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1. Introduction

This research was started from a problem of differentiable Poisson brackets of coor-
dinates in mechanics [5]. The essence of this problem will be explained by the following
simple example. Consider a Lagrange functioa C*°(j (R x R)), defined on the first
jet prolongation of the fibered manifolél x R — R, which has in global coordinates
t, q, v the expression of
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wheren £ 0 is some real number. Using methods usual in analytical mechanics, we can
calculate the integral of motion

Q=qg—vt-T),
which has the meaning of the coordinate at time T, and the Poisson bracket

n—1 2—n
Q.q= =D @

n—-1
It is interesting that this Poisson bracK€, g} is as a function of variablets g, Q in-
finitely differentiable only in the case aof = 2, i.e. in the only physically important
case of all considered ones. Therefore, it would be interesting to find all Lagrange func-
tions which lead to infinitely differentiable Poisson brackets of coordinates for some
configuration manifold.

Unfortunately, this example has not a good geometrical sense. That is caused by
the fact thato Q/0v = 0 holds fort = T and thus the variables g, Q do not form
a suitable coordinate system for exploring the differentiability of Poisson brackets on
j1(R x R). That is why the problem of differentiable Poisson brackets of coordinates
does not exist from the view of jet prolongations and symplectic manifolds. Therefore,
another geometrical structure must be introduced for its formulation. This paper shows
that an applicable structure is the manifold of geodesic arcs.

Section 2 is devoted to smooth manifolds of geodesic arcs. Necessary and sufficient
conditions for a set of arcs to be the set of all geodesic arcs of some linear connection
are presented. On this set a structure of a smooth manifold is introduced.

In Section 3 we recall the well-known definition of Poisson manifolds. In Section 4
a definition of a Poisson manifold of geodesic arcs is presented and studied. Local co-
ordinate expressions are given.

In Section 5 we recall the notion of a Frobenius algebra. In Section 6, necessary and
sufficient conditions are presented under which a given Lagrange function generates
a Poisson manifold of geodesic arcs. These conditions are framed in terms of tangent
and cotangent Frobenius algebras. Local expressions for general Poisson manifolds of
geodesic arcs are rather complicated. This section shows that they can be simplified if
the Poisson manifold is generated by some Lagrange function. Further, a second sim-
plification is found by changing contravariant velocities to covariant velocities. Expres-
sions for the Lagrange function and the corresponding linear connection are given.

In Section 7 a geometrical formulation and a solution of the problem of differentiable
Poisson brackets of coordinates in classical mechanics are presented. In this section a
concept of configuration in-out manifold is introduced as a Poisson manifold which
describes a relation between two configurations of a classical mechanical system. It is
shown that every in-out manifold is isomorphic to some Poisson manifold of geodesic
arcs. The corresponding general Hamilton function is presented.

Finally, relations between Poisson manifolds of geodesic arcs and classical Lagran-
gian mechanics are clarified in Section 8.

In this paper the notions of vector fields, linear connections, geodesics, Lagrangian
mechanics, Poisson manifolds, and Frobenius algebras are used in the usual sense (see,
e.g. [1], [2], [11], and [17]). By a manifold we mean a smooth manifold or a smooth
manifold with a boundary or a smooth manifold with corners (see [13], [15]). All used
mappings are smooth. In all local expressions we use the standard summation conven-
tion.




Poisson manifolds of geodesic arcs in classical mechanics 3

2. Geodesic arcs

Let R be the manifold of real numbers. We consider a closed interyal [@ R and
a finite-dimensional manifolX. An arc y on X is a smooth mapping: [0, 1] — X. We
define areparametrizatioras an affine mapping [@] — [0, 1]. Let us consider ano-
noid M of all reparametrizationgiith the multiplicationM x M > (u, v) —> pov € M.
We say that an arg o 1, whereu € M, is asubarcof the arcy.

