Jets and contact elements ${ }^{1}$

D. Krupka and M. Krupka

Abstract

The purpose of this research-expository work is to introduce basic concepts of the theory of jets, and to study their general properties. An r-jet of a real function of several real variables at a point is simply the collection of the coefficients of the r-th Taylor polynomial of f at this point. The concept of an r-jet is easily generalized to differentiable mappings of smooth manifolds in terms of charts. The structure of the following manifolds of jets is discussed: (a) higher order differential groups, (b) jets of mappings of a Euclidean space into a manifold, with source at the origin (velocities, regular velocities, higher order frames), (c) manifolds of contact elements (higher order Grassmann prolongations of a manifold, i.e., the quotients of manifolds of regular velocities by the differential groups acting on them). (d) jet prolongations of fibered manifolds and fibrations, (e) jet prolongations of Lie groups, Lie group actions, principal and associated bundles.

Keywords and phrases. Jet, regular jet, velocity, differential groups, frame, contact element, Grassmann prolongation, prolongation of a fibered manifold, prolongation of a Lie group, prolongation of a principal bundle, prolongation of an associated bundle. MS classification. 58A20.

Introduction

In this work, we present a self-contained introduction to the theory of jets, suitable for a deeper, systematic study of the subject. We explain basic ideas, and give proofs of all assertions. The choice of topic we discuss corresponds with the use of the theory

[^0]of jets in differential geometry (natural bundles, differential invariants), the calculus of variations on smooth manifolds (Lagrange theory, natural variational principles), and in mathematical physics (higher order mechanics and field theory).

Our basic references are [3], [4], [5], [6], and [8]. It is not our aim to simplify, or to shorten the exposition to a minimum. Instead, we insist on a deeper, active understanding of basic motions, as well as techniques of working with jets. We do not discuss possible generalizations of the theory to more abstract categories than the basic ones of the smooth differential geometry (the categories of smooth manifolds and fiber bundles). Recent developments in this direction can be found in [5]; neither it is our goal to discuss applications (see e.g. [6], [7], [11]). Numerous references to all these subjects can be found in [5], [8], [10], and [11].

1. Jets of smooth mappings

1.1. The higher order chain rule. Let n and k be positive integers. As usual, we denote by $D_{i} f=\partial f / \partial x^{i}$ the i-the partial derivative of a function $f: \mathbf{R}^{n} \rightarrow \mathbf{R}$. If $I=\left\{i_{1}, i_{2}, \ldots, i_{k}\right\}$ is a set of positive integers such that $1 \leq i_{1}, i_{2}, \ldots, i_{k} \leq n$, we denote

$$
\begin{equation*}
D_{I}=D_{i_{1}} D_{i_{2}} \cdots D_{i_{k}} \tag{1}
\end{equation*}
$$

Since the partial derivative operators commute, the symbol on the left hand side is correctly defined. The following explicit formula has numerous applications.

Lemma 1. Let $U \subset \mathbf{R}^{n}$ and $V \subset \mathbf{R}^{m}$ be open sets, let $f: V \rightarrow \mathbf{R}$ be a smooth function, and let $g=\left(g^{\sigma}\right), 1 \leq \sigma \leq m$, be a smooth mapping of U into V. Then

$$
\begin{align*}
D_{i_{s}} & \cdots D_{i_{2}} D_{i_{1}}(f \circ g)(t) \\
= & \sum_{k=1}^{s} \sum_{\left(I_{1}, I_{2}, \ldots, I_{k}\right)} D_{\sigma_{k}} \cdots D_{\sigma_{2}} D_{\sigma_{1}} f(g(t)) D_{I_{k}} g^{\sigma_{k}}(t) \tag{2}\\
& \cdots D_{I_{2}} g^{\sigma_{2}}(t) D_{I_{1}} g^{\sigma_{1}}(t),
\end{align*}
$$

where the second sum is understood to be extended to all partitions $\left(I_{1}, I_{2}, \ldots, I_{k}\right)$ of the set $\left\{i_{1}, i_{2}, \ldots, i_{s}\right\}$.

Proof. To prove (2), we proceed by induction. We have

$$
\begin{align*}
& D_{i_{1}}(f \circ g)(t)=D_{\sigma} f(g(t)) D_{i_{1}} g^{\sigma}(t) \\
& D_{i_{2}} D_{i_{1}}(f \circ g)(t)=D_{\sigma_{2}} D_{\sigma_{1}} f(g(t)) D_{i_{2}} g^{\sigma_{2}}(t) D_{i_{1}} g^{\sigma_{1}}(t) \tag{3}\\
& \quad+D_{\sigma} f(g(t)) D_{i_{1} i_{2}} g^{\sigma}(t)
\end{align*}
$$

Now assuming that

$$
\begin{align*}
D_{i_{s-1}} & \cdots D_{i_{2}} D_{i_{1}}(f \circ g)(t) \\
& =\sum_{k=1}^{s} \sum_{\left(J_{1}, J_{2}, \ldots, J_{k}\right)} D_{\sigma_{k}} \cdots D_{\sigma_{2}} D_{\sigma_{1}} f(g(t)) D_{J_{k}} g^{\sigma_{k}}(t) \tag{4}\\
& \cdots D_{J_{2}} g^{\sigma_{2}}(t) D_{J_{1}} g^{\sigma_{1}}(t)
\end{align*}
$$

we obtain

$$
\begin{aligned}
D_{i_{s}} & D_{i_{s-1}} \cdots D_{i_{2}} D_{i_{1}}(f \circ g)(t) \\
& =\sum_{k=1}^{s} \sum_{\left(J_{1}, J_{2}, \ldots, J_{k}\right)} D_{\sigma_{s}} D_{\sigma_{k}} \cdots D_{\sigma_{2}} D_{\sigma_{1}} f(g(t)) D_{i_{s}} g^{\sigma_{s}}(t) D_{J_{k}} g^{\sigma_{k}}(t) \\
& \cdots D_{J_{2}} g^{\sigma_{2}}(t) D_{J_{1}} g^{\sigma_{1}}(t) \\
(5) \quad & +\sum_{k=1}^{s} \sum_{\left(J_{1}, J_{2}, \ldots, J_{k}\right)}\left(D _ { \sigma _ { k } } \cdots D _ { \sigma _ { 2 } } D _ { \sigma _ { 1 } } f (g (t)) \left(D_{J_{k}} g^{\sigma_{k}}(t)\right.\right. \\
& \cdots D_{J_{2}} g^{\sigma_{2}}(t) D_{i_{s}} D_{J_{1}} \alpha^{\sigma_{1}}(t)+D_{J_{k}} g^{\sigma_{k}}(t) \cdots D_{i_{s}} D_{J_{2}} g^{\sigma_{2}}(t) D_{J_{1}} g^{\sigma_{1}}(t) \\
& \left.+\cdots+D_{i_{s}} D_{J_{k}} g^{\sigma_{k}}(t) \cdots D_{J_{2}} g^{\sigma_{2}}(t) D_{J_{1}} g^{\sigma_{1}}(t)\right) \\
& =\sum_{k=1}^{s} \sum_{\left(I_{1}, I_{2}, \ldots, I_{k}\right)} D_{\sigma_{k}} \cdots D_{\sigma_{2}} D_{\sigma_{1}} f(g(t)) D_{I_{k}} g^{\sigma_{k}}(t) \cdots D_{I_{2}} g^{\sigma_{2}}(t) D_{I_{1}} g^{\sigma_{1}}(t)
\end{aligned}
$$

which gives (2).
Formula (2) is called the higher order chain rule, or simply the chain rule.
1.2. Jets of smooth mappings. Let X and Y be two manifolds, $x \in X$ a point, W_{1}, W_{2} two neighborhoods of x. We say that two mappings of class $C^{0} f_{1}: W_{1} \rightarrow Y$, and $f_{2}: W_{2} \rightarrow Y$ are tangent of order 0 at x, if $f_{1}(x)=f_{2}(x)$. If $r \geq 1$ is an integer, we say that two mappings of class $C^{r} f_{1}: W_{1} \rightarrow Y$ and $f_{2}: W_{2} \rightarrow Y$ are tangent to the r-th order at x, if they are tangent of order 0 (as mappings of class C^{0}), and there exist a chart $(U, \varphi), \varphi=\left(x^{i}\right)$, at x and a chart $(V, \psi), \psi=\left(y^{\sigma}\right)$, at $f_{1}(x)=f_{2}(x)$ such that $U \subset W_{1} \cap W_{2}, f_{1}(U), f_{2}(U) \subset V$, and

$$
\begin{equation*}
D^{k}\left(\psi f_{1} \varphi^{-1}\right)(\varphi(x))=D^{k}\left(\psi f_{2} \varphi^{-1}\right)(\varphi(x)) \tag{1}
\end{equation*}
$$

for all $k \leq r$. We say that two mappings of class $C^{\infty} f_{1}: W_{1} \rightarrow Y$ and $f_{2}: W_{2} \rightarrow Y$ are tangent to order ∞ at x, if they are tangent to order r for every r.

Let $r \geq 1$. If in components, $\psi f_{1} \varphi^{-1}=\left(y^{\sigma} f_{1} \varphi^{-1}\right), \psi f_{2} \varphi^{-1}=\left(y^{\sigma} f_{2} \varphi^{-1}\right)$, then f_{1} and f_{2} are tangent to order r at x if and only if $f_{1}(x)=f_{2}(x)$ and

$$
\begin{equation*}
D_{i_{1}} D_{i_{2}} \cdots D_{i_{k}}\left(y^{\sigma} f_{1} \varphi^{-1}\right)(\varphi(x))=D_{i_{1}} D_{i_{2}} \cdots D_{i_{k}}\left(y^{\sigma} f_{2} \varphi^{-1}\right)(\varphi(x)) \tag{2}
\end{equation*}
$$

for all $k=1,2, \ldots, r$, where $1 \leq i_{1}, i_{2}, \ldots, i_{k} \leq n, 1 \leq \sigma \leq m$.
If f_{1}, f_{2} are tangent to order r at x, then for any chart $(\bar{U}, \bar{\varphi}), \bar{\varphi}=\left(\bar{x}^{i}\right)$, at x and any chart $(\bar{V}, \bar{\psi}), \bar{\psi}=\left(\bar{y}^{\sigma}\right)$, at $f_{1}(x)=f_{2}(x)$,

$$
\begin{equation*}
D^{k}\left(\bar{\psi} f_{1} \bar{\varphi}^{-1}\right)(\bar{\varphi}(x))=D^{k}\left(\bar{\psi} f_{2} \bar{\varphi}^{-1}\right)(\bar{\varphi}(x)) \tag{3}
\end{equation*}
$$

for all $k=1,2, \ldots, r$. To see it we express the derivative

$$
\begin{align*}
& D_{i_{1}} D_{i_{2}} \cdots D_{i_{k}}\left(\bar{y}^{\sigma} f_{1} \bar{\varphi}^{-1}\right)(\bar{\varphi}(x)) \\
& \quad=D_{i_{1}} D_{i_{2}} \cdots D_{i_{k}}\left(\bar{y}^{\sigma} \psi^{-1} \circ \psi f_{1} \varphi^{-1} \circ \varphi \bar{\varphi}^{-1}\right)(\bar{\varphi}(x)) \tag{4}
\end{align*}
$$

as a polynomial in the variables $D_{j_{1}}\left(y^{\nu} f_{1} \varphi^{-1}\right)(\varphi(x)), D_{j_{1}} D_{j_{2}}\left(y^{\nu} f_{1} \varphi^{-1}\right)(\varphi(x)), \ldots, D_{j_{1}}$ $D_{j_{2}} \cdots D_{j_{k}}\left(y^{\nu} f_{1} \varphi^{-1}\right)(\varphi(x))$ (Section 1.1, Lemma 1). Then the derivative $D_{i_{1}} D_{i_{2}} \cdots D_{i_{k}}$
$\left(\bar{y}^{\sigma} f_{2} \bar{\varphi}^{-1}\right)(\bar{\varphi}(x))$ is expressed by the same polynomial in the variables $D_{j_{1}}\left(y^{\nu} f_{2} \varphi^{-1}\right)$ $(\varphi(x)), D_{j_{1}} D_{j_{2}}\left(y^{\nu} f_{2} \varphi^{-1}\right)(\varphi(x)), \ldots, D_{j_{1}} D_{j_{2}} \cdots D_{j_{k}}\left(y^{\nu} f_{2} \varphi^{-1}\right)(\varphi(x))$. Now (3) follows from (2).

Let $r \geq 0$ be an integer, or $r=\infty$. Fix two points $x \in X, y \in Y$, and denote by $C_{(x, y)}^{r}(X, \bar{Y})$ the set of mappings of class $C^{r} f: W \rightarrow Y$, where W is a neighborhood of x, such that $f(x)=y$ (W is not fixed). The relation " f, g are tangent to order r at x " on $C_{(x, y)}^{r}(X, Y)$ is obviously reflexive, transitive, and symmetric, so it is an equivalence. Equivalence classes of this equivalence are called r-jets with source x and target y. The r-jet whose representative is a mapping $f \in C_{(x, y)}^{r}(X, Y)$ is called the r-jet of f at x, and is denoted by $J_{x}^{r} f$. If there is no danger of confusion we call an r-jet with source x and target y simply an r-jet, or a jet.

The set of r-jets with source $x \in X$ and target $y \in Y$ is denoted by $J_{(x, y)}^{r}(X, Y)$. Clearly, $J_{x}^{0} f=(x, y)$, and $J_{(x, y)}^{0}(X, Y)=\{(x, y)\}$.

Let $r \geq 0$ be an integer, or $r=\infty$. Let $f \in C_{(x, y)}^{r}(X, Y), f: W \rightarrow Y$. If U is a neighborhood of the point $x \in X$ and V is a neighborhood of $y \in Y$, we may, using continuity arguments, restrict the range and the domain of f to V and to U. Let $\iota_{V, Y}: V \rightarrow Y$ and $\iota_{U \cap f^{-1}(V), W}: U \cap f^{-1}(V) \rightarrow W$ be the canonical inclusions. We define $f^{\prime} \in C_{(x, y)}^{r}(U, V)$ by the formula $f^{\prime}=\iota_{V, Y}^{-1} \circ f \circ \iota_{U \cap f^{-1}(V)}$, which induces a mapping v of $J_{(x, y)}^{r}(X, Y)$ into $J_{(x, y)}^{r}(U, V)$. Conversely, if $f^{\prime} \in C_{(x, y)}^{r}(U, V)$, we define f by $f=\iota_{V, Y} \circ f^{\prime} \circ \iota_{U \cap f^{-1}(V), W}^{-1}$, which induces a mapping ι of $J_{(x, y)}^{r}(U, y)$ into $J_{(x, y)}^{r}(X, Y)$. Explicitly,

$$
\begin{align*}
& \nu\left(J_{x}^{r} f\right)=J_{x}^{r}\left(\iota_{V, Y}^{-1} \circ f \circ \iota_{U \cap f^{-1}(V)}\right), \\
& \iota\left(J_{x}^{r} f^{\prime}\right)=J_{x}^{r}\left(\iota_{V, Y} \circ f^{\prime} \circ \iota_{U \cap f^{-1}(V), W}^{-1}\right) . \tag{5}
\end{align*}
$$

Both v and ι are bijections, and $v=\iota^{-1}$ is its inverse. The mappings ι, v are called the canonical identifications of $J_{(x, y)}^{r}(U, V)$ and $J_{(x, y)}^{r}(X, Y)$.

