧ ω j ) − (gd j f ) ω0
)

for functions f, g, Stokes theorem and the assumption concerning the support of ξ we
have

η	 =
∫

	

(
ξσ ·

r∑
l=1

(−1)ld j1 · · · d jl B j1... jl
σ

)
(J 2r+1γ ) ω0

=
∫

	

(
r∑

l=1

(−1)ld j1 · · · d jl B j1... jl
σ

)
ωσ (J 2r+1ξ)(J 2r+1γ ) ∧ ω0,

(24) η	 =
∫

	

(J 2r+1γ )∗i J 2r+1ξ�0.

Since this expression was defined in a coordinate-free way the expression inside of
the integral defines the representative �0 of a form � globally and the representation
mapping is thus defined correctly.

Let q = n + 2 and let � ∈ 	r
n+2Y be a form, for which

(25) π r+1,r� = B J K
σν ωσ

J ∧ ων
K ∧ ω0 +

n+2∑
k=3

pk�,

with coefficients B J K
σν given by (2–5). Let ζ be another vector field which fulfills the

same conditions as ξ . We define

(26) η	 =
∫

	

J sγ ∗ ◦ (π s,r+1)∗hiJr ξ i Jr ζ �.

Then

η	 =
∫

	

J sγ ∗ ◦ (π s,r+1)∗i Jr+1ξ i Jr+1ζ p2�

=
∫

	

J sγ ∗(π s,r+1)∗ (
2ξσ

J ζ ν
K B J K

σν

)
ω0

=
∫

	

(DJ ξ
σ )

(
2B J K

σν · DK ζ ν
)
(Jr+1γ ) ω0,

with the operator DJ previously defined as d j1 · · · d jk , J = ( j1 · · · jk). Applying the
procedure used for q = n+1 in the first part of the proof to the n-form (2B J K

σν DK ζ ν ω0)

we have

η	 =
∫

	

2(−1)|J | (ξσ DJ (B J K
σν · DK ζ ν)

)
(J 2r+1γ ) ω0,
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summation over |J |, |K | ≤ r . Calculating the expression DJ (B J K
σν DK ζ ν) step by step

we obtain

η	 =
∫

	

(
2ξσ

∑
|J |≤r

∑
|K |≤r

(−1)|J | ∑
|J1|+|J2|=|J |

DK+J1ζ
ν DJ2 B J K

σν

)

◦ (J 2r+1γ ) ω0,

summation over |J |, |K | ≤ r .

η	 =
∫

	

(
2ξσ

r∑
j=1

r∑
k=0

(−1) j
∑

p+l= j

(
j

p

)
di1 · · · dik+pζ

ν

× dik+p+1 · · · dik+ j B
ik+1...ik+ j ,i1...ik
σν

)
(J sγ ) ω0,

sym (i1, . . . , ik+ j ). Rearranging the summations we obtain

(27)

η	 = 2
∫

	

(
2r∑

j=0

r∑
k=0

r∑
l= j−k

(−1)−l

(
l

j − k

)
di j+1 · · · dik+l

× Bi1...ik ,ik+1...ik+l
σν ξσ

i1...i j
ζ ν

)
(J 2r+1γ ) ω0

η	 =
∫

	

(
2r∑

j=0

r∑
k=0

r∑
l= j−k

(−1)−l

(
l

j − k

)
di j+1 · · · dik+l Bi1...ik ,ik+1...ik+l

σν

)

× ωσ
i1...i j

∧ ων(J 2r+1ξ, J 2r+1ζ )(J 2r+1γ ) ∧ ω0

and finally rearrange the expression so that

(28) η	 =
∫

	

(J 2r+1γ )∗i J 2r+1ζ i J 2r+1ξ�0.

The argumentation leading to the conclusion that the representative is defined correctly
(globally) is quite analogous to the one presented in the first part of the proof.

Another way to ascertain that the expressions defined locally by (16), (18) give rise to
globally defined objects is to check the transformation properties of these expressions.
The proof using the transformation properties can be found in the Appendix.

It remains to discuss the following problem: Find the criteria for recognizing the
representatives of classes of forms in the r -th order variational sequence and the recon-
struction of classes from their representatives. This problem is solved for the physically
relevant part of the variational sequence in mechanics (see [9] and [16]). For the field
theory the calculations are technically difficult and are not finished up to now.

Appendix. Transformation rules for representatives

Let (V, ψ) and (Ṽ , ψ̃) be any two fibered charts. We will consider the transformation
properties of various objects over the intersection V ∩ Ṽ .



36 M. Krbek, J. Musilová and J. Kašparová

The transformation properties of total derivatives of functions. Let f ∈ 	r
0(V ∩

Ṽ ), then it holds that with the obvious notation

d̃ j f = dk f · ∂xk

∂ x̃ j .

We shall generalize this result.