Let W(X) be a set of arcs oX. We say thaWW (X) is closed on subarci and only
if y e W(X)andu € M imply y o u € W(X). We say that an open st C X is
convex with respect to ¥X) if and only if

(i) for each two pointsa, b € U there exists a unique aggp, € W(X) such that

Vab(o) = av Vab(l) = bv Vab([o» 1]) C Uu
(ii) the mappingd x U x [0,1] 5 (a, b, w) — yap(w) € U is smooth.

We say thai is locally convex with respect to ¥X) if and only if for eachc € X there
exists an open set U such tleat U C X, U is convex with respect teV(X).

Let us consider a smooth linear connectioon X. A geodesic ar®f the connec-
tion I' is an arc onX which is a geodesic df'. In 1932 J.H.C. Whitehead proved the
following Theorem on convex regions [18]:

Theorem 1. (Whitehead)Let W(X) be the set of all geodesic arcs of some linear
connection” on a manifold X. Then X is locally convex with respect toX\

In 1992 the author proved the following inversion of Whitehead’s Theorem on con-
vex regions [7]:

Theorem 2. Let W(X) be a set of arcs on a manifold X. The following two asser-
tions are equivalent:
1. There is a linear connectiofl on X such that WX) is a set of all its geodesic
arcs,
2. W(X) is a maximal set of arcs on X satisfying the conditions:
(a) X is locally convex with respect to ¥X),
(b) W(X) is closed on subarcs.

Let us suppose that the assertion 2 of Theorem 2 is satisfied. From the condition (b)
we have that the monoidl acts onW(X) from right in the following way

RW(X) x M > (y,u) > youe W(X).

The global charM > © — (1 (0), u(1)) € [0, 1] x [0, 1] defines a structure of a man-
ifold on M in such a way that the multiplication is smooth. Therefore, the monoid
of reparametrizationgM with the above defined structure is the Lie monoid. It is
known (see, e.g. [11]) that there exists a bijective mappgingV(X) > y — y(0) €
codomyy c T X, wherey: [0, 1] — T X is the prolongation of the geodesic aron

the tangent bundl& X. The setW(X), equipped with a structure of a manifold such
thaty is a diffeomorphism, is calledrmanifold of geodesic arc he simplest example

of a manifold of geodesic arcs is the monoid of reparametrizatibns W([0, 1]) in
itself.
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Since every mapping € W(X) is smooth, we see that the acti@nis smooth too.
We shall use a partial mapping

Ru:W(X) >y = youe W(X).

The actionr of the Lie monoid of reparametrizatiohd is of fundamental importance
in the theory of geodesic arcs. Theorem 2 shows that the notion of a symmetric linear
connection may be defined with the helprof
Let us consider two manifolds of geodesic aksY) and W(X). Any mapping
m:Y — X, suchthat € W(Y) impliesm o y € W(X), defines a mapping

L W)y > moy e W(X)

of manifolds of geodesic arcs. Moreover, Yf is a fibered manifold over the base
X with the projectionr then W(Y) is a fibered manifold over the ba%¥(X) with
the projectionZ,;. In such a cas&V(Y) is called afibered manifold of geodesic arcs
L W) - W(X).

3. Poisson manifolds

Let us consider a finite-dimensional manifddd A Poisson algebra over i a Lie
algebra structure o8°°(P) that satisfies theeibniz condition

{FG, H} = F{G, H} + G{F, H}.

A Poisson brackef -, -} is the Lie bracket of the corresponding Poisson algebra. A
Casimir functionin a Poisson algebra ovd? is a functionF € C°(P) such that
{F, G} = 0 for all functionsG € C*(P). A Poisson manifolds a manifoldP with a
Poisson algebra ove? (see, e.g. [4], [14], [16], [17]). APoisson mappindgs a homo-
morphism of Poisson manifolds.

A Poisson submanifold @ a submanifold in a Poisson manifol® with a Poisson
algebraC*(Q) for which the inclusionQ — P is a Poisson mapping.

Important particular examples of Poisson manifoldssmaplectic manifoldOp-
posite examples arkbelian Poisson manifold®oisson algebras of which are Abelian.