Now we introduce a C^{r} structure on the set $J_{(x, y)}^{r}(X, Y)$. Let $(U, \varphi), \varphi=\left(x^{i}\right)$ be a chart at x, and let $(V, \psi), \psi=\left(y^{\sigma}\right)$, be a chart at y. We set for every $J_{x}^{r} \in J_{(x, y)}^{r}(X, Y)$

$$
\begin{equation*}
y_{i_{1} i_{2} \cdots i_{k}}^{\sigma}\left(J_{x}^{r} f\right)=D_{i_{1}} D_{i_{2}} \cdots D_{i_{k}}\left(y^{\sigma} f \varphi^{-1}\right)(\varphi(x)), \tag{6}
\end{equation*}
$$

where $1 \leq k \leq r, 1 \leq \sigma \leq m$, and $1 \leq i_{1} \leq i_{2} \leq \cdots \leq i_{k} \leq n . y_{i_{1} i_{2} \cdots i_{k}}^{\sigma}$ are real-valued functions on $J_{(x, y)}^{r}(X, Y)$. Then we set

$$
\begin{equation*}
\chi_{\varphi, \psi}^{r}\left(J_{x}^{r} f\right)=\left(y_{i_{1}}^{\sigma}\left(J_{x}^{r} f\right), y_{i_{1} i_{2}}^{\sigma}\left(J_{x}^{r} f\right), \ldots, y_{i_{1} i_{2} \cdots i_{r}}^{\sigma}\left(J_{x}^{r} f\right)\right) \tag{7}
\end{equation*}
$$

This defines (in components) a mapping $\chi_{\varphi, \psi}^{r}: J_{(x, y)}^{r}(X, Y) \rightarrow \mathbf{R}^{N}$, where

$$
\begin{equation*}
N=m\left(\binom{n}{1}+\binom{n+1}{2}+\cdots+\binom{n+r-1}{r}\right)=m\left(\binom{n+r}{n}-1\right) \tag{8}
\end{equation*}
$$

In connection with the use of Section 1.1, Lemma 1, we also apply a different notation. If $I=\left\{i_{1}, i_{2}, \ldots, i_{k}\right\}$ is a set of positive integers such that $1 \leq i_{1}, i_{2}, \ldots, i_{k} \leq n$, we denote

$$
\begin{equation*}
y_{I}^{\sigma}\left(J_{x}^{r} f\right)=D_{I}\left(y^{\sigma} f \varphi^{-1}\right)(\varphi(x)) \tag{9}
\end{equation*}
$$

where D_{I} is given by Section 1.1, (1).

Lemma 2. Let X and Y be two smooth manifolds. There exists one and only one smooth structure on $J_{(x, y)}^{r}(X, Y)$ such that for every chart $(U, \varphi), \varphi=\left(x^{i}\right)$, at x and every chart $(V, \psi), \psi=\left(y^{\sigma}\right)$, at $y,\left(J_{(x, y)}^{r}(X, Y), \chi_{\varphi, \psi}^{r}\right), \chi_{\varphi, \psi}^{r}\left(J_{x}^{r} f\right)=\left(y_{i_{1} i_{2} \cdots i_{k}}^{\sigma}\right)$ is a chart on $J_{(x, y)}^{r}(X, Y)$.

Proof. First we show that the mapping $\left.\chi_{\varphi, \psi}^{r}: J_{(x, y}^{r}\right)(X, Y) \rightarrow \mathbf{R}^{N}$ is a bijection. It follows immediately from the definition of an r-jet that $\chi_{\varphi, \psi}^{r}$ is injective. To show that it is surjective, choose a point $A=\left(A_{i_{1}}^{\sigma}, A_{i_{1} i_{2}}^{\sigma}, \ldots, A_{i_{1} i_{2} \ldots i_{r}}^{\sigma}\right) \in \mathbf{R}^{N}$; here we assume that $1 \leq i_{1} \leq i_{2} \leq \cdots \leq i_{k} \leq n$ for every $k=1,2, \ldots, r$. We extend the system A to all sequences $\left(j_{1}, j_{2}, \ldots, j_{k}\right)$ putting $A_{j_{1} j_{2} \cdots j_{k}}^{\sigma}=A_{i_{1} i_{2} \cdots i_{k}}^{\sigma}$ whenever $\left(j_{1}, j_{2}, \ldots, j_{k}\right)$ is a permutation of $\left(i_{1}, i_{2}, \ldots, i_{k}\right)$, and define a mapping $g: \mathbf{R}^{n} \rightarrow \mathbf{R}^{m}, g=\left(g^{\sigma}\right)$, by the formula

$$
\begin{align*}
& g^{\sigma}\left(x^{1}, x^{2}, \ldots, x^{n}\right)=y_{0}^{\sigma}+A_{j_{1}}^{\sigma}\left(x^{j_{1}}-x_{0}^{j_{1}}\right)+\frac{1}{2!} A_{j_{1} j_{2}}^{\sigma}\left(x^{j_{1}}-x_{0}^{j_{1}}\right)\left(x^{j_{2}}-x_{0}^{j_{2}}\right) \tag{10}\\
& \quad+\cdots+\frac{1}{r!} A_{i_{1} i_{2} \cdots i_{k}}^{\sigma}\left(x^{j_{1}}-x_{0}^{j_{1}}\right)\left(x^{j_{2}}-x_{0}^{j_{2}}\right) \cdots\left(x^{j_{r}}-x_{0}^{j_{r}}\right)
\end{align*}
$$

where $x_{0}=\left(x_{O}^{j}\right)=\varphi(x), y_{0}=\left(y_{0}^{\sigma}\right)=\psi(y)$. Then $\psi^{-1} g \varphi(x)=y$. Putting

$$
\begin{equation*}
f=\psi^{-1} g \varphi \tag{11}
\end{equation*}
$$

we obtain a smooth mapping defined on a neighborhood of x, such that $f(x)=y$. Therefore, $J_{x}^{r} f \in J_{(x, y)}^{r}(X, Y)$, and by (7), $\chi_{\varphi, \psi}^{r}\left(J_{x}^{r} f\right)=\left(D_{i_{1}} g^{\sigma}\left(x_{0}\right), D_{i_{1}} D_{i_{2}} g^{\sigma}\left(x_{0}\right)\right.$, $\left.\ldots, D_{i_{1}} D_{i_{2}} \cdots D_{i_{k}} g^{\sigma}\left(x_{0}\right)\right)=A$. This proves that $\chi_{\varphi, \psi}^{r}$ is surjective and completes the proof that it is bijective.

Let $(U, \varphi), \varphi=\left(x^{i}\right)$, and $(\bar{U}, \bar{\varphi}), \bar{\varphi}=\left(\bar{x}^{i}\right)$, be two charts at x and let $(V, \psi), \psi=$ $\left(y^{\sigma}\right)$, and $(\bar{V}, \bar{\psi}), \bar{\psi}=\left(\bar{y}^{\sigma}\right)$, be two charts at y. We have for every $J_{x}^{r} f \in J_{(x, y)}^{r}(X, Y)$

$$
\begin{equation*}
\bar{y}_{i_{1} i_{2} \cdots i_{k}}^{\sigma}\left(J_{x}^{r} f\right)=D_{i_{1}} D_{i_{2}} \cdots D_{i_{k}}\left(\bar{y}^{\sigma} f \bar{\varphi}^{-1}\right)(\bar{\varphi}(x)) . \tag{12}
\end{equation*}
$$

Expressing the right-hand side as in (4), and using Section 1.1, Lemma 1, we obtain a polynomial in $y_{j_{1}}^{v}\left(J_{x}^{r} f\right), y_{j_{1} j_{2}}^{v}\left(J_{x}^{r} f\right), \ldots, y_{j_{1} j_{2} \cdots j_{k}}^{v}\left(J_{x}^{r} f\right)$. Since these polynomials are components of the mapping $\chi_{\bar{\varphi}, \bar{\psi}}^{r} \circ\left(\chi_{\varphi, \psi}^{r}\right)^{-1}$, this mapping is smooth. This proves compatibility of the charts $\left(J_{(x, y)}^{r}(X, Y), \chi_{\varphi, \psi}^{r}\right),\left(J_{(x, y)}^{r}(X, Y), \chi_{\bar{\varphi}, \bar{\psi}}^{r}\right)$.

The chart $\left(J_{(x, y)}^{r}(X, Y), \chi_{\varphi, \psi}^{r}\right)$ is said to be associated with the pair of charts (U, φ), (V, ψ).

Remark 1. The manifold topology on $J_{(x, y)}^{r}(X, Y)$ is the topology of the Euclidean space \mathbf{R}^{N}.

Remark 2 (geometric interpretation of an r-jet). We denote

$$
\begin{equation*}
L_{n, m}^{r}=J_{(0,0)}^{r}\left(\mathbf{R}^{n}, \mathbf{R}^{m}\right) \tag{13}
\end{equation*}
$$

and define for every $J_{0}^{r} f \in L_{n, m}^{r}$,

$$
\begin{equation*}
a_{i_{1} i_{2} \cdots i_{k}}^{\sigma}\left(J_{x}^{r} f\right)=D_{i_{1}} D_{i_{2}} \cdots D_{i_{k}} f^{\sigma}(0), \tag{14}
\end{equation*}
$$

where $f=\left(f^{\sigma}\right), 1 \leq \sigma \leq m, 1 \leq k \leq r, 1 \leq i_{1} \leq i_{2} \leq \cdots \leq i_{k} \leq n$. The real-valued functions $a_{i_{1} i_{2} \cdots i_{k}}^{\sigma}$ define a chart on $J_{(0,0)}^{r}\left(\mathbf{R}^{n}, \mathbf{R}^{m}\right)$ (in this case $\left.\varphi=\mathrm{id}_{\mathbf{R}^{n}}, \psi=\mathrm{id}_{\mathbf{R}^{m}}\right)$. This chart, as well as its coordinate functions (14), are called canonical.

Consider the product

$$
\begin{equation*}
L\left(\mathbf{R}^{n}, \mathbf{R}^{m}\right) \times L_{(s)}^{2}\left(\mathbf{R}^{n}, \mathbf{R}^{m}\right) \times \cdots \times L_{(s)}^{r}\left(\mathbf{R}^{n}, \mathbf{R}^{m}\right) \tag{15}
\end{equation*}
$$

where $L\left(\mathbf{R}^{n}, \mathbf{R}^{m}\right)$ is the vector space of linear mappings from \mathbf{R}^{n} to \mathbf{R}^{m}, and $L_{(s)}^{k}\left(\mathbf{R}^{n}\right.$, \mathbf{R}^{m}) is the vector space of k-linear, symmetric mappings from $\mathbf{R}^{n} \times \mathbf{R}^{n} \times \cdots \times \mathbf{R}^{n}$ (k factors) to \mathbf{R}^{m}. Using the canonical bases of \mathbf{R}^{n} and \mathbf{R}^{m}, we can identify vectors in $L\left(\mathbf{R}^{n}, \mathbf{R}^{m}\right)$ (resp. $L_{(s)}^{k}\left(\mathbf{R}^{n}, \mathbf{R}^{m}\right)$) with their matrices $\left(A_{i}^{\sigma}\right)$ (resp. ($\left.A_{i_{1} i_{2} \ldots i_{k}}^{\sigma}\right)$), where $1 \leq \sigma \leq m, 1 \leq i_{1}, i_{2}, \ldots, i_{k} \leq n$. The matrix $\left(A_{i_{1} i_{2} \cdots i_{k}}^{\sigma}\right)$ is symmetric in the subscripts, so that the dimension of the vector space (15) is N (8).

Clearly, (15) carries canonical topological and smooth structures of a finite-dimensional vector space.

Since $J_{(x, y)}^{r}(X, Y), L_{n, m}^{r}$, and the vector space (15) are diffeomorphic with \mathbf{R}^{N}, they are all diffeomorphic. A diffeomorphism of $L_{n, m}^{r}$ and the vector space (15) is obtained by extending the set of canonical coordinates $a_{i_{1} i_{2} \cdots i_{k}}^{\sigma}$ to all (not necessarily non-decreasing) sequences $\left(j_{1}, j_{2}, \ldots, j_{k}\right)$ by putting $a_{j_{1} j_{2} \cdots j_{k}}^{\sigma}=a_{i_{1} i_{2} \cdots i_{k}}^{\sigma}$ whenever $\left(j_{1}, j_{2}, \ldots, j_{k}\right)$ is a permutation of $\left(i_{1}, i_{2}, \ldots, i_{k}\right)$. The diffeomorphism obtained in this way is called the canonical identification, and gives us a geometric interpretation of the r-jets belonging to the set $L_{n, m}^{r}$.

Let X and Y be smooth manifolds $n=\operatorname{dim} X, m=\operatorname{dim} Y$. We denote

$$
\begin{align*}
J_{x}^{0}(X, Y) & =\{x\} \times Y, \quad J^{0}(X, Y)=X \times Y \\
J_{x}^{r}(X, Y) & =\bigcup_{y \in Y} J_{(x, y)}^{r}(X, Y), \quad J^{r}(X, Y)=\bigcup_{x \in X} J_{x}^{r}(X, Y), \quad r \leq 1 \tag{16}
\end{align*}
$$

For every $J_{x}^{r} f \in J^{r}(X, Y), P=J_{x}^{r} f$, we set

$$
\begin{equation*}
\rho^{r, s}\left(J_{x}^{r} f\right)=J_{x}^{s} f, \quad 0 \leq s \leq r, \quad \mu^{r}\left(J_{x}^{r} f\right)=x, \quad v^{r}\left(J_{s}^{r} f\right)=f(x) \tag{17}
\end{equation*}
$$

These formulas define the canonical r-jet projections $\rho^{r, s}: J^{r}(X, Y) \rightarrow J^{s}(X, Y)$, $\mu^{r}: J^{r}(X, Y) \rightarrow X$, and $v^{r}: J^{r}(X, Y) \rightarrow Y . \mu^{r}\left(\right.$ resp. $\left.v^{r}\right)$ is sometimes called the source (resp. target) projection. The r-jet projections restrict naturally to the subsets $J_{(x, y)}^{r}(X, Y)$ and $J_{x}^{r}(X, Y)$ of $J^{r}(X, Y)$.