Theorem A. With the above used conventions it holds that

D̃J f =
∑

|I |≤|J |
DI f

(
∂a1 xi1

∂ x̃ j1 · · · ∂ x̃ ja1
· · · ∂a|I | xi|I |

∂ x̃ ja|I |−1 · · · ∂ x̃ j|J |

)
ordJ

.

There are
(|J |
|I |

)
summands pertaining to the given length of the multiindex I . ord J

means that the summation is taken over all multiindices J such that j1 ≤ · · · ≤ ja1 ,
. . . , ja|I |−1 ≤ · · · ≤ ja|I | , the indices a1 ≤ · · · ≤ a|J | taking all admissible values.

Proof is done in a straightforward manner by induction on |J |.
Total derivatives of products of functions. Let f, g ∈ 	r

0V . Then

DK ( f · g) = dkl · · · dk1( f · g) =
l∑

q=0

′(dkl · · · dkq+1 f )(dkq · · · dk1 g),

where the primed sum runs over all indices k1, . . . , kl in which the ordering in the
subindices of the total derivatives is decreasing. There are exactly

( l
q

)
summands for a

given q.

The transformation properties of representatives of n + 1-forms. The forms
p1� = P J

σ ωσ
J ∧ ω0 are defined in a coordinate-free way. The representative is given

by (16). The transformation properties of representatives will be given by induction
with respect to r . For r = 1 it holds

�0 =
{

∂yσ

∂ ỹν det

(
∂x j

∂ x̃ l

)
Pσ − D̃K

[
∂yσ

J

∂ ỹν
K

det

(
∂x j

∂ x̃ l

)
P J

σ

]}
ω̃ν ∧ ω̃0,

where the summation is taken over |J | = 0, 1. Using Theorem A we see directly that
the coefficients

∂yσ

∂ ỹν det

(
∂x j

∂ x̃ l

)
(Pσ − d j P j

σ )

have the correct transformation properties of components of n + 1-forms of the type
Qνω

ν ∧ ω0.
Now we can proceed by induction with respect to r .

�0 =
[

r∑
k=0

(−1)k d̃lk · · · d̃l1

∑
|K |≤|J |

∂yσ
J

∂ ỹν
K

det

(
∂x

∂ x̃

)
P J

σ

+ (−1)r+1d̃lr+1 · · · d̃l1

∑
|J |=r+1

∂yσ
J

∂ ỹν
K

det

(
∂x

∂ x̃

)
P J

σ

]
ω̃ν ∧ ω̃0.
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The part which has been added to �0 by raising the order by 1 reads[ ∑
|K |≤r

(−1)|K |D̃K
∂yσ

J

∂ ỹν
K

det

(
∂x

∂ x̃

)
P J

σ

+ (−1)r+1D̃L
∂yσ

I

∂ ỹν
L

det

(
∂x

∂ x̃

)
P I

σ

]
ω̃ν ∧ ω̃0,

where |J | = |L| = r + 1. Now we shall use the result from the previous paragraph and
obtain { ∑ ∑′

|K |≤r
|R|+|S|=|K |

D̃R

[
∂yσ

J

∂ ỹν
RS

det

(
∂x

∂ x̃

)]
D̃S P J

σ

+ (−1)r+1
∑′

|R|+|S|=r+1

D̃R

[
∂yσ

I

∂ ỹν
RS

det

(
∂x

∂ x̃

)]
D̃S P I

σ

}
ω̃ν ∧ ω̃0,

where |J | = r + 1 and 0 ≤ |I | ≤ r . Let us define the numbers ai, j for j ≤ i recursively
by ai,1 = 1, ai,i = 1 and ai+1, j+1 = ( j + 1)ai, j+1 + ai, j . Using the properties of
the primed sum and the transformation rules for total derivatives for D̃S P I

σ we obtain
precisely the numbers a|R|,|S| as coefficients in both sums. Recursively canceling the
terms starting from the highest one we recover the needed additional term

(−1)r+1 ∂yσ

∂ ỹν det

(
∂x

∂ x̃

)
DJ P J

σ ω̃ν ∧ ω̃0.

The transformation properties of representatives of (n + 2)-forms. We shall
procced in an analogous manner as in the case of representatives of n + 1-forms. We
again check directly that the transformation formula holds for r = 1 and assume that
it holds for orders from 1 up to r . Writing down the additional terms for r + 1-order
and using the same properties as in the case of representatives of n + 1 forms we again
recover the required transformation rules.
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[12] D. Krupka, J. Musilová, Trivial lagrangians in field theory, Diff. Geom. Appl. 9 (1998)

293–305.
[13] D. Krupka, The Geometry of Lagrange Structures, preprint series in Global Analysis

GA 7/1997, Silesian Univeristy, Opava, 1997, pp. 82.
[14] D. Krupka, The contact ideal, Diff. Geom. Appl. 5 (1995) 257–276.
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Kotlářská 2, 611 37 Brno
Czech Republic
E-mail: janam@physics.muni.cz

Michael Krbek, Jana Kašparová
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