4. Poisson manifolds of geodesic arcs

Let W(X) be a manifold of geodesic arcs.?isson right M-algebra over () is
a Poisson algebra ové¥ (X) such that for eacp € M a mappingC®(W(X)) > F —
F oR, € C®(W(X)) is an endomorphism. Roisson manifold of geodesic arssa
manifold of geodesic arcs equipped with a Poisson hdkdlgebra. Similarly, dibered
Poisson manifold of geodesic arissa fibered manifold of geodesic arcs equipped with
a Poisson righM-algebra. In 1994 the author proved the following Theorem [8]:

Theorem 3. Let W(X) be a manifold of geodesic arcs of a symmetric linear connec-
tionT" on X. Then there exists a bijective correspondence between the set of all Poisson
right M-algebras over WX) and the set of all ordered pair, h) of tensor fields on
X satisfying the following three conditions:
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1. g is atensor field of the typ, 1),
2. h is a tensor field of the typ, 0), B
3.in each local chart on X the component$, &'l satisfy the relations:
1) hl + hit =0,
@  h'h*+h'fd R =0,
3)  gng' —ohg® +aghh —ghih" = gih! + R hhT,
@ gl-g =h,
() G+ Ok + O+ Gk = (Rum + Rih™ + (R + Rih™,
3 (i + iy + Ripch + Riyh) = Riph — RYh
+im) +n+ R+ R — R K — R KD,
(6) + 3+ hy + Ryh + R b — Ry — R b
= (Ro+ R 9" + (R + Ry)g + (R + Ry gl
= (Rh+ Rinodl = (Rl + RLOGS — (Rhy + Rh0gr,
where F?m are components of the Riemannian tensor field of the conneEtiand

the lower indices which does not belong to the indexation of tensdrsdgnote the
corresponding covariant derivatives.

Local coordinate expressions for Poisson manifolds of geodesic arcs are
@) X, X'} = h,
8 XX} =(gh — T XM,
(9) {Xk’ XI} = (% hmkRer - % h™ RrErm - % hﬁlr
+ grmkFLm - g:nlrrlﬁm + hmsFrI;nFIsr) X" )-(r,
wherex¥, X are standard local coordinates Wh(X) andT'¥, are components of the
connectio” on X.

The simplest example of a Poisson manifold of geodesic arcs is the monoid of repara-

metrizationsM. From Theorem 2 and formula (5) we det0 andg=const. Ifw is the
identical coordinate on [A], then the Poisson structure dhis given by{w, w}=guw.

5. Frobenius algebras

An algebraA is a finite-dimensionak-moduleA together with a bilinear multipli-
cationA x A — A which makesA into an associative ring with a unity element. A
structure tensopf A is the tensor of the typ€, 1) associated with this multiplication.
An algebraA is calledcommutativef A is a commutative ring.

Any algebraa is a left A-module. The duaR-moduleA*, equipped with the mul-
tiplication A x A* > (@, w) - (A 2 b —> w(ba) € R) € A*, is a leftA-module as
well. An algebraA is a Frobenius algebrdf and only if there exists an isomorphism
g: A — A* of these leftA-modules. The lef\-module A*, equipped with the mul-
tiplication A* x A* — A* such thatg is an isomorphism of algebras, will be called a
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dual Frobenius algebra aof.. The unity element in the dual Frobenius algehtawill
be denoted by-):A>a — (a) e R.

Let A be an algebra. Denote by exp the mapping that takes each aint\ to
y(1) € A, wherey:R — A is the solution of the differential equatialy/dt = ay
under the conditiory(0) = 1. The mapping exp exists and the solutipis given by
y:R o t — exp(ra) € A. Moreover, the mapping exp is a local diffeomorphism.
This means that for anly € A there is a neighborhood > b such that the mapping
V > a — expa € expV is a diffeomorphism. Therefore, we can locally define a
smooth mapping In: exXy@ — V by the formula I exply = idy.

A vector bundlez — X is called afibration of algebrasf and only if any fiber
of Z is an algebra and the corresponding structure tensor field is smooth. Over the
manifold X we shall consider partly a fibration of tangent algeldragpartly a fibration
of cotangent algebras* X.