We introduce a C^{r} structure on the sets $J_{(x, y)}^{r}(X, Y), J_{x}^{r}(X, Y)$, and $J^{r}(X, Y)$. Let $(U, \varphi), \varphi=\left(x^{i}\right)$, be a chart on X, and let $(V, \psi), \psi=\left(y^{K}\right)$, be a chart on Y. We set

$$
\begin{equation*}
W^{r}=\left(\rho^{r, 0}\right)^{-1}(U \times V), \quad \chi_{\varphi, \psi}^{r}=\left(x^{i}, y^{K}, \chi_{i_{1}}^{K}, \chi_{i_{1} i_{2}}^{K}, \ldots, \chi_{i_{1} i_{2} \cdots i_{r}}^{K}\right), \tag{18}
\end{equation*}
$$

where $1 \leq k \leq r, 1 \leq K \leq m, 1 \leq i_{1} \leq i_{2} \leq \cdots \leq i_{k} \leq n$, and $\chi_{i_{1} i_{2} \cdots i_{k}}^{K}$ are real-valued functions on W^{r} defined by

$$
\begin{equation*}
\chi_{i_{1} i_{2} \cdots i_{k}}^{K}\left(J_{x}^{r} f\right)=D_{i_{1}} D_{i_{2}} \cdots D_{i_{k}}\left(y^{K} f \varphi^{-1}\right)(\varphi(x)) . \tag{19}
\end{equation*}
$$

Clearly, $\chi_{\varphi, \psi}^{r}$ is a mapping of W^{r} into $\varphi(U) \times \psi(V) \times \mathbf{R}^{N}$, where

$$
\begin{equation*}
N=m\left(\binom{n}{1}+\binom{n+1}{2}+\cdots+\binom{n+r-1}{r}\right)=m\left(\binom{n+r}{n}-1\right) \tag{20}
\end{equation*}
$$

Sometimes it is convenient to use an alternative notation. If $I=\left\{i_{1}, i_{2}, \ldots, i_{k}\right\}$ is a set of positive integers such that $1 \leq i_{1}, i_{2}, \ldots, i_{k} \leq n$, we denote

$$
\begin{equation*}
\chi_{I}^{K}\left(J_{x}^{r} f\right)=D_{I}\left(y^{K} f \varphi^{-1}\right)(\varphi(x)) \tag{21}
\end{equation*}
$$

where $D_{I}=D_{i_{1}} D_{i_{2}} \cdots D_{i_{k}}$ (see Section 1.1). Then in components, $\chi_{\varphi, \psi}^{r}=\left(x^{i}, y^{K}, \chi_{I}^{K}\right)$.

Lemma 3. Let X and Y be smooth manifolds.
(a) There exists one and only one smooth structure on $J^{r}(X, Y)$ such that for every chart (U, φ) on X and every chart (V, ψ) on $Y,\left(W^{r}, \chi_{\varphi, \psi}^{r}\right)$ is a chart on $J^{r}(X, Y)$. In this smooth structure, the r-jet projections are smooth surjective submersions.
(b) For every $x \in X$, the set $J_{x}^{r}(X, Y)$ is a submanifold of $J^{r}(X, Y)$. If (U, φ) is a chart at x, and (V, ψ) is a chart on Y, then the chart $\left(W^{r}, \chi_{\varphi, \psi}^{r}\right)$ is adapted to $J_{x}^{r}(X, Y)$.
(c) For every $(x, y) \in X \times Y$, the set $J_{(x, y)}^{r}(X, Y)$ is a submanifold of $J^{r}(X, Y)$. If (U, φ) is a chart at x, and (V, ψ) is a chart at y, then the chart $\left(W^{r}, \chi_{\varphi, \psi}^{r}\right)$ is adapted to $J_{(x, y)}^{r}(X, Y)$.

Proof. (a) First we show that $\chi_{\varphi, \psi}^{r}$ is a bijection. It follows immediately from the definition of an r-jet that $\chi_{\varphi, \psi}^{r}$ is injective. To show that it is surjective, choose $x_{0} \in$ $\varphi(U), y_{0} \in \psi(V)$, and a point $P=\left(P_{i_{1}}^{K}, P_{i_{1} i_{2}}^{K}, \ldots, P_{i_{1} i_{2} \cdots i_{r}}^{K}\right) \in \mathbf{R}^{N}$; here $1 \leq i_{1} \leq i_{2} \leq$ $\cdots \leq i_{k} \leq n$ for every $k=1,2, \ldots, r$. We extend P to all sequences $\left(j_{1}, j_{2}, \ldots, j_{k}\right)$ putting $P_{j_{1} j_{2} \cdots j_{k}}^{K}=P_{i_{1} i_{2} \cdots i_{k}}^{K}$ whenever $\left(j_{1}, j_{2}, \ldots, j_{k}\right)$ is a permutation of $\left(i_{1}, i_{2}, \ldots, i_{k}\right)$, and define a mapping $g: \mathbf{R}^{n} \rightarrow \mathbf{R}^{m}, g=\left(g^{K}\right)$, by the formula

$$
\begin{align*}
& g^{K}\left(x^{1}, x^{2}, \ldots, x^{n}\right)=y_{0}^{K}+P_{j_{1}}^{\sigma}\left(x^{j_{1}}-x_{0}^{j_{1}}\right)+\frac{1}{2!} P_{j_{1} j_{2}}^{K}\left(x^{j_{1}}-x_{0}^{j_{1}}\right)\left(x^{j_{2}}-x_{0}^{j_{2}}\right) \tag{22}\\
& \quad+\cdots+\frac{1}{r!} P_{i_{1} i_{2} \cdots i_{k}}^{K}\left(x^{j_{1}}-x_{0}^{j_{1}}\right)\left(x^{j_{2}}-x_{0}^{j_{2}}\right) \cdots\left(x^{j_{r}}-x_{0}^{j_{r}}\right)
\end{align*}
$$

where $x_{0}=\left(x_{0}^{j}\right), y_{0}=\left(y_{0}^{K}\right)$. Then $x=\varphi^{-1}\left(x_{0}\right) \in U, y=\psi^{-1}\left(y_{0}\right) \in V$, and $g\left(x_{0}\right)=y_{0}$. Putting $f=\psi^{-1} g \varphi$, we obtain a smooth mapping defined on a neighborhood of x, such that $f(x)=y$. Since the chart expression of f satisfies $\psi f \varphi^{-1}=g$, we have

$$
\begin{align*}
& \chi_{\varphi, \psi}^{r}\left(J_{x}^{r} f\right)=\left(x^{i}(x), y^{K}(y), D_{i_{1}} g^{K}\left(x_{0}\right), D_{i_{1}} D_{i_{2}} g^{K}\left(x_{0}\right),\right. \\
& \left.\quad \ldots, D_{i_{1}} D_{i_{2}} \cdots D_{i_{k}} g^{K}\left(x_{0}\right)\right) \tag{23}\\
& \quad=\left(x_{0}^{i}, y_{0}^{K}, P_{i_{1}}^{K}, P_{i_{1} i_{2}}^{K}, \ldots, P_{i_{1} i_{2} \cdots i_{r}}^{K}\right) .
\end{align*}
$$

This proves that $\chi_{\varphi, \psi}^{r}$ is surjective and completes the proof that it is bijective.
Let $(U, \varphi), \varphi=\left(x^{i}\right)$, and $(\bar{U}, \bar{\varphi}), \bar{\varphi}=\left(\bar{x}^{i}\right)$, be two charts on X such that $U \cap \bar{U} \neq \emptyset$, and let $(V, \psi), \psi=\left(y^{K}\right)$, and $(\bar{V}, \bar{\psi}), \bar{\psi}=\left(\bar{y}^{K}\right)$ be two charts at on Y such that $V \cap \bar{V} \neq \emptyset$. Define $\left(\bar{W}^{r}, \chi_{\bar{\varphi}, \bar{\psi}}^{r}\right), \chi_{\bar{\varphi}, \bar{\psi}}^{r}=\left(\bar{x}^{i}, \bar{y}^{K}, \bar{\chi}_{i_{1} i_{2} \cdots i_{k}}^{K}\right)$ by (18) and (19). We have for every $J_{x}^{r} f \in W^{r} \cap \bar{W}^{r}$

$$
\begin{align*}
& \bar{\chi}_{i_{1} i_{2} \cdots i_{k}}^{K}\left(J_{x}^{r} f\right)=D_{i_{1}} D_{i_{2}} \cdots D_{i_{k}}\left(\bar{y}^{K} f \varphi^{-1}\right)(\bar{\varphi}(x)) \tag{24}\\
& \quad=D_{i_{1}} D_{i_{2}} \cdots D_{i_{k}}\left(\bar{y}^{K} \psi^{-1} \circ \psi f \varphi^{-1} \circ \varphi \bar{\varphi}^{-1}\right)(\bar{\varphi}(x)) .
\end{align*}
$$

Using the higher order chain rule (Section 1.1, Lemma 1), we obtain $\bar{\chi}_{i_{1} i_{2} \cdots i_{k}}^{K}\left(J_{x}^{r} f\right)$ as a polynomial in $\chi_{j_{1}}^{L}\left(J_{x}^{r} f\right), \chi_{j_{1} j_{2}}^{L}\left(J_{x}^{r} f\right), \ldots, \chi_{j_{1} j_{2} \ldots j_{k}}^{L}\left(J_{x}^{r} f\right)$. Since these polynomials are components of the mapping $\chi_{\bar{\varphi}, \psi}^{r} \circ\left(\chi_{\varphi, \psi}^{r}\right)^{-1}$, this mapping is smooth. This proves compatibility of the charts $\left(W^{r}, \chi_{\varphi, \psi}^{r}\right),\left(\bar{W}^{r}, \chi_{\bar{\varphi}}^{r}, \bar{\psi}\right)$.

It is immediately seen that the jet projections (17) are expressed in the charts ($W^{r}, \chi_{\varphi, \psi}^{r}$) as the Cartesian projections. This shows that the jet projections are smooth.
(b) The set $W^{r} \cap J_{x}^{r}(X, Y)$ is expressed by equations of the form $x^{i}=a^{i}$, where $a^{i} \in \mathbf{R}$ are some constants. This proves (b).
(c) The set $W^{r} \cap J_{(x y)}^{r}(X, Y)$ is expressed by equations of the form $x^{i}=a^{i}, y^{K}=b^{K}$, where $a^{i}, b^{K} \in \mathbf{R}$ are some constants. This proves (c).

The chart $\left(W^{r}, \chi_{\varphi, \psi}^{r}\right)$ is said to be associated with the charts $(U, \varphi),(V, \psi)$.
Remark 3. Note that we have some canonical identifications. The r-jet $J_{\varphi(x)}^{r} \psi f \varphi^{-1}$ is by definition the equivalence class expressed in the canonical coordinates on \mathbf{R}^{n} and \mathbf{R}^{n+m} by the collection of real numbers $x^{i}(x), y^{K}(f(x)) D_{j_{1}}\left(y^{K} f \varphi^{-1}\right)(\varphi(x))$, $D_{j_{1}} D_{j_{2}}\left(y^{K} f \varphi^{-1}\right)(\varphi(x)), \ldots, D_{j_{1}} D_{j_{2}} \cdots D_{j_{k}}\left(y^{v} f \varphi^{-1}\right)(\varphi(x))$, i.e., by the same collection as $J_{x}^{r} f$ in the associated chart ($W^{r}, \chi_{\varphi, \psi}^{r}$). Thus, we have

$$
\begin{equation*}
\chi_{\varphi, \psi}^{r}\left(J_{x}^{r} f\right)=J_{\varphi(x)}^{r} \psi f \varphi^{-1} \tag{25}
\end{equation*}
$$

Let X and Y be smooth manifolds, $W \subset X$ an open set, and $f: W \rightarrow Y$ a smooth mapping. Setting

$$
\begin{equation*}
J^{r} f(x)=J_{x}^{r} f \tag{26}
\end{equation*}
$$

we define a mapping $J^{r} f: W \rightarrow J^{r}(X, Y)$. This mapping is called the r-jet prolongation, or simply the jet prolongation of f.

Let $(U, \varphi), \varphi=\left(x^{i}\right)\left(\right.$ resp. $\left.(V, \psi), \psi=\left(y^{K}\right)\right)$ be a chart at x (resp. at $\left.y=f(x)\right)$, and let $\left(W^{r}, \chi_{\varphi, \psi}^{r}\right)$ be the associated chart on $J^{r}(X, Y)$. Then $J^{r} f$ is expressed by

$$
\begin{align*}
& \left(\chi_{\varphi, \psi}^{r} \circ J^{r} f \circ \varphi^{-1}\right)\left(x^{\prime}\right) \\
& \quad=\left(x,\left(y^{K} f \varphi^{-1}\right)\left(x^{\prime}\right), D_{i_{1}} D_{i_{2}} \cdots D_{i_{k}}\left(y^{K} f \varphi^{-1}\right)\left(x^{\prime}\right)\right) \tag{27}
\end{align*}
$$

and is therefore smooth.
1.3. The composition of jets. Let X, Y, and Z be three real, finite-dimensional smooth manifolds. We say that r-jets $P \in J_{(x, u)}^{r}(X, Y), Q \in J_{(y, z)}^{r}(Y, Z)$ are composable, if any representatives of P and Q are composable (as mappings). Clearly, P and Q are composable if and only if the target of P coincides with the source of Q, i.e., if $u=y$.

Let P (resp. Q) be represented by f (resp. g), i.e., $P=J_{x}^{r} f, Q=J_{y}^{r} g$. Assume that P, Q are composable. Shrinking the domain of definition of f if necessary, we may assume that the composed mapping $g \circ f$ is defined. Then also the r-jet $J_{x}^{r}(g \circ f)$ is defined. It is easy to determine the coordinates of $J_{x}^{r}(g \circ f)$ in terms of the coordinates of P and Q.

Let $(U, \varphi), \varphi=\left(x^{i}\right)\left(\operatorname{resp} .(V, \psi), \psi=\left(y^{\sigma}\right)\right.$, resp. $\left.(W, \eta), \eta=\left(z^{A}\right)\right)$ be a chart at x (resp. $y=f(x)$, resp. $z=g(y))$. We have in the chart $\left(J_{(x, z)}^{r}(X, Z), \chi_{\varphi, \eta}^{r}\right), \chi_{\varphi, \eta}^{r}\left(J_{x}^{r}(g \circ\right.$ $f))=\left(w_{i_{1} i_{2} \cdots i_{k}}^{A}\right)($ Section 1.2, Lemma 2),

$$
\begin{align*}
& \chi_{\varphi, \eta}^{r}\left(J_{x}^{r}(g \circ f)\right)=\left(D_{i_{1}}\left(z^{A} g f \varphi^{-1}\right)(\varphi(x)), D_{i_{1}} D_{i_{2}}\left(z^{A} g f \varphi^{-1}\right)(\varphi(x)),\right. \\
& \left.\quad \ldots, D_{i_{1}} D_{i_{2}} \cdots D_{i_{r}}\left(z^{A} g f \varphi^{-1}\right)(\varphi(x))\right), \tag{1}
\end{align*}
$$

i.e., for every $k=1,2, \ldots, r$,

$$
\begin{align*}
& w_{i_{1} i_{2} \cdots i_{k}}^{A}\left(J_{x}^{r}(g \circ f)\right)=D_{i_{1}} D_{i_{2}} \cdots D_{i_{k}}\left(z^{A} g f \varphi^{-1}\right)(\varphi(x)) \tag{2}\\
& \quad=D_{i_{1}} D_{i_{2}} \cdots D_{i_{k}}\left(z^{A} g \psi^{-1} \circ \psi f \varphi^{-1}\right)(\varphi(x))
\end{align*}
$$

We apply the higher order chain rule to this expression (Section 1.1, Lemma 1). Denote the corresponding associated charts by $\left(J_{(x, y)}^{r}(X, Y), \chi_{\varphi, \psi}^{r}\right), \chi_{\varphi, \psi}^{r}\left(J_{x}^{r} f\right)=\left(y_{i_{1} i_{2} \ldots i_{k}}^{\sigma}\right)$ $\left(J_{(y, z)}^{r}(Y, Z), \chi_{\psi, \eta}^{r}\right), \chi_{\psi, \eta}^{r}\left(J_{x}^{r} g\right)=\left(z_{\sigma_{1} \sigma_{2} \cdots \sigma_{k}}^{A}\right)$. Then

$$
w_{i_{1} i_{2} \cdots i_{s}}^{A}\left(J_{x}^{r}(g \circ f)\right)
$$

$$
\begin{equation*}
=\sum_{k=1}^{s} \sum_{\left(I_{1}, I_{2}, \ldots, I_{k}\right)} z_{\sigma_{1} \sigma_{2} \cdots \sigma_{k}}^{A}\left(J_{x}^{r} g\right) y_{I_{k}}^{\sigma_{k}}\left(J_{x}^{r} f\right) \cdots y_{I_{2}}^{\sigma_{2}}\left(J_{x}^{r} f\right) y_{I_{1}}^{\sigma_{1}}\left(J_{x}^{r} f\right), \tag{3}
\end{equation*}
$$

i.e., with obvious simplification,

$$
\begin{equation*}
w_{i_{1} i_{2} \cdots i_{s}}^{A}=\sum_{k=1}^{s} \sum_{\left(I_{1}, I_{2}, \ldots, I_{k}\right)} z_{\sigma_{1} \sigma_{2} \cdots \sigma_{k}}^{A} y_{I_{k}}^{\sigma_{k}} \ldots y_{I_{2}}^{\sigma_{2}} y_{I_{1}}^{\sigma_{1}} \tag{4}
\end{equation*}
$$

Now by Section 1.2, (2), if $J_{y}^{r} g=J_{y}^{r} g^{\prime}$ and $J_{x}^{r} f=J_{x}^{r} f^{\prime}$, then $J_{x}^{r}(g \circ f)=J_{x}^{r}\left(g^{\prime} \circ f^{\prime}\right)$ which means that the r-jet $J_{x}^{r}(g \circ f)$ depends on P and Q only.

If P and Q are composable r-jets, $P=J_{x}^{r} f, Q=J_{y}^{r} g$, we define

$$
\begin{equation*}
Q \circ P=J_{x}^{r}(g \circ f) \tag{5}
\end{equation*}
$$

and call the r-jet $Q \circ P$ the composite of P and Q. The mapping $(P, Q) \rightarrow Q \circ P$ of $J_{(x, y)}^{r}(X, Y) \times J_{(y, z)}^{r}(Y, Z)$ into $J_{(x, z)}^{r}(X, Z)$ where $y=f(x), z=g(y)$, is called the composition of r-jets. The composition of r-jets is associative.

Equation (3), or (4), is the r-jet composition formula.
In particular, we have the following result.
Lemma 4. The composition of r-jets is smooth.
Proof. By (3), the coordinates of the r-jet $Q \circ P$ depend polynomially on the coordinates of the r-jets P, Q.
 a manifold X (resp. Y), $x \in X$ (resp. $y \in Y$) a point. Then $J_{x}^{r} \mathrm{id}_{X} \in J_{(x, x)}^{r}(X, X)$ and $J_{y}^{r} \mathrm{id}_{Y} \in J_{(y, y)}^{r}(Y, Y)$. For any r-jet $P \in J_{(x, y)}^{r}(X, Y), P=J_{x}^{r} f$, the composites $J_{y}^{r} \mathrm{id}_{Y} \circ P=J_{y}^{r} \mathrm{id}_{Y} \circ J_{x}^{r} f, P \circ J_{x}^{r} \mathrm{id}_{X}=J_{x}^{r} f \circ J_{x}^{r} \mathrm{id}_{X}$, are defined, and

$$
\begin{equation*}
J_{y}^{r} \mathrm{id}_{Y} \circ P=P, \quad P \circ J_{x}^{r} \mathrm{id}_{X}=P . \tag{1}
\end{equation*}
$$

An r-jet $P \in J_{(x, y)}^{r}(X, Y)$ is called regular, if there exists an r-jet $Q \in J_{(y, x)}^{r}(Y, X)$, such that

$$
\begin{equation*}
Q \circ P=J_{x}^{r} \operatorname{id}_{X} \tag{2}
\end{equation*}
$$

P is called invertible, if there exists $Q \in J_{(y, x)}^{r}(Y, X)$ such that

$$
\begin{equation*}
Q \circ P=J_{x}^{r} \operatorname{id}_{X}, \quad P \circ Q=J_{y}^{r} \operatorname{id}_{Y} \tag{3}
\end{equation*}
$$

Lemma 5. (a) An r-jet $P \in J_{(x, y)}^{r}(X, Y)$ is regular if and only if every of its representatives is an immersion at the point x.
(b) An r-jet $P \in J_{(x, y)}^{r}(X, Y)$ is invertible if and only if every of its representatives is a diffeomorphism on a neighborhood of x.

Proof. (a) Let f be a representative of an r-jet $P=J_{x}^{r} f$. Assume that we have an r-jet $Q=J_{y}^{r} g$ satisfying (2), and its representative g. Then the mappings $g \circ f$ and id_{X} represent the same r-jet with source and target x, and we have for any chart (U, φ) at x and any chart (V, ψ) at y

$$
\begin{equation*}
D^{1}\left(\varphi g f \varphi^{-1}\right)(\varphi(x))=D^{1}\left(\varphi g \psi^{-1}\right)(\psi f(x)) \circ D^{1}\left(\psi f \varphi^{-1}\right)(\varphi(x))=\operatorname{id}_{\mathbf{R}^{n}} \tag{4}
\end{equation*}
$$

In particular, rank $D^{1}\left(\varphi g f \varphi^{-1}\right)(\varphi(x))=n$ which is the dimension of the image of the linear mapping $D^{1}\left(\varphi g f \varphi^{-1}\right)(\varphi(x)): \mathbf{R}^{n} \rightarrow \mathbf{R}^{n}$. This implies that rank $D^{1}\left(\psi f \varphi^{-1}\right)$ $(\varphi(x))$ must be equal to n. Therefore, f is an immersion at x, by the rank theorem. Conversely, if a representative f of P is an immersion at x, then we apply the rank theorem again.
(b) If P is invertible we easily find, using similar arguments, that $\operatorname{dim} Y=m$ must be equal to $\operatorname{dim} X=n$, and then we apply the rank theorem. The converse is obvious.

The set of regular r-jets in $J_{(x, y)}^{r}(X, Y)$, is denoted by imm $J_{(x, y)}^{r}(X, Y)$; it is an open subset of $J_{(x, y)}^{r}(X, Y)$. Obviously, using continuity of the determinant function we easily show that the set W of points $\left(w_{i_{1}}^{\sigma}, w_{i_{1} i_{2}}^{\sigma}, \ldots, w_{i_{1} i_{2} \cdots i_{r}}^{\sigma}\right) \in \mathbf{R}^{N}$ such that the matrix $\left(w_{j}^{\nu}\right)$ is of maximal rank n, is open in \mathbf{R}^{N}. Then using a chart $(U, \varphi), \varphi=\left(x^{i}\right)$, at x, a chart $(V, \psi), \psi=\left(y^{\sigma}\right)$, at y, and the associated chart $\left(J_{(x, y)}^{r}(X, Y), \chi_{\varphi, \psi}^{r}\right), \chi_{\varphi, \psi}^{r}=$ $\left(y_{i_{1}}^{\sigma}, y_{i_{1} i_{2}}^{\sigma}, \ldots, y_{i_{1} i_{2} \cdots i_{r}}^{\sigma}\right)$ on $J_{(x, y)}^{r}(X, Y)$, we obtain the set imm $J_{(x, y)}^{r}(X, Y)$ as the inverse image of W by the continuous mapping $\chi_{\varphi, \psi}^{r}$.
$\operatorname{imm} J_{(x, y)}^{r}(X, Y) \neq \emptyset$ if and only if $\operatorname{dim} X=n \leq \operatorname{dim} Y=m$.
If $n=m$, then the set imm $J_{(x, y)}^{r}(X, Y)$ consists of invertible r-jets. Conversely, if the set $\operatorname{imm} J_{(x, y)}^{r}(X, Y)$ contains an invertible r-jet, then the points x and y have neighborhoods of the same dimension.

2. Jet manifolds

2.1. Differential groups. Let r, n be positive integers. We denote

$$
\begin{equation*}
L_{n}^{r}=\operatorname{imm} J_{(0,0)}^{r}\left(\mathbf{R}^{n}, \mathbf{R}^{n}\right) \tag{1}
\end{equation*}
$$

Thus, L_{n}^{r} is the set of invertible r-jets in the jet manifold $J_{(0,0)}^{r}\left(\mathbf{R}^{n}, \mathbf{R}^{n}\right)$. Restricting the canonical coordinates $a_{j_{1} j_{2} \ldots j_{k}}^{i}$ on $J_{(0,0)}^{r}\left(\mathbf{R}^{n}, \mathbf{R}^{n}\right)$ (Section 1.2, (14)) to L_{n}^{r} we obtain the canonical coordinates on L_{n}^{r}

$$
\begin{equation*}
a_{j_{1} j_{2} \cdots j_{k}}^{i}\left(J_{x}^{r} \alpha\right)=D_{j_{1}} D_{j_{2}} \cdots D_{j_{k}} \alpha^{i}(0) \tag{2}
\end{equation*}
$$

where $\alpha=\left(\alpha^{i}\right), 1 \leq i \leq n, 1 \leq k \leq r, 1 \leq j_{1} \leq j_{2} \leq \cdots \leq j_{k} \leq n$. In these coordinates $L_{n}^{r}=\left\{J_{0}^{r} \alpha \in J_{(0,0)}^{r}\left(\mathbf{R}^{n}, \mathbf{R}^{n}\right) \mid \operatorname{det} a_{j}^{i}\left(J_{0}^{r} \alpha\right) \neq 0\right\}$.

The canonical coordinates (2) will be also written by means of the convention introduced in Section 1.2, (9). Namely, if $I=\left\{i_{1}, i_{2}, \ldots, i_{k}\right\}$ is a set of positive integers such that $1 \leq i_{1}, i_{2}, \ldots, i_{k} \leq n$, we also write

$$
\begin{equation*}
a_{I}^{i}=a_{j_{1} j_{2} \cdots j_{k}}^{i} \tag{3}
\end{equation*}
$$

The composition of jets (see Section 1.3, (5)) defines an operation

$$
\begin{equation*}
L_{n}^{r} \times L_{n}^{r} \ni(A, B) \rightarrow A \circ B \in L_{n}^{r} \tag{4}
\end{equation*}
$$

on the set L_{n}^{r}. This operation is associative, the r-jet $J_{0}^{r} \mathrm{id}_{\mathbf{R}^{n}} \in L_{n}^{r}$ is the unity, and every r-jet $A \in L_{n}^{r}, A=J_{0}^{r} \alpha$ has a unique inverse $A^{-1}=J_{0}^{r} \alpha^{-1}$. Thus, (4) defines a group structure on L_{n}^{r}. Since the composition of r-jets is smooth (Section 1.3, Lemma 3), L_{n}^{r} is a Lie group. We call this Lie group the r-th differential group of \mathbf{R}^{n}, or simply a differential group. From Section 1.2, (8) we derive that

$$
\begin{equation*}
\operatorname{dim} L_{n}^{r}=n\left(\binom{n+r}{n}-1\right) . \tag{5}
\end{equation*}
$$

Note that L_{n}^{1} can be cannonically identified with the general linear group $G L_{n}(\mathbf{R})$.
Using the r-jet composition formula (Section 1.3, (4)) and the canonical coordinates (2), (3), we can describe the group operation (4) explicitly. If $A, B \in L_{n}^{r}, A=J_{0}^{r} \alpha$, $B=J_{0}^{r} \beta$, and $C=A \circ B=J_{0}^{r}(\alpha \circ \beta)$, and $a_{i_{1} i_{2} \cdots i_{s}}^{k}=a_{i_{1} i_{2} \cdots i_{s}}^{k}\left(J_{0}^{r} \alpha\right), b_{i_{1} i_{2} \cdots i_{s}}^{k}=a_{i_{1} i_{2} \cdots i_{s}}^{k}$ $\left(J_{0}^{r} \beta\right), c_{i_{1} i_{2} \cdots i_{s}}^{k}=a_{i_{1} i_{2} \cdots i_{s}}^{k}\left(J_{0}^{r}(\alpha \circ \beta)\right)$, then

$$
\begin{equation*}
c_{i_{1} i_{2} \ldots i_{s}}^{k}=\sum_{p=1}^{s} \sum_{\left(I_{1}, I_{2}, \ldots, I_{p}\right)} a_{j_{1} j_{2} \ldots j_{p}}^{k} b_{I_{1}}^{j_{1}} b_{I_{2}}^{j_{2}} \cdots b_{I_{p}}^{j_{p}}, \tag{6}
\end{equation*}
$$

where the second sum is extended to all partitions $\left(I_{1}, I_{2}, \ldots, I_{p}\right)$ of the set $\left(i_{1}, i_{2}\right.$, \ldots, i_{s}).

Example 1 (group operation in L_{n}^{3}). In applications explicit chart expressions for group operation in differential groups are needed. Using the definition, we derive the corresponding formulas for the group L_{n}^{3} in the canonical coordinates. Let $A, B \in L_{n}^{3}$ be two 3-jets. Let $U, V, W \subset \mathbf{R}^{n}$ be three neighborhoods of the origin $0 \in \mathbf{R}^{n}, \alpha$: $U \rightarrow V, \beta: V \rightarrow W$ two diffeomorphisms such that $A=J_{0}^{3} \alpha, B=J_{0}^{3} \beta$. Denote by $\left(x^{i}\right)$ the canonical coordinates on \mathbf{R}^{n} (as well as on U, V, and W). Write in components $\alpha=\left(x^{i} \alpha\right), \beta=\left(x^{i} \beta\right)$, and consider the diffeomorphism $\gamma=\beta \circ \alpha$ of U into $W, \gamma=$ $\left(x^{i} \gamma\right)$. Then the product of A and B in L_{n}^{3} is the 3 -jet $C=J_{0}^{3} \gamma$. To obtain the canonical coordinates of C we should compute all partial derivatives of the components of γ up to the 3 -rd order at the point $0 \in \mathbf{R}^{n}$. Differentiating components of this diffeomorphism at a point $x \in U$, we obtain

$$
\begin{align*}
& D_{j_{1}}\left(x^{i} \gamma\right)(x)=D_{j_{1}}\left(x^{i} \beta \circ \alpha\right)(x) \\
& \quad=D_{k}\left(x^{i} \beta\right)(\alpha(x)) D_{j_{1}}\left(x^{k} \alpha\right)(x), \\
& D_{j_{2}} D_{j_{1}}\left(x^{i} \gamma\right)(x)=D_{j_{2}} D_{j_{1}}\left(x^{i} \beta \circ \alpha\right)(x) \\
& \quad=D_{k_{2}} D_{k_{1}}\left(x^{i} \beta\right)(\alpha(x)) D_{j_{2}}\left(x^{k_{2}} \alpha\right)(x) D_{j_{1}}\left(x^{k_{1}} \alpha\right)(x) \\
& \quad+D_{k}\left(x^{i} \beta\right)(\alpha(x)) D_{j_{2}} D_{j_{1}}\left(x^{k} \alpha\right)(x), \\
& D_{j_{3}} D_{j_{2}} D_{j_{1}}\left(x^{i} \gamma\right)(x)=D_{j_{3}} D_{j_{2}} D_{j_{1}}\left(x^{i} \beta \circ \alpha\right)(x) \tag{7}\\
& \quad=D_{k_{3}} D_{k_{2}} D_{k_{1}}\left(x^{i} \beta\right)(\alpha(x)) D_{j_{3}}\left(x^{k_{3}} \alpha\right)(x) D_{j_{2}}\left(x^{k_{2}} \alpha\right)(x) D_{j_{1}}\left(x^{k_{1}} \alpha\right)(x) \\
& \quad+D_{k_{2}} D_{k_{1}}\left(x^{i} \beta\right)(\alpha(x)) D_{j_{3}} D_{j_{2}}\left(x^{k_{2}} \alpha\right)(x) D_{j_{1}}\left(x^{k_{1}} \alpha\right)(x) \\
& \quad+D_{k_{2}} D_{k_{1}}\left(x^{i} \beta\right)(\alpha(x)) D_{j_{2}}\left(x^{k_{2}} \alpha\right)(x) D_{j_{3}} D_{j_{1}}\left(x^{k_{1}} \alpha\right)(x) \\
& \quad+D_{k_{2}} D_{k_{1}}\left(x^{i} \beta\right)(\alpha(x)) D_{j_{3}}\left(x^{k_{2}} \alpha\right)(x) D_{j_{2}} D_{j_{1}}\left(x^{k_{1}} \alpha\right)(x) \\
& \quad+D_{k}\left(x^{i} \beta\right)(\alpha(x)) D_{j_{3}} D_{j_{2}} D_{j_{1}}\left(x^{k} \alpha\right)(x) .
\end{align*}
$$