If gL‘ are components of a cotangent commutative algebra structure tensor field, then
the commutativity gives

(10) g’ =g/
and the associativity gives
(1) g"gk =g gy

There exists a differential invariant of a structure tensor field. This invariant is a
tensor field of the typ€3, 2). Its components are

. ) agsm ) BQSI _8g|m _aglm 8gim ag”
Im _ il 29 i s k 199 k
(12) Tk = s axX o axX + 0 axl +97 axs T 9 axs gjsmaxS
| i il
il age" _ im O0%. _ _siaglsm _ «i09;" sl ag;" _ smY]
% oxl ~ % g T Ik T s T e T s
wherex' are local coordinates oX. It is easy to prove that (10), (11), (12) imply
im lim iml ilm
. pr— . pry . = —J . .
jk jk jk Kj

6. Generating Lagrange functions

Let X be a configuration manifold, X be the corresponding tangent bundle with the
projectionz: T X — X. Let us consider a smooth regular Lagrange functiowhere
domL c T Xis an open submanifold equipped with the canonical symplectic structure,
codomL = R. Any mapping [0 1] — X satisfying the corresponding Euler-Lagrange
equations is called aextremal arcof the Lagrange functioh.

Let W_(X) be the set of all extremal arcs &f The setW_(X), equipped with
a symplectic structure such that the bijective mappingW,(X) > y — p(0) €
codomyr. c domL is an isomorphism of symplectic manifolds, is callegiyanplectic
manifold of extremal arcs

We say that the Lagrange functiangenerates Poisson manifold of geodesic arcs
W (X) if and only if

() WL(X) € WR(X) is a symplectic submanifold,
(i) WL(X) 2 v — y(0) € X is a surjective mapping.
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Let us remark that using local expressions (7)—(9) we get the following two asser-
tions: No Poisson manifold of geodesic arcs is symplectia\soX) #= Wr(X). If L
is a Lagrange function satisfying (ii), then there exists at most one Poisson manifold of
geodesic arcs satisfying (i).

In 1998 the author proved the following Theorem [10]:

Theorem 4. A given smooth Lagrange function domL < T X, codomL = R,
generates a Poisson manifold of geodesic arcs if and only if the three following condi-
tions hold:

1. there exists a fibration of tangent commutative Frobenius algebras T X such that
for everyv € codomy.

(13) Lw)=(v(lInv—-1))+ const

2. there exists a fibration of dual Frobenius algebrasXT such that the differential
invariant (12) is zero,
3. m(codomyr ) = X.

If a given Lagrange function generates a Poisson manifold of geodesic arcs, we
can, using (13), calculate local expressions for the tergdisand the connectioit
satisfying (1)—(9). We gdt = 0, g is the cotangent algebra structure tensor field, and
oo Lo (990 99 _ 995k
=2 axk axl X!

m ag{s +E rs _ a_grgms_ 8_gsgrm
ax™ T oax M axm T ax™ )

(14)

— ég” Jir Oks (g

wherex! are local coordinates oK, gk are components of the tangent algebra unity
element fieldg! = g’ g% gj’s make the solution of equatiorgs; g'* = 8, ¥ is
the Kronecker symbol. Formula (14) was originally proved in the paper [6], but the
calculation given in [9] is easier. It is readily seen that if the Lie derivative in the second
term equals zero, theR is the Levi-Civita connection and' are components of a
contravariant metric tensor.

The local expressions for the Poisson manifold of geodesic arcs generated by some
Lagrange function are

X x'y =0,
(15) (XX} =g'x,

(X, X'} = (gF™ L, — g™ I¥,) XX,
The paper [9] shows that they can be simplified by changing contravariant velodities
to covariant velocities, = gy X':

X x} =0,

k kr
X, x}=g"x,

) ) 1 8 rs a rs o

2\ ax  axK
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7. In-out manifolds

The notion of an in-out manifold was introduced by the author in 1989 for solving
the problem of finding the most general form for Poisson brackets of configuration
coordinates at two different times in Hamiltonian mechanics.