Substituting $x=\alpha(x)=0$, we get

$$
\begin{align*}
& D_{j_{1}}\left(x^{i} \gamma\right)(0)=D_{k}\left(x^{i} \beta\right)(0) D_{j_{1}}\left(x^{k} \alpha\right)(0), \\
& D_{j_{2}} D_{j_{1}}\left(x^{i} \gamma\right)(0)=D_{k_{2}} D_{k_{1}}\left(x^{i} \beta\right)(0) D_{j_{2}}\left(x^{k_{2}} \alpha\right)(0) D_{j_{1}}\left(x^{k_{1}} \alpha\right)(0) \\
& \quad+D_{k}\left(x^{i} \beta\right)(0) D_{j_{2}} D_{j_{1}}\left(x^{k} \alpha\right)(0), \\
& D_{j_{3}} D_{j_{2}} D_{j_{1}}\left(x^{i} \gamma\right)(0) \\
& \quad=D_{k_{3}} D_{k_{2}} D_{k_{1}}\left(x^{i} \beta\right)(0) \cdot D_{j_{3}}\left(x^{k_{3}} \alpha\right)(0) \cdot D_{j_{2}}\left(x^{k_{2}} \alpha\right)(0) \cdot D_{j_{1}}\left(x^{k_{1}} \alpha\right)(0) \tag{8}\\
& \quad+D_{k_{2}} D_{k_{1}}\left(x^{i} \beta\right)(0) \cdot D_{j_{3}} D_{j_{2}}\left(x^{k_{2}} \alpha\right)(0) \cdot D_{j_{1}}\left(x^{k_{1}} \alpha\right)(0) \\
& \quad+D_{k_{2}} D_{k_{1}}\left(x^{i} \beta\right)(0) \cdot D_{j_{2}}\left(x^{k_{2}} \alpha\right)(0) \cdot D_{j_{3}} D_{j_{1}}\left(x^{k_{1}} \alpha\right)(0) \\
& \quad+D_{k_{2}} D_{k_{1}}\left(x^{i} \beta\right)(0) \cdot D_{j_{3}}\left(x^{k_{2}} \alpha\right)(0) \cdot D_{j_{2}} D_{j_{1}}\left(x^{k_{1}} \alpha\right)(0) \\
& \quad+D_{k}\left(x^{i} \beta\right)(0) \cdot D_{j_{3}} D_{j_{2}} D_{j_{1}}\left(x^{k} \alpha\right)(0)
\end{align*}
$$

or, which is the same,

$$
\begin{align*}
& a_{j_{1}}^{i}\left(J_{0}^{3} \gamma\right)=a_{k}^{i}\left(J_{0}^{3} \beta\right) \cdot a_{j_{1}}^{k}\left(J_{0}^{3} \alpha\right), \\
& a_{j_{2} j_{1}}^{i}\left(J_{0}^{3} \gamma\right)=a_{k_{2} k_{1}}^{i}\left(J_{0}^{3} \beta\right) \cdot a_{j_{2}}^{k_{2}}\left(J_{0}^{3} \alpha\right) \cdot a_{j_{1}}^{k_{1}}\left(J_{0}^{3} \alpha\right) \\
& \quad+a_{k}^{i}\left(J_{0}^{3} \beta\right) \cdot a_{j_{2} j_{1}}^{k}\left(J_{0}^{3} \alpha\right), \\
& a_{j_{j_{j}} j_{2}}^{i}\left(J_{0}^{3} \gamma\right)=a_{k_{3} k_{2} k_{1}}^{i}\left(J_{0}^{3} \beta\right) \cdot a_{j_{3}}^{k_{3}}\left(J_{0}^{3} \alpha\right) \cdot a_{j_{2}}^{k_{2}}\left(J_{0}^{3} \alpha\right) \cdot a_{j_{1}}^{k_{1}}\left(J_{0}^{3} \alpha\right) \tag{9}\\
& \quad+a_{k_{2} k_{1}}^{i}\left(J_{0}^{3} \beta\right) \cdot a_{j_{3} j_{2}}^{k_{2}}\left(J_{0}^{3} \alpha\right) \cdot a_{j_{1}}^{k_{1}}\left(J_{0}^{3} \alpha\right) \\
& \quad+a_{k_{2} k_{1}}^{i}\left(J_{0}^{3} \beta\right) \cdot a_{j_{2}}^{k_{2}}\left(J_{0}^{3} \alpha\right) \cdot a_{j_{3} j_{1}}^{k_{1}}\left(J_{0}^{3} \alpha\right) \\
& \quad+a_{k_{2} k_{1}}^{i}\left(J_{0}^{3} \beta\right) \cdot a_{j_{3}}^{k_{2}}\left(J_{0}^{3} \alpha\right) \cdot a_{j_{2} j_{1}}^{k_{1}}\left(J_{0}^{3} \alpha\right)+a_{k}^{i}\left(J_{0}^{3} \beta\right) \cdot a_{j_{3} j_{2} j_{1}}^{k}\left(J_{0}^{3} \alpha\right) \text {. }
\end{align*}
$$

We usually abbreviate these formulas by writing

$$
\begin{align*}
& c_{j_{1}}^{i}=b_{k}^{i} a_{j_{1}}^{k}, \\
& c_{j_{2} j_{1}}^{i}=b_{k_{2} k_{1}}^{i} a_{j_{2}}^{k_{2}} a_{j_{1}}^{k_{1}}+b_{k}^{i} a_{j_{2} j_{1}}^{k}, \\
& c_{j_{3} j_{2} j_{1}}^{i}=b_{k_{3} k_{2} k_{1}}^{i} a_{j_{3}}^{k_{3}} a_{j_{2}}^{k_{2}} a_{j_{1}}^{k_{1}}+b_{k_{2} k_{1}}^{i} a_{j_{3} j_{2}}^{k_{2}} a_{j_{1}}^{k_{1}}+b_{k_{2} k_{1}}^{i} a_{j_{2}}^{k_{2}} a_{j_{3} j_{1}}^{k_{1}} \tag{10}\\
& \quad+b_{k_{2} k_{1}}^{i} a_{j_{3}}^{k_{2}} a_{j_{2} j_{1}}^{k_{1}}+b_{k}^{i} a_{j_{3} j_{2} j_{1}}^{k}
\end{align*}
$$

with obvious meaning of the symbols. These formulas represent equations of the group operation in the differential group L_{n}^{3} in canonical coordinates.

Now we compute the chart expression of the mapping $L_{n}^{3} \ni A \rightarrow A^{-1} \in L_{n}^{3}$. We take in (10) $B=A^{-1}, C=J_{0}^{3} \mathrm{id}_{\mathbf{R}^{n}}$. Then

$$
\begin{equation*}
c_{j_{1}}^{i}=\delta_{j_{1}}^{i}, \quad c_{j_{1} j_{2}}^{i}=0, \quad c_{j_{1} j_{2} j_{3}}^{i}=0, \tag{11}
\end{equation*}
$$

and equations (10) reduce to

$$
\begin{align*}
& b_{k}^{i} a_{j_{1}}^{k}=\delta_{j_{1}}^{i}, \\
& b_{k_{2} k_{1}}^{i} a_{j_{2}}^{k_{2}} a_{j_{1}}+b_{k}^{i} a_{j_{2} j_{1}}^{k}=0, \\
& b_{k_{3} k_{2} k_{1}}^{i} a_{j_{3}}^{k_{3}} a_{j_{2}}^{k_{2}} a_{j_{1}}^{k_{1}}+b_{k_{2} k_{1}}^{i} a_{j_{3} j_{2}}^{k_{2}} a_{j_{1}}^{k_{1}}+b_{k_{2} k_{1}}^{i} a_{j_{2}}^{k_{2}} a_{j_{3} j_{1}}^{k_{1}} \tag{12}\\
& \quad+b_{k_{2} k_{1}}^{i} a_{j_{3}}^{k_{3}} a_{j_{2} j_{1}}^{k_{1}}+b_{k}^{i} a_{j_{3} j_{2} j_{1}}^{k}=0 .
\end{align*}
$$

The first equation determines b_{k}^{i} as elements of the inverse matrix to the matrix $\left(a_{j}^{k}\right)$. Using this fact we get

$$
\begin{align*}
& b_{k}^{i} a_{j_{1}}^{k}=\delta_{j_{1}}^{i}, \\
& b_{p_{2} p_{1}}^{i}=-a_{j_{2} j_{1}}^{k} b_{k}^{i} b_{p_{2}}^{j_{2}} b_{p_{1}}^{j_{1}}, \tag{13}\\
& b_{p_{3} p_{2} p_{1}}^{i}=-\left(b_{k_{2} k_{1}}^{i}\left(a_{j_{1}}^{k_{1}} a_{j_{3} j_{2}}^{k_{2}}+a_{j_{2}}^{k_{2}} a_{j_{3} j_{1}}^{k_{1}}+a_{j_{3}}^{k_{2}} a_{j_{2} j_{1}}^{k_{1}}\right)+b_{k}^{i} a_{j_{3} j_{2} j_{1}}^{k}\right) b_{p_{3}}^{j_{3}} b_{p_{2}}^{j_{2}} b_{p_{1}}^{j_{1}},
\end{align*}
$$

where it is assumed that we substitute for b_{k}^{i} from the first equation into the second and the third ones, and then for $b_{k_{2} k_{1}}^{i}$ from the second equation into the third one. We conclude that the mapping $A \rightarrow A^{-1}$, expressed in canonical coordinates by (13), is represented by rational functions.

Remark 1. Sometimes it is useful to use the second canonical coordinates on L_{n}^{r}, defined by

$$
\begin{equation*}
b_{j_{1} j_{2} \cdots j_{k}}^{i}(A)=a_{j_{1} j_{2} \cdots j_{k}}^{i}\left(A^{-1}\right), \tag{14}
\end{equation*}
$$

where $1 \leq i \leq n, 1 \leq k \leq r, 1 \leq j_{1} \leq j_{2} \leq \cdots \leq j_{k} \leq n$.
2.2. Velocities. Throughout this section, $m, n \geq 1$ and $r \geq 0$ are integers, and Y is a smooth manifold of dimension $n+m$.

By an n-velocity of order r at a point $y \in Y$ we mean an r-jet $P \in J_{(0, y)}^{r}\left(\mathbf{R}^{n}, Y\right)$, $P=J_{0}^{r} \zeta$. When there is no danger of confusion, we omit n and r, and speak simply of a velocity. We denote

$$
\begin{equation*}
T_{n}^{r} Y=\bigcup_{y \in Y} J_{(0, y)}^{r}\left(\mathbf{R}^{n}, Y\right) \tag{1}
\end{equation*}
$$

and define surjective mappings $\tau_{n}^{r, s}: T_{n}^{r} Y \rightarrow T_{n}^{s} Y$, where $0 \leq s \leq r$, by

$$
\begin{equation*}
\tau_{n}^{r, s}\left(J_{0}^{r} \zeta\right)=J_{0}^{s} \zeta \tag{2}
\end{equation*}
$$

The set $T_{n}^{r} Y$ is endowed with a right action of the differential group L_{n}^{r}, defined by the jet composition

$$
\begin{equation*}
T_{n}^{r} Y \times L_{n}^{r} \ni(P, A) \rightarrow P \circ A \in T_{n}^{r} Y \tag{3}
\end{equation*}
$$

This action is said to be canonical.
Let $(V, \psi), \psi=\left(y^{K}\right)$, be a chart on Y. We set

$$
\begin{equation*}
V_{n}^{r}=\left(\tau_{n}^{r, 0}\right)^{-1}(V), \quad \psi_{n}^{r}=\left(y^{K}, y_{i_{1}}^{K}, y_{i_{1} i_{2}}^{K}, \ldots, y_{i_{1} i_{2} \cdots i_{r}}^{K}\right), \tag{4}
\end{equation*}
$$

where $1 \leq K \leq n+m, 1 \leq i_{1} \leq i_{2} \leq \cdots \leq i_{r} \leq n$, and for every $P \in V_{n}^{r}, P=J_{0}^{r} \zeta$,

$$
\begin{equation*}
y_{i_{1} i_{2} \cdots i_{k}}^{K}(P)=D_{i_{1}} D_{i_{2}} \cdots D_{i_{k}}\left(y^{K} \zeta\right)(0) \tag{5}
\end{equation*}
$$

where $0 \leq k \leq r$.
Note that formula (5) can be written in a slightly different way. To this purpose we denote by $\operatorname{tr}_{\xi}: \mathbf{R}^{n+m} \rightarrow \mathbf{R}^{n+m}$ the translation sending a vector $\xi \in \mathbf{R}^{n+m}$ to the origin $0 \in \mathbf{R}^{n+m}$. By definition,

$$
\begin{equation*}
\operatorname{tr}_{\xi}(x)=x-\xi . \tag{6}
\end{equation*}
$$

Now writing in components $\operatorname{tr}_{\xi}=\left(\operatorname{tr}_{\xi}^{K}\right)$, we have

$$
\begin{equation*}
y_{j_{1} j_{2} \cdots j_{s}}^{K}(P)=D_{j_{1}} D_{j_{2}} \cdots D_{j_{s}}\left(\operatorname{tr}_{\psi \zeta(0)}^{K} \psi \zeta\right)(0) . \tag{7}
\end{equation*}
$$

In the following theorem we use the set of r-jets $L_{n, m}^{r}=J_{(0,0)}^{r}\left(\mathbf{R}^{n}, \mathbf{R}^{m}\right)$ with source at $0 \in \mathbf{R}^{n}$ and target at $0 \in \mathbf{R}^{m}$ (Section 1.2, Remark 2). Elements of this set are called standard n-velocities of order r in \mathbf{R}^{m}.

Theorem 1. Let $m, n \geq 1$ and $r \geq 0$ be integers, and let Y be a smooth manifold of dimension $n+m$.

There exists one and only one smooth structure on $T_{n}^{r} Y$ such that for any chart $(V, \psi), \psi=\left(y^{K}\right)$, on Y, the pair $\left(V_{n}^{r}, \psi_{n}^{r}\right), \psi_{n}^{r}=\left(y^{K}, y_{i_{1}}^{K}, y_{i_{1} i_{2}}^{K}, \ldots, y_{i_{1} i_{2} \cdots i_{r}}^{K}\right)$, is a chart on $T_{n}^{r} Y$. The dimension of $T_{n}^{r} Y$ is given by

$$
\begin{equation*}
N=(n+m)\binom{n+r}{n} \tag{8}
\end{equation*}
$$

In this smooth structure, the canonical right action of L_{n}^{r} on $T_{n}^{r} Y$ is smooth, and $T_{n}^{r} Y$ is a fibration with base Y, projection $\tau_{n}^{r, 0}$, and fiber $L_{n, n+m}^{r}$.

Proof. Using (7) we can see at once that ψ_{n}^{r} is a bijection of V_{n}^{r} onto the open set $\psi(V) \times L_{n, n+m}^{r} \subset \mathbf{R}^{n+m} \times \mathbf{R}^{N}$, where N is determined by Section 1.2, (8). Thus, $\left(V_{n}^{r}, \psi_{n}^{r}\right)$ is a chart on $T_{n}^{r} Y$. Let $(V, \psi), \psi=\left(y^{K}\right)$, and $(\bar{V}, \bar{\psi}), \bar{\psi}=\left(\bar{y}^{K}\right)$, be two charts on Y such that $V \cap \bar{V} \neq \emptyset$. Using the higher order chain rule (Section 1.1, Lemma 1), it is easy to see that the corresponding coordinate transformation from $\left(V_{n}^{r}, \psi_{n}^{r}\right)$ to $\left(\bar{V}_{n}^{r}, \bar{\psi}_{n}^{r}\right)$ is polynomial in the coordinates $y_{i_{1}}^{K}, y_{i_{1} i_{2}}^{K}, \ldots, y_{i_{1} i_{2} \ldots i_{r}}^{K}$ hence smooth.

Therefore, the charts $\left(V_{n}^{r}, \psi_{n}^{r}\right),\left(\bar{V}_{n}^{r}, \bar{\psi}_{n}^{r}\right)$ are compatible.
Since the equations of the mapping $\tau_{n}^{r, s}: T_{n}^{r} Y \rightarrow T_{n}^{s} Y$ in terms of the charts $\left(V_{n}^{r}, \psi_{n}^{r}\right),\left(V_{n}^{s}, \psi_{n}^{s}\right)$ are given by

$$
\begin{equation*}
y_{i_{1} i_{2} \cdots i_{k}}^{K} \circ \tau_{n}^{r, s}=y_{i_{1} i_{2} \cdots i_{k}}^{K}, \tag{9}
\end{equation*}
$$

where $0 \leq k \leq s, \tau_{n}^{r, s}$ is a submersion.
The smoothness of the right action follows from the polynomiality of the composition of jets (Section 1.3, (3)).

The set $T_{n}^{r} Y$ endowed with the smooth structure defined in Theorem 1, and with the canonical right action (3) of L_{n}^{r} is called the manifold of n-velocities of order r over Y. The chart $\left(V_{n}^{r}, \psi_{n}^{r}\right)$ on $T_{n}^{r} Y$ is said to be associated with the chart (V, ψ).

The canonical group action (3) can be easily determined in the canonical coordinates $a_{j_{1} j_{2} \cdots j_{k}}^{i}$ on L_{n}^{r} (Section 2.1, (2), (3)), and in a chart ($\left.V, \psi\right), \psi=\left(y^{K}\right)$, on Y. Using the associated chart $\left(V_{n}^{r}, \psi_{n}^{r}\right)$, (3) is expressed by the equations

$$
\begin{equation*}
\bar{y}^{K}=y^{K}, \quad \bar{y}_{i_{1} i_{2} \cdots i_{s}}^{K}=\sum_{p=1}^{s} \sum_{\left(I_{1}, I_{2}, \ldots, I_{p}\right)} y_{j_{1} j_{2} \cdots j_{p}}^{K} a_{I_{1}}^{j_{1}} a_{I_{2}}^{j_{2}} \cdots a_{I_{p}}^{j_{p}}, \tag{10}
\end{equation*}
$$

where the second sum is extended to all partitions $\left(I_{1}, I_{2}, \ldots, I_{p}\right)$ of the set $\left(i_{1}, i_{2}, \ldots\right.$, i_{s}) (see Section 1.3, (4)).

Example 2 (the action of L_{n}^{2} on $T_{n}^{2} Y$). In our standard notation, let $P=J_{0}^{2} \zeta, A=$ $J_{0}^{2} \alpha$. By (3), we consider the mapping $t \rightarrow\left(y^{K} \zeta \circ \alpha\right)(t)$.

Since

$$
\begin{aligned}
& D_{i}\left(y^{K} \zeta \circ \alpha\right)(t)=D_{k}\left(y^{K} \zeta\right)(\alpha(t)) D_{i} \alpha^{k}(t) \\
& D_{i} D_{j}\left(y^{K} \zeta \circ \alpha\right)(t)=D_{l} D_{k}\left(y^{K} \zeta\right)(\alpha(t)) D_{j} \alpha^{l}(t) D_{i} \alpha^{k}(t) \\
& \quad+D_{k}\left(y^{K} \zeta\right)(\alpha(t)) D_{i} D_{j} \alpha^{k}(t)
\end{aligned}
$$

we have the following equations of the action of L_{n}^{2} on $T_{n}^{2} Y$

$$
\bar{y}^{K}=y^{K}, \quad \bar{y}_{i}^{K}=y_{k}^{K} a_{i}^{k}, \quad \bar{y}_{i j}^{K}=y_{k l}^{K} a_{i}^{k} a_{j}^{l}+y_{k}^{K} a_{i j}^{k}
$$

It is clear from these formulas how to obtain equations of the action of L_{n}^{r} on $T_{n}^{r} Y$ by a process of a formal differentiation.

Let γ be a smooth mapping of an open set $U \subset \mathbf{R}^{n}$ into Y. Then for any $t \in U$, the mapping $x \rightarrow \gamma \circ \operatorname{tr}_{-t}(x)$ is defined on a neighborhood of the origin $0 \in \mathbf{R}^{n}$ so that the r-jet $J_{0}^{r}\left(\gamma \circ \operatorname{tr}_{-t}\right)$ is defined. The mapping

$$
\begin{equation*}
U \ni t \rightarrow\left(T_{n}^{r} \gamma\right)(t)=J_{0}^{r}\left(\gamma \circ \operatorname{tr}_{-t}\right) \in T_{n}^{r} Y \tag{11}
\end{equation*}
$$

is called the r-prolongation, or simply the prolongation of γ (for terminology, compare with Section 1.2). Since $y_{i_{1} i_{2} \ldots i_{k}}^{K} \circ T_{n}^{r} \gamma(t)=D_{i_{1}} D_{i_{2}} \cdots D_{i_{k}}\left(y^{K}\left(\gamma \circ \operatorname{tr}_{-t}\right)\right)(0)$ and $D_{i}\left(y^{K}\left(\gamma \circ \operatorname{tr}_{-t}\right)\right)(x)=D_{i}\left(y^{K} \gamma\right)(x+t)$, we get for the chart expression of (11)

$$
\begin{equation*}
\left(y_{i_{1} i_{2} \cdots i_{k}}^{K} \circ T_{n}^{r} \gamma\right)(t)=D_{i_{1}} D_{i_{2}} \cdots D_{i_{k}}\left(y^{K} \gamma\right)(t) . \tag{12}
\end{equation*}
$$

In particular, $T_{n}^{r} \gamma$ is a smooth mapping.
Assume that we have an element $P \in T_{n}^{r} Y, P=J_{0}^{r} \zeta$. A representative ζ of P defines the tangent mapping $T_{0} T_{n}^{r-1} \zeta$, which sends a tangent vector $\xi \in T_{0} \mathbf{R}^{n}$ to the tangent vector $T_{0} T_{n}^{r-1} \zeta \cdot \xi$ of $T_{n}^{r-1} Y$ at $\tau_{n}^{r, r-1}(P)=J_{0}^{r-1} \zeta$. If $\xi=\xi^{i}\left(\partial / \partial t^{i}\right)_{0}$, then by (12),

$$
\begin{align*}
& T_{0} T_{n}^{r-1} \zeta \cdot \xi=\sum_{k=0}^{r-1} \sum_{i_{1} \leq i_{2} \leq \cdots \leq i_{k}}\left(\frac{\partial\left(y_{i_{1} i_{2} \cdots i_{k}}^{K} \circ T_{n}^{r-1} \zeta\right)}{\partial t^{i}}\right)_{0} \xi^{i}\left(\frac{\partial}{\partial y_{i_{1} i_{2} \cdots i_{k}}^{K}}\right)_{J_{0}^{r-1} \zeta} \\
& \quad=\sum_{k=0}^{r-1} \sum_{i_{1} \leq i_{2} \leq \cdots \leq i_{k}} y_{i_{1} i_{2} \cdots i_{k} i}^{K}\left(J_{0}^{r} \zeta\right) \xi^{i}\left(\frac{\partial}{\partial y_{i_{1} i_{2} \cdots i_{k}}^{K}}\right)_{J_{0}^{r-1} \zeta} \tag{13}\\
& \quad=\xi^{i} d_{i}(P)
\end{align*}
$$

where

$$
\begin{equation*}
d_{i}=\sum_{k=0}^{r-1} \sum_{i_{1} \leq i_{2} \leq \cdots \leq i_{k}} y_{i_{1} i_{2} \cdots i_{k} i}^{K} \frac{\partial}{\partial y_{i_{1} i_{2} \cdots i_{k}}^{K}} \tag{14}
\end{equation*}
$$

is a morphism $T_{n}^{r} \ni P \rightarrow d_{i}(P) \in T T_{n}^{r-1} Y$ over $T_{n}^{r-1} Y$. Indeed, the tangent vectors $d_{i}(P)$ are defined independently of the chosen chart: If $(\bar{V}, \bar{\psi}), \bar{\psi}=\left(\bar{y}^{K}\right)$, is some other chart at $y=\zeta(0)$, then

$$
\begin{equation*}
\bar{d}_{i}=\sum_{k=0}^{r-1} \sum_{j_{1} \leq j_{2} \leq \cdots \leq j_{k}} \bar{y}_{j_{1} j_{2} \cdots j_{k} i}^{K} \frac{\partial}{\partial \bar{y}_{j_{1} j_{2} \cdots j_{k}}^{K}}, \tag{15}
\end{equation*}
$$

and by (13),

$$
\begin{equation*}
\bar{d}_{i}=d_{i} \tag{16}
\end{equation*}
$$

d_{i} is called the i-th formal derivative morphism.
Remark 2. In (14), $\partial / \partial y_{i_{1} i_{2} \ldots i_{k}}^{K}$ are understood as tangent vectors to $T_{n}^{r-1} Y$. Formula (14) does not define a vector field on $T_{n}^{r} Y$ since it is not invariant when the tangent vectors $\partial / \partial y_{i_{1} i_{2} \cdots i_{k}}^{K}$ are subject to coordinate transformations on $T_{n}^{r} Y$.

Let $f: V_{n}^{r-1} \rightarrow \mathbf{R}$ be a smooth function. We define the i-th formal derivative $d_{i} f: V_{n}^{r} \rightarrow \mathbf{R}$ by

$$
\begin{equation*}
d_{i} f=\sum_{k=0}^{r-1} \sum_{j_{1} \leq j_{2} \leq \cdots \leq j_{k}} y_{j_{1} j_{2} \cdots j_{k} i}^{K} \frac{\partial f}{\partial y_{j_{1} j_{2} \cdots j_{k}}^{K}} \tag{17}
\end{equation*}
$$

Then by (12)

$$
\begin{aligned}
D_{p} & \left(f \circ T_{n}^{r-1} \gamma\right)(t) \\
& =\sum_{k=0}^{r-1} \sum_{j_{1} \leq j_{2} \leq \cdots \leq j_{k}}\left(\frac{\partial\left(f \circ T_{n}^{r-1} \gamma\right)}{\partial y_{j_{1} j_{2} \cdots j_{k}}^{K}}\right)_{\left(T_{n}^{r-1} \gamma\right)(t)} D_{p}\left(y_{j_{1} j_{2} \cdots j_{k}}^{K} \circ T_{n}^{r-1} \gamma\right)(t) \\
& =\sum_{k=0}^{r-1} \sum_{j_{1} \leq j_{2} \leq \cdots \leq j_{k}}\left(\frac{\partial\left(f \circ\left(\psi_{n}^{r}\right)^{-1}\right)}{\partial y_{j_{1} j_{2} \cdots j_{k}}^{K}}\right)_{\left(T_{n}^{r-1} \gamma\right)(t)} D_{p} D_{j_{1}} D_{j_{2}} \cdots D_{j_{k}}\left(y^{K} \gamma\right)(t) \\
& =\sum_{k=0}^{r-1} \sum_{j_{1} \leq j_{2} \leq \cdots \leq j_{k}}\left(y_{j_{1} j_{2} \cdots j_{k} p}^{K}\left(T_{n}^{r} \gamma\right)(t)\right)\left(\frac{\partial\left(f \circ\left(\psi_{n}^{r-1}\right)^{-1}\right)}{\partial y_{j_{1} j_{2} \cdots j_{k}}^{K}}\right)_{\left(T_{n}^{r-1} \gamma\right)(t)} \\
& =\left(d_{p} f \circ T_{n}^{r} \gamma\right)(t),
\end{aligned}
$$

i.e.,

$$
\begin{equation*}
d_{p} f \circ T_{n}^{r} \gamma=D_{p}\left(f \circ T_{n}^{r-1} \gamma\right) \tag{19}
\end{equation*}
$$

In particular, $D_{q} D_{p}\left(f \circ T_{n}^{r-1} \gamma\right)=D_{q}\left(d_{p} f \circ T_{n}^{r} \gamma\right)=d_{q} d_{p} f \circ T_{n}^{r+1} \gamma$, i.e.,
(20) $\quad d_{q} d_{p} f=d_{p} d_{q} f$.

Note that if we take $f=y_{j_{1} j_{2} \cdots j_{k}}^{A}$ in (17), we get

$$
\begin{equation*}
d_{i} y_{j_{1} j_{2} \cdots j_{k}}^{A}=y_{j_{1} j_{2} \cdots j_{k} i}^{A} \tag{21}
\end{equation*}
$$

Our aim now will be to derive explicit transformation formulas between the induced charts on $T_{n}^{r} Y$. Let us write the transformation equations from (V, ψ) to $(\bar{V}, \bar{\psi})$ in the form

$$
\begin{equation*}
\bar{y}^{K}=F^{K}\left(y^{L}\right) . \tag{22}
\end{equation*}
$$

We wish to determine the functions $F_{i_{1}}^{K}, F_{i_{1} i_{2}}^{K}, \ldots, F_{i_{1} i_{2} \cdots i_{r}}^{K}$ defining the corresponding transformation

$$
\begin{equation*}
\bar{y}_{i_{1} i_{2} \cdots i_{k}}^{K}=F_{i_{1} i_{2} \cdots i_{k}}^{K}\left(y^{L}, y_{j_{1}}^{L}, y_{j_{1} j_{2}}^{L}, \ldots, y_{j_{1} j_{2} \cdots j_{k}}^{L}\right), \quad 1 \leq k \leq r, \tag{23}
\end{equation*}
$$

from $\left(V_{n}^{r}, \psi_{n}^{r}\right)$ to $\left(\bar{V}_{n}^{r}, \bar{\psi}_{n}^{r}\right)$.
Note that by (21) and (16),

$$
\begin{equation*}
\bar{y}_{j_{1} j_{2} \cdots j_{k} j_{k+1}}^{K}=\bar{d}_{j_{k+1}} \bar{y}_{j_{1} j_{2} \cdots j_{k}}^{K}=d_{j_{k+1}} \bar{y}_{j_{1} j_{2} \cdots j_{k}}^{K}=\cdots=d_{j_{k+1}} \cdots d_{j_{2}} d_{j_{1}} \bar{y}^{K} \tag{24}
\end{equation*}
$$

This formula may be applied whenever the transformation rules (22) for the coordinate transformations on Y are known.