Let P be a Poisson manifold. The Leibniz condition implies that the bracket oper-
ation is a derivation in each entry, and so in particular, for each fun&ie@nC*>(P)
there is a vector fieldg € X(P) such thato;,.G = {G, F} for all G € C*(P),
where d;. denotes a Lie derivative with respectgp. The local flow of this vector
fieldaF: (—¢, +¢) x P — P is called docal flow generated by the function. K the
local flow «F exists, then the partial mappireg : P — P is the Poisson one for all
T € (—¢, +e).

A configuration of a Hamiltonian mechanical system is represented by a point of
its configuration manifoldX. A state of system is described by a point of a cotangent
bundleT* X. The cotangent bundle is a symplectic manifold and the configuration man-
ifold is an Abelian Poisson manifold. Thus a natural projeclicix — X is a Poisson
mapping. A dynamical evolution manifests itself as a local floW generated by a
Hamiltonian functionH. We need the configuration at two times. So we introduce a
manifold X x X and denote natural projections on its factors as “in” and “out”.

We say that a Poisson manifoXl x X is a configuration in-out manifoldf there
exists a regular Hamiltonian functiod € C*(T*X) and a real numbes > 0 such
that a mapping *X — X x X defined by the commutative diagram

al! ol
T*X «—2— T*X —25 T*X

l l l

X X xx M,

is a Poisson mapping for any paif, 7o € (—e¢, +¢). Let us remark that iiX x X is a
configuration in-out manifold, then all mappings in the diagram are Poisson ones.

In 1989 the author proved the following theorem [6]:

Theorem 5. If b is a point in a diagonal of in-out manifold % X, then there is a
chart (x¥, X) in b such that(14) and (15) hold, where %, g, g* are functions on X
composed with the projectiaut

From Theorems 3 and 5, every in-out manifélck X is isomorphic to some Poisson
manifold of geodesic ardd/(X). Since the Hamilton functiohl is regular, there exists
the Lagrange functioh generatingV(X). Using Theorem 4, we can calculate

H(p) = (exp(p) ) — const
where exp and- ) are defined on the fibration of cotangent algeldrax.

8. Relations to classical mechanics

For a geometric formulation of the first order Lagrangian theory the formalism of
fibered manifolds and theirs lower two prolongations is used (see [12]). In the case
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of mechanics, we consider a fibered manifaldR x X — R, whereR is the man-
ifold of real numbers anK is a finite-dimensional manifold, with its prolongations
JLR x X), j2(R x X) and projectionsry: j1(R xX) — R, m10: jE2(R xX) — R xX,

o1t J2(R x X) = JHR xX), m20: j2(R xX) — R x X. We shall use the fiber charts
with coordinates, x¥, x¥, x¥. A time evolution of mechanical system is described by a
local sections of the fibered manifoldrg which is a solution of Euler—-Lagrange equa-
tions

(16) exo j%o =0.

Here Euler—Lagrange expressiapsare components of,o-horizontal 1-contact differ-
ential 2-form onj?(R x X) such that a Lagrange functiansatisfying

@ a=g (5m) - o

~ dr \9xK axk’

whered/dz is the total derivative, locally exists. Here, in contrast to Section 6, the
Lagrange function. is the component of ther;-horizontal differential 1-form on
j1(R x X). Note that by the usual notation practice in the classical mechanics all nec-
essary projections are omitted (for instance, the restriction of projegtipabsents in
the second term of the right-hand side of (17)).

Equations (16) are said to lotassical Euler—Lagrange equatioifsand only if the
corresponding Lagrange function has the form

(18) A= 1gu XX+ A+,

wheregy, Ax, ande are functions onR x X. This case is the most spread one in ap-
plications and all the known physically important mechanical systems can be converted
into it [3].

We suppose that the Euler—-Lagrange expressions are regular, that is, for each point
of j2(R x X) the determinant

(19) det(%) £0.

Let us consider a sdE (R x X) of all solutionsoap: [a,a + b] — R x X of equa-
tions (16), whera, b € R, b > 0. Then there exists a bijection E(R x X) > oap —
(b, jloan(@)) € codomy C (0, 00) x j1(R x X), where codony is an open subset. The
Poisson structure of this manifold can be found by the methods of classical mechanics.
From classical canonical relations

oA oA OA
{Xkﬂ Xl} - 07 Xk7 PN = 8|k7 AL A = 0
ox! axk’ gx!

we obtain

X x'y =0,

(e xly 6 d6s L (06 D
’ xkox! — 2 \axr axs)’
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Note that in the classical mechanics the coordinate® and(0, co) are considered
as Casimir functions. The set(R x X), equipped with a Poisson algebra such tha
an isomorphism of Poisson manifolds, will be calleBasson manifold of solutions of
Euler—Lagrange equations

In 1995 the author proved the following Theorem on the relation between Poisson
manifolds of solutions of Euler—-Lagrange equations and Poisson manifolds of geodesic
arcs in classical mechanics [8]:

Theorem 6. Let W(R x X) — W(R) be a fibered Poisson manifold of geodesic arcs
such that all fibers are Poisson submanifolds, fibers over constant arcs are Abelian,
and fibers over non-constant arcs are symplectic. TheélR WX) is the union of three
disjoint Poisson submanifolds such that the two of them are isomorphic to a Poisson
manifold of solutions of classical Euler—Lagrange equations and the third of them is an
Abelian fibration of manifolds of geodesic arcs of Levi-Civita connections on X.

Proof. Let us consider a local chaxton R x X such thatx® is a coordinate oiR,
x1, x2, ..., x9mX are coordinates oX, and codonx is an open ball iR¥MX+1_Since
W(R x X) is a fibered manifold of geodesic arcs over the BAK®), we getR' =0
fori = 0. Hence, the coordinat€ may be chosen in such a way that fox 0

~ Since the fibers over constant arcs are Abelian, by (7) and (8) we ditaia 0,
g = 0, wherek #0. Since the fibers over non-constant arcs are Poisson submanifolds,
by (8) we obtaurg0 =gy =0.
Throughout all the following text we will not consider the zero value of indicgs
k, I, m, r,s. We denoteg, = g" andx® = . Taking into account that the fibers over
non-constant arcs are symplectic we obtain

(21)  det(g’) #0

at each point ofX. Relations (1)-(3) are fulfilled identically. Relation (4) gives
g" = g!'. Relation (5) can be expressed in the form

aglj aglj

o+ @™ + Tin@™ =0 =7+ Tong™ + T =
From this, by a straightforward computation we get
i 1. (99 099Gk
22 i = il [ 91 2 J ,
(22) k=39 <8xk T ox T ax

. . 901
(23) Fio=Toj = —9 < gf“ +¢‘|j),

whereg;;'s make the solution of equatiog g’* = sX and®;; are functions on dom
such thatd;; + ®;; = 0. Relation (6) can be written according to (22) and (23) in the
form

0 jj 0Dk 0Dy _0 E)CPJ ﬁ _ 3_F| _
axk axi oxI ’ at axi 9xI
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whereF; = g Féo. Thence the Poincarlemma enables us to show that there exist
functions A, ¢ on domx satisfying

aA  0A; aA 0
() @y = 8 A g _OA 0y
axl ox! at ax!
Since the Lagrange function (18) exists pridomx), the components

= g (X' + TIX"%®) + (% + Py ) X'+ Fy

of amyg-horizontal 1-contact differential 2-form off (R x X) are Euler—Lagrange ex-
pressions. According to (19) and (21) they are regular. Let us denote the corresponding
manifold of solutions of Euler—Lagrange equationsthiR x X).

In view of (20)W(R) = Wi (R) UW,(R) UW;3(R), whereW; (R) is the open subman-
ifold of all increasing geodesic arcé/,(R) is the open submanifold of all decreasing
geodesic arcs, anl3(R) is the closed submanifold of all constant geodesic arcs. Let us
decompose the manifol/(R x X) into the three disjoint submanifolds; (R x X) =
L HWA(R)), Wo(R x X) = £, (Wa(R)), andWs(R x X) = £ 1(W5(R)), whereL, is
the projectionW(R x X) > y — mgoy € W(R). These submanifolds are Poisson ones
because oW (R x X), Wo(R x X) are open ones ardz(R x X) is by assumption the
union of Abelian Poisson manifolds over constant geodesic arcs. Clé&ilR, x X) is
an Abelian submanifold too.