Lemma 1. The following formula holds

$$
\begin{equation*}
F_{i_{1} i_{2} \cdots i_{s}}^{K}=\sum_{p=1}^{s} \sum_{\left(I_{1}, I_{2}, \cdots, I_{p}\right)} y_{I_{1}}^{L_{1}} y_{I_{2}}^{L_{2}} \cdots y_{I_{p}}^{L_{p}} \frac{\partial^{p} F^{K}}{\partial y^{L_{1}} \partial y^{L_{2}} \cdots \partial y^{L_{p}}} \tag{25}
\end{equation*}
$$

where the second summation is extended over all partitions $\left(I_{1}, I_{2}, \ldots, I_{p}\right)$ of the set $\left(i_{1}, i_{2}, \ldots, i_{s}\right)$.

Proof. We proceed by induction.

1. First consider the case $r=1$. We have $V_{n}^{1}=\left(\tau_{n}^{1,0}\right)^{-1}(V)$ and $\psi_{n}^{1}=\left(y^{K}, y_{i}^{K}\right)$ where $1 \leq K \leq n+m, 1 \leq i \leq n$, and by definition,

$$
\begin{equation*}
y^{K}\left(J_{0}^{1} \zeta\right)=y^{K}(\zeta(0)), \quad y_{i}^{K}\left(J_{0}^{1} \zeta\right)=D_{i}\left(y^{K} \zeta\right)(0) \tag{26}
\end{equation*}
$$

Obviously,

$$
\begin{equation*}
\bar{y}^{K}=F^{K}\left(y^{L}\right), \quad \bar{y}_{i}^{K}=\frac{\partial F^{K}}{\partial y^{L}} y_{i}^{L} \tag{27}
\end{equation*}
$$

on $V_{n}^{1} \cap \bar{V}_{n}^{1}$ or, which is the same, $F_{i_{1}}^{K}=d_{i_{1}} F^{K}$.
2 . Now assume that $s>1$, and

$$
\begin{equation*}
F_{i_{1} i_{2} \cdots i_{s-1}}^{K}=\sum_{p=1}^{s-1} \sum_{\left(I_{1}, I_{2}, \ldots, I_{p}\right)} y_{I_{1}}^{L_{1}} y_{I_{2}}^{L_{2}} \cdots y_{I_{p}}^{L_{p}} \frac{\partial^{p} F^{K}}{\partial y^{L_{1}} \partial y^{L_{2}} \cdots \partial y^{L_{p}}} \tag{28}
\end{equation*}
$$

Then by (21)

$$
\begin{align*}
F_{i_{1} i_{2} \cdots i_{s-1} i_{s}}^{K} & =d_{i_{s}} F_{i_{1} i_{2} \cdots i_{s-1}}^{K} \\
& =\sum_{p=1}^{s-1} \sum_{\left(I_{1}, I_{2}, \ldots, I_{p}\right)}\left(d_{i_{s}} y_{I_{1}}^{L_{1}} y_{I_{2}}^{L_{2}} \cdots y_{I_{p}}^{L_{p}}+y_{I_{1}}^{L_{1}} d_{i_{s}} y_{I_{2}}^{L_{2}} \cdots y_{I_{p}}^{L_{p}}+\cdots+y_{I_{1}}^{L_{1}} y_{I_{2}}^{L_{2}} \cdots d_{i_{s}} y_{I_{p}}^{L_{p}}\right) \\
& \cdot \frac{\partial^{p} F^{K}}{\partial y^{L_{1}} \partial y^{L_{2}} \cdots \partial y^{L_{p}}}+\sum_{p=1}^{s-1} \sum_{\left(I_{1}, I_{2}, \ldots, I_{p}\right)} y_{I_{1}}^{L_{1}} y_{I_{2}}^{L_{2}} \cdots y_{I_{p}}^{L_{p}} d_{i_{s}} \frac{\partial^{p} F^{K}}{\partial y^{L_{1}} \partial y^{L_{2}} \cdots \partial y^{L_{p}}} \\
& =\sum_{p=1}^{s-1} \sum_{\left(I_{1}, I_{2}, \ldots, I_{p}\right)}\left(y_{I_{1} i_{s}}^{L_{1}} y_{I_{2}}^{L_{2}} \cdots y_{I_{p}}^{L_{p}}+y_{I_{1}}^{L_{1}} y_{I_{2} i_{s}}^{L_{2}} \cdots y_{I_{p}}^{L_{p}}+\cdots+y_{I_{1}}^{L_{1}} y_{I_{2}}^{L_{2}} \cdots y_{I_{p} i_{s}}^{L_{p}}\right) \tag{29}\\
& \cdot \frac{\partial^{p} F^{K}}{\partial y^{L_{1}} \partial y^{L_{2}} \cdots \partial y^{L_{p}}}+\sum_{p=1}^{s-1} \sum_{\left(I_{1}, I_{2}, \ldots, I_{p}\right)} y_{I_{1}}^{L_{1}} y_{I_{2}}^{L_{2}} \cdots y_{I_{p}}^{L_{p}} y_{i_{s}}^{L_{p+1}} \frac{\partial^{p+1} F^{K}}{\partial y^{L_{1}} \partial y^{L_{2}} \cdots \partial y^{L_{p}} \partial y^{L_{p+1}}} \\
& =\sum_{p=1}^{s} \sum_{\left(J_{1}, J_{2}, \ldots, J_{p}\right)} y_{J_{1}}^{L_{1}} y_{J_{2}}^{L_{2}} \cdots y_{J_{p}}^{L_{p}} \frac{\partial^{p} F^{K}}{\partial y^{L_{1}} \partial y^{L_{2}} \cdots \partial y^{L_{p}}},
\end{align*}
$$

and the formula (25) is verified.
2.3. Regular velocities. Let $m, n \geq 1$ be fixed integers. We need a convention regarding partitions of the sequence $(1,2, \ldots, n, n+1, \ldots, n+m)$ in two complementary subsequences. A subsequence $\left(i_{1}, i_{2}, \ldots, i_{n}\right)$ of the sequence $(1,2, \ldots, n$, $n+1, \ldots, n+m$), consisting of n elements, is called an n-subsequence. Indeed, one has exactly
(1) $\quad\binom{n+m}{n}$
different n-subsequences. Every n-subsequence ($i_{1}, i_{2}, \ldots, i_{n}$) has a unique complementary subsequence $\left(\sigma_{1}, \sigma_{2}, \ldots, \sigma_{m}\right)$. Note that since we consider subsequences, we always assume that $i_{1}<i_{2}<\cdots<i_{n}, \sigma_{1}<\sigma_{2}<\cdots<\sigma_{m}$.

We write $(K)=(1,2, \ldots, n, n+1, \ldots, n+m),(i)=\left(i_{1}, i_{2}, \ldots, i_{n}\right)$, and $(\sigma)=$ $\left(\sigma_{1}, \sigma_{2}, \ldots, \sigma_{m}\right)$, to express that $K=1,2, \ldots, n, n+1, \ldots, n+m, i=i_{1}, i_{2}, \ldots, i_{n}$, and $\sigma=\sigma_{1}, \sigma_{2}, \ldots, \sigma_{m}$, respectively. We also write, with obvious meaning, $v \in(\sigma)$, $j \in(i)$, etc.

Let $r \geq 0, m, n \geq 1$ be integers, let Y be a smooth manifold of dimension $n+m$, and let $T_{n}^{r} Y$ be the manifold of n-velocities of order r over Y. We shall consider the set of regular n-velocities of order r in $T_{n}^{r} Y$, denoted by imm $T_{n}^{r} Y$. Recall that a velocity $P \in T_{n}^{r} Y, P=J_{0}^{r} \zeta$ is called regular, if there exists an r-jet $Q \in J_{(y, 0)}^{r}\left(Y, \mathbf{R}^{n}\right)$, such that
(2) $\quad Q \circ P=J_{0}^{r} \operatorname{id}_{\mathbf{R}^{n}}$.
P is regular if and only if every representative ζ of P is an immersion at $0 \in \mathbf{R}^{n}$ (Section 2.1, Lemma 5, (a)) or, equivalently, if and only if there exist a chart $(V, \psi), \psi=$ $\left(y^{K}\right)$, at $y=\zeta(0)$, and an n-subsequence $(i)=\left(i_{1}, i_{2}, \ldots, i_{n}\right)$ of the sequence $(K)=(1,2, \ldots, n, n+1, \ldots, n+m)$ such that

$$
\begin{equation*}
\operatorname{det}\left(y_{j}^{i}(P)\right)=\operatorname{det}\left(D_{j}\left(y^{i} \circ \zeta\right)(0)\right) \neq 0 \tag{3}
\end{equation*}
$$

Recall that $T_{n}^{r} Y$ is endowed with the canonical right action of the differential group L_{n}^{r}, defined by

$$
\begin{equation*}
Q=P \circ A, \tag{4}
\end{equation*}
$$

(see Section 2.2, (3), Theorem 1, (b)). Let $(V, \psi), \psi=\left(y^{K}\right)$, be a chart on Y, and let $\left(V_{n}^{r}, \psi_{n}^{r}\right), \psi_{n}^{r}=\left(y^{K}, y_{i_{1}}^{K}, y_{i_{1} i_{2}}^{K}, \ldots, y_{i_{1} i_{2} \cdots i_{r}}^{K}\right)$, be the associated chart on imm $T_{n}^{r} Y$. (4) is expressed by the equations

$$
\begin{equation*}
\bar{y}^{K}=y^{K}, \quad \bar{y}_{i_{1} i_{2} \cdots i_{s}}^{K}=\sum_{p=1}^{s} \sum_{\left(I_{1}, I_{2}, \ldots, I_{p}\right)} y_{j_{1} j_{2} \cdots j_{p}}^{K} a_{I_{1}}^{j_{1}} a_{I_{2}}^{j_{2}} \cdots a_{I_{p}}^{j_{p}}, \tag{5}
\end{equation*}
$$

where the second sum is extended to all partitions $\left(I_{1}, I_{2}, \ldots, I_{p}\right)$ of the set $\left(i_{1}, i_{2}\right.$, \ldots, i_{s}) (see Section 2.3, (10)). Clearly, here $y^{L}, y_{p_{1}}^{L}, y_{p_{1} p_{2}}^{L}, \ldots, y_{p_{1} p_{2} \ldots p_{r}}^{L}$ (resp. $\bar{y}^{K}, \bar{y}_{i_{1}}^{K}$, $\bar{y}_{i_{1} i_{2}}^{K}, \ldots, \bar{y}_{i_{1} i_{2} \cdots i_{r}}^{K}$, resp. a_{I}^{j}) are the coordinates of a point $P \in \operatorname{imm} T_{n}^{r} Y$ (resp. its image $Q \in T_{n}^{r} Y$, resp. $A \in L_{n}^{r}$).

The following lemma says that formula (4), or equivalently, (5), induces a right action on imm $T_{n}^{r} Y$.

Lemma 2. The set $\operatorname{imm} T_{n}^{r} Y$ is an open, dense, L_{n}^{r}-invariant subset of $T_{n}^{r} Y$.
Proof. Let $P \in \operatorname{imm} T_{n}^{r} Y, P=J_{0}^{r} \zeta$, let $(V, \psi), \psi=\left(y^{K}\right)$, be a chart at $y=\zeta(0)$, and let $\left(V_{n}^{r}, \psi_{n}^{r}\right), \psi_{n}^{r}=\left(y^{K}, y_{i_{1}}^{K}, y_{i_{1} i_{2}}^{K}, \ldots, y_{i_{1} i_{2} \ldots i_{r}}^{K}\right)$, be the associated chart at P. Since ζ is an immersion at $0 \in \mathbf{R}^{n}$, the matrix formed by $y_{i}^{K}(P)=D_{i}\left(y^{K} \zeta\right)(0)$ is of maximal rank equal to n. Assume that $\operatorname{det}\left(y_{i}^{j}(P)\right) \neq 0$ for an n-subsequence $(i)=\left(i_{1}, i_{2}, \ldots, i_{n}\right)$ of the sequence $(K)=(1,2, \ldots, n, n+1, \ldots, n+m)$. Then since the mapping $V_{n}^{r} \ni$ $P \rightarrow \operatorname{det}\left(y_{i}^{j}(P)\right) \in \mathbf{R}$ is continuous, P has a neighborhood on which this function is nonzero. This verifies that the set $\operatorname{imm} T_{n}^{r} Y \subset T_{n}^{r} Y$ is open.

If $P \in \operatorname{imm} T_{n}^{r} Y, P=J_{0}^{r} \zeta$, and $A \in L_{n}^{r}, A=J_{0}^{r} \alpha$, then $P \circ A=J_{0}^{r}(\zeta \circ \alpha)$, where $\zeta \circ \alpha$ is obviously an immersion at $0 \in \mathbf{R}^{n}$. This proves invariance.

The set imm $T_{n}^{r} Y$ is called the manifold of regular n-velocities of order r over Y.
Now we wish to analyze the equivalence $\mathcal{R} \subset \operatorname{imm} T_{n}^{r} Y \times \operatorname{imm} T_{n}^{r} Y$, associated with the canonical group action (4).

We set for every n-subsequence (i) of the sequence $(1,2, \ldots, n, n+1, \ldots, n+m)$

$$
\begin{equation*}
W^{(i)}=\left\{P \in V_{n}^{r} \mid \operatorname{det}\left(y_{j}^{i}(P)\right) \neq 0\right\} \tag{6}
\end{equation*}
$$

where $\left(V_{n}^{r}, \psi_{n}^{r}\right)$ is the chart on $\operatorname{imm} T_{n}^{r} Y$ associated with (V, ψ). In (6), $i \in(i)$, and $1 \leq j \leq n$. $W^{(i)}$ is an open subset of V_{n}^{r}. It is easily seen that $W^{(i)}$ is L_{n}^{r}-invariant. Indeed, if $P \in W^{(i)}$ is a point, then by (5), for every $A \in L_{n}^{r}, y_{j}^{K}(P \circ A)=\bar{y}_{j}^{K}=$ $y_{p}^{K}(P) a_{j}^{p}(A)$ and $\operatorname{det}\left(y_{j}^{i}(P \circ A)\right)=\operatorname{det}\left(y_{p}^{i}(P) a_{j}^{p}(A)\right)=\operatorname{det}\left(y_{j}^{i}(P)\right) \operatorname{det} A \neq 0$, i.e., $P \circ A \in W^{(i)}$. Shrinking the canonical coordinates $\left(y^{K}, y_{i_{1}}^{K}, y_{i_{1} i_{2}}^{K}, \ldots, y_{i_{1} i_{2} \ldots i_{r}}^{K}\right.$) to $W^{(i)}$ we obtain a chart denoted by $\left(W^{(i)}, \chi^{(i)}\right)$. We have

$$
\begin{equation*}
\bigcup_{(i)} W^{(i)}=V_{n}^{r} \tag{7}
\end{equation*}
$$

which implies that the charts $\left(W^{(i)}, \chi^{(i)}\right)$ form an atlas on the manifold imm $T_{n}^{r} Y$. The coordinate transformation from $\left(W^{(i)}, \chi^{(i)}\right)$ to $\left(W^{(j)}, \chi^{(j)}\right)$ coincides with the restriction of the identity mapping of V_{n}^{r} to $W^{(i)} \cap W^{(j)}$.