Let us suppose € Wi (R x X). Then there exists a unique mappisgsuch that
domo = codom(mpoy),y = o ompoy. Itholdso € E(R x X). The induced mapping
Wi (R x X) — E(R x X) is an isomorphism of Poisson manifolds.

Let us supposg € W>(R x X) and define the mapping: [0, 1] > w — (1 —w) €
[0,1]. Insuchacasg o u = R,(y) € W(R x X). Sincerg o y andu are decreasing
mappings;to o y o w is an increasing mapping and go 1 € Wi (R x X). SinceRr,,
is a Poisson mapping and sin@gl = R, holds, the mapping\b(R xX) > y —

y ou € Wi(R x X) is an isomorphism of Poisson manifolds. Consequently, the fact
that there is an isomorphism betwedf(R x X) and E(R x X) implies the existence
of isomorphism betweew, (R >< X) andE(R x X).

For eacha € R the setr Ya) c RxX is a geodeS|c submanifold diffeomor-
phic to X. According to (22) the connection or, *(a) is the Levi-Civita one. Let
W (mry 1(a)) be the manifold of geodesic arcs of this connection. Taking into account

Wa(R xX) = | W(mg (@),

acR

we see thatWz(R x X) is the Abelian fibration of manifolds of geodesic arcs of Levi-
Civita connections oiX over the bas&. This completes the proof.

Theorem 7. Let X be a simply connected manifold, /& X) — W(R) be a
fibered Poisson manifold of geodesic arcs satisfying the conditions of The®rem
Then there exists a Lagrange function generating a Poisson manifold of geodesic arcs
W(R x X x [0, 1]) such that

1. WRxX x[0,1]) > WR x X) is a fibered Poisson manifold of geodesic arcs,
2. the fiber over any constant arc is an Abelian Poisson submanifold isomorphic to
the monoid of reparametrizations.
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Proof. Let W1 (R) ¢ W(R) be the open submanifold of all increasing geodesic arcs,
Wi(R x X) € W(R x X) be the open submanifold ov@¥;(R), W, (R x X x [0, 1]) C
W(R x X x [0, 1]) be the submanifold of all geodesic arcs

[0,1] > w — (y(w), u(w)) € R xX) x [0, 1],

wherey € Wi(R xX), u € M. LetdomL Cc T(R xX x [0, 1]) be the submanifold
such thatW (R x X x [0,1]) > ¥y — y(0) € domL is a bijection. Let us consider a
Lagrange functiorL.: domL — R given by local coordinate expressions

Lga XX+ AXK T+ g 12

T

(25 L=wlint+ :
wheret, X, w are the standard tangent coordinates associated with local coordinates
7, XX, w onR x X x [0, 1], such that is a geodesic coordinate @) x¥ are coordinates
on X, andw is the identical coordinate on [Q], functionsgy, Ak, ¢ are solutions of
equationgyj g’ = (Sik and (24). Sinc« is a simply connected manifold, the mentioned
Lagrange function on doitn globally exists.

By a straightforward computation it follows that the Lagrange function (25) gen-
erates a Poisson manifold of geodesic aM& x X x [0, 1]) satisfying conditions 1
and 2. This completes the proof.

Finally note that the bilinear multiplicatios in fibration of cotangent Frobenius
algebras is given by relations

dr_* dr =0, dt_* dxj_= O,__ dr‘* dw = dr,_
(26) dx' xdr =0, dx' xdx! = g¢'dr, dx' xdw = dx',
dw xdt =dr, dwxdx/ =dx/, dw »dw = dw,

and the tangent algebra unity element field has the form

d

9 .0 1 :
27) —+A—+(AA —¢|—,
ox' ow

ot 2
whereA' = gl Aj. By (13), formula (25) is equivalent to (26) and (27).
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