We introduce a collection of functions $z_{i}^{k}: W^{(i)} \rightarrow \mathbf{R}$, by

$$
\begin{equation*}
z_{i}^{k} y_{j}^{i}=\delta_{j}^{k} \tag{8}
\end{equation*}
$$

where $i \in(i)$, and $1 \leq j, k \leq n$. Existence of these functions is guaranteed by the condition (6). z_{i}^{k} is a rational function of y_{j}^{i}, and is therefore smooth.

Now consider equations (4), and the equivalence \mathcal{R} on imm $T_{n}^{r} Y$ "there exists $A \in$ L_{n}^{r} such that $Q=P \circ A "$.

Lemma 3. Let $(P, Q) \in \operatorname{imm} T_{n}^{r} Y \times \operatorname{imm} T_{n}^{r} Y$ be a point. The following conditions are equivalent:
(a) $(P, Q) \in \mathcal{R}$.
(b) There exist a chart $(V, \psi), \psi=\left(y^{K}\right)$, on Y and an n-subsequence (i) of the sequence $(1,2, \ldots, n+m)$ such that $P, Q \in W^{(i)}$, and the coordinates $y_{i_{1} i_{2} \cdots i_{s}}^{K}$ (resp. $\bar{y}_{i_{1} i_{2} \cdots i_{s}}^{K}$, resp. a_{I}^{j}) of P (resp. Q, resp. A) satisfy
(9) $\quad \bar{y}^{K}=y^{K}, \quad \bar{y}_{i_{1} i_{2} \cdots i_{s}}^{\sigma}=\sum_{p=1}^{s} \sum_{\left(I_{1}, I_{2}, \ldots, I_{p}\right)} y_{j_{1} j_{2} \cdots j_{p}}^{\sigma} a_{I_{1}}^{j_{1}} a_{I_{2}}^{j_{2}} \cdots a_{I_{p}}^{j_{p}}$,

$$
1 \leq i_{1}, i_{2}, \ldots, i_{s}, j_{1}, j_{2}, \ldots, j_{p} \leq n, 1 \leq s \leq r
$$

and the recurrent formula

$$
\begin{equation*}
a_{k_{1} k_{2} \cdots k_{s}}^{q}=z_{i}^{q}\left(\bar{y}_{k_{1} k_{2} \cdots k_{s}}^{i}-\sum_{p=2}^{s} \sum_{\left(I_{1}, I_{2}, \ldots, I_{p}\right)} a_{I_{1}}^{j_{1}} a_{I_{2}}^{j_{2}} \cdots a_{I_{p}}^{j_{p}} y_{j_{1} j_{2} \cdots j_{p}}^{i}\right), \quad i \in(i) . \tag{10}
\end{equation*}
$$

where (σ) is the complementary subsequence of (i).
Proof. 1. Assume that (a) is satisfied. Then there exist $(V, \psi), \psi=\left(y^{K}\right)$, and (i), such that P, Q, and A satisfy (4) hence (5) and $P, Q \in W^{(i)}$. If (σ) is the complementary subsequence, we can split (5) in two subsystems, taking $K=i$, and $K=\sigma$. Then the first subsystem reduces to the condition $\bar{y}^{i}=y^{i}$, and to the recurrent formula (10), which determines the canonical coordinates of the group element A as certain rational functions of $y_{j_{1} j_{2} \cdots j_{s}}^{i}, \bar{y}_{j_{1} j_{2} \cdots j_{s}}^{i}$. The second subsystem of (5), together with the condition $\bar{y}^{i}=y^{i}$, gives (9).
2. If (b) is satisfied, conditions (9) and (10) imply (5), therefore, P and Q belong to the same L_{n}^{r}-orbit.

Let $(V, \psi), \psi=\left(y^{K}\right)$, be a chart at a point $y \in Y$, and let $(i)=\left(i_{1}, i_{2}, \ldots, i_{n}\right)$ be an n-subsequence of the sequence $(1,2, \ldots, n, n+1, \ldots, n+m)$. We need a formula expressing the formal derivative morphism (Section 2.2, (14)) in terms of the chart $\left(W^{(i)}, \chi^{(i)}\right)$. Note that (i) defines a splitting of the sequence of the coordinate functions $\left(y^{1}, y^{2}, \ldots, y^{n+m}\right)$ into two subsequences $\left(y^{i}\right)$ and $\left(y^{\sigma}\right)$. Setting $\psi^{(i)}=\left(y^{i}\right)$ defines, in components, a mapping of V onto a set U in \mathbf{R}^{n}. Since $\psi^{(i)}$ is the composite of ψ and the Cartesian projection of \mathbf{R}^{n+m} onto \mathbf{R}^{n}, which is an open mapping, U is open.

An r-jet $P \in V_{n}^{r}, P=J_{0}^{r} \zeta$, belongs to $W^{(i)}$ if and only if the mapping $\zeta^{(i)}=\psi^{(i)} \circ \zeta$ of a neighborhood W of $0 \in \mathbf{R}^{n}$ into \mathbf{R}^{n}, sending $0 \in \mathbf{R}^{n}$ into the point $\psi^{(i)}(\zeta(0)) \in U$, is a diffeomorphism at $0 \in \mathbf{R}^{m}$.

Let $P \in W^{(i)}, P=J_{0}^{r} \zeta$. Recall that a representative ζ of P defines the $(r-1)$ prolongation of ζ,

$$
\begin{equation*}
W \ni t \rightarrow\left(T_{n}^{r-1} \zeta\right)(t)=J_{0}^{r-1}\left(\zeta \circ \operatorname{tr}_{-t}\right) \in \operatorname{imm} T_{n}^{r-1} Y \tag{11}
\end{equation*}
$$

(Section 2.2, (11)). Then the composite $T_{n}^{r-1} \zeta \circ\left(\zeta^{(i)}\right)^{-1} \circ \psi^{(i)} \circ \tau^{r, 0}$ is defined on a neighborhood of P in $W^{(i)}$, and takes values in $\tau^{r, r-1}\left(W^{(i)}\right) \subset \operatorname{imm} T_{n}^{r-1} Y$. Let $\xi \in$ T_{P} imm $T_{n}^{r} Y$ be a tangent vector at P,

$$
\begin{equation*}
\xi=\sum_{s=0}^{r} \xi_{i_{1} i_{2} \cdots i_{s}}^{K}\left(\frac{\partial}{\partial y_{i_{1} i_{2} \cdots i_{s}}^{K}}\right)_{P} \tag{12}
\end{equation*}
$$

and consider the tangent vector

$$
\begin{equation*}
h^{(i)}(\xi)=T_{0}\left(T_{n}^{r-1} \zeta \circ\left(\zeta^{(i)}\right)^{-1} \circ \psi^{(i)} \circ \tau^{r, 0}\right) \cdot \xi \tag{13}
\end{equation*}
$$

of imm $T_{n}^{r-1} Y$ at $\tau^{r, r-1}(P) \in \tau^{r, r-1}\left(W^{(i)}\right) \subset \operatorname{imm} T_{n}^{r-1} Y$. We get

$$
\begin{align*}
& h^{(i)}(\xi)=\left(T_{\left(\left(\zeta^{(i)}\right)^{-1} \circ \psi^{(i)} \circ \tau^{r, 0}\right)(P)} T_{n}^{r-1} \zeta \circ T_{P}\left(\left(\zeta^{(i)}\right)^{-1} \circ \psi^{(i)} \circ \tau^{r, 0}\right)\right) \cdot \xi \\
& \quad=T_{\left(\left(\zeta^{(i)}\right)^{-1} \circ \psi^{(i)} \circ \zeta\right)(0)} T_{n}^{r-1} \zeta \circ T_{P}\left(\left(\zeta^{(i)}\right)^{-1} \circ \psi^{(i)} \circ \tau^{r, 0}\right) \cdot \xi \tag{14}\\
& \quad=T_{0} T_{n}^{r-1} \zeta \circ T_{P}\left(\left(\zeta^{(i)}\right)^{-1} \circ \psi^{(i)} \circ \tau^{r, 0}\right) \cdot \xi .
\end{align*}
$$

But

$$
\begin{align*}
& \left(t^{q} \circ\left(\zeta^{(i)}\right)^{-1} \circ \psi^{(i)} \circ \tau^{r, 0} \circ\left(\psi_{n}^{r}\right)^{-1}\right)\left(y^{K}, y_{p_{1}}^{K}, y_{p_{1} p_{2}}^{K}, \ldots, y_{p_{1} p_{2} \cdots p_{r}}^{K}\right) \tag{15}\\
& \quad=\left(t^{q} \circ\left(\zeta^{(i)}\right)^{-1}\right)\left(y^{i_{1}}, y^{i_{2}}, \ldots, y^{i_{n}}\right),
\end{align*}
$$

where $\left(t^{1}, t^{2}, \ldots, t^{n}\right)$ are the canonical coordinates on \mathbf{R}^{n}. Since

$$
\begin{align*}
& T_{P}\left(\left(\zeta^{(i)}\right)^{-1} \circ \psi^{(i)} \circ \tau^{r, 0}\right) \cdot \xi \\
& \quad=\left(\frac{\partial\left(t^{q} \circ\left(\zeta^{(i)}\right)^{-1} \circ \psi^{(i)} \circ \tau^{r, 0} \circ\left(\psi_{n}^{r}\right)^{-1}\right)}{\partial y_{q_{1} q_{2} \cdots q_{s}}^{K}}\right)_{\psi_{n}^{r}(P)} \cdot \xi_{i_{1} i_{2} \cdots i_{s}}^{K}\left(\frac{\partial}{\partial t^{q}}\right)_{0} \\
& \quad=\left(\frac{\partial\left(t^{q} \circ\left(\zeta^{(i)}\right)^{-1}\right.}{\partial y^{i}}\right)_{\psi^{(i)}(y)} \cdot \xi^{i}\left(\frac{\partial}{\partial t^{q}}\right)_{0} \tag{16}\\
& \quad=z_{i}^{q}(P) \xi^{i}\left(\frac{\partial}{\partial t^{q}}\right)_{0}
\end{align*}
$$

we have, comparing this expression with Section 2.2, (13) (14), $h^{(i)}(\xi)=z_{i}^{q}(P) \xi^{i}$ $d_{q}(P)$, where d_{q} is the formal derivative morphism. Denoting

$$
\begin{equation*}
\Delta_{i}=z_{i}^{q} d_{q} \tag{17}
\end{equation*}
$$

we get the formula

$$
\begin{equation*}
h^{(i)}(\xi)=\xi^{i} \Delta_{i} . \tag{18}
\end{equation*}
$$

Notice that in (17) and (18), summation through $i \in(i)$ takes place.
Lemma 4. (a) For every $i, j \in(i)$,

$$
\begin{equation*}
\Delta_{i} \Delta_{j}=\Delta_{j} \Delta_{i} \tag{19}
\end{equation*}
$$

(b) If $(V, \psi), \psi=\left(y^{K}\right)$, and $(\bar{V}, \bar{\psi}), \bar{\psi}=\left(\bar{y}^{K}\right)$, are two charts, and (i), (j) are two n-subsequences of $(1,2, \ldots, n+m)$, then

$$
\begin{equation*}
\bar{\Delta}_{j}=\bar{z}_{j}^{s} y_{s}^{i} \Delta_{i} . \tag{20}
\end{equation*}
$$

Proof. (a) First note that the relation $y_{s}^{i} z_{j}^{s}=\delta_{j}^{i}$ implies $d_{p} y_{s}^{i} z_{j}^{s}+y_{s}^{i} d_{p} z_{j}^{s}=0$ hence $z_{i}^{q} d_{p} y_{s}^{i} z_{j}^{s}+z_{i}^{q} y_{s}^{i} d_{p} z_{j}^{s}=0$, and $z_{i}^{q} d_{p} y_{s}^{i} z_{j}^{s}+d_{p} z_{j}^{j}=0$. Thus, for any smooth function $f: \tau^{r, r-1}\left(W^{(i)}\right) \rightarrow \mathbf{R}$,

$$
\begin{align*}
& \Delta_{j} \Delta_{i} f=z_{j}^{p} d_{p}\left(z_{i}^{q} d_{q} f\right)=z_{j}^{p} d_{p} z_{i}^{q} d_{q} f+z_{j}^{p} z_{i}^{q} d_{p} d_{q} f \\
& \quad=-z_{j}^{p} z_{k}^{q} y_{s p}^{k} z_{i}^{s} d_{q} f+z_{j}^{p} z_{i}^{q} d_{p} d_{q} f \tag{21}
\end{align*}
$$

This formula together with Section 2.2, (20), proves (19).
(b) We have, with our standard notation, $\bar{\Delta}_{j}=\bar{z}_{j}^{s} \bar{d}_{s}=\bar{z}_{j}^{s} d_{s}=\bar{z}_{j}^{s} \delta_{s}^{p} d_{p}=\bar{z}_{j}^{s} y_{s}^{i} z_{i}^{p} d_{p}$ $=\bar{z}_{j}^{s} y_{s}^{i} \Delta_{i}$, where $i \in(i), j \in(j)$.

Remark 3. Lemma 4(b) shows that the morphisms Δ_{i} span a subbundle of the tangent space $T \mathrm{imm} T_{n}^{r-} Y$, determined independently of charts.

Using the charts $\left(W^{(i)}, \chi^{(i)}\right)$, we can construct new charts on imm $T_{n}^{r} Y$ adapted to the canonical right action of L_{n}^{r}. In the following theorem, these charts are described by means of the morphism $\Delta_{i}=z_{i}^{q} d_{q}$, (17).

Theorem 1. (a) Let (i) be an n-subsequence of the sequence $(1,2, \ldots, n+m)$, and let (σ) be the complementary subsequence. There exist unique functions $w^{\sigma}, w_{i_{1}}^{\sigma}, w_{i_{1} i_{2}}^{\sigma}$, $\ldots, w_{i_{1} i_{2} \ldots i_{r}}^{\sigma}$, where $i_{1}, i_{2}, \ldots, i_{r} \in(i)$ and $\sigma \in(\sigma)$, defined on $W^{(i)}$, symmetric in the subscripts, such that

$$
\begin{equation*}
y^{\sigma}=w^{\sigma}, \quad y_{p_{1} p_{2} \cdots p_{k}}^{\sigma}=\sum_{q=1}^{k} \sum_{\left(I_{1}, I_{2}, \ldots, I_{q}\right)} y_{I_{1}}^{i_{1}} y_{I_{2}}^{i_{2}} \cdots y_{I_{q}}^{i_{q}} w_{i_{1} i_{2} \cdots i_{q}}^{\sigma} . \tag{22}
\end{equation*}
$$

The pair $\left(W^{(i)}, \Psi^{(i)}\right)$, where

$$
\begin{equation*}
\Psi^{(i)}=\left(y^{i}, y_{p_{1}}^{i}, y_{p_{1} p_{2}}^{i}, \ldots, y_{p_{1} p_{2} \cdots p_{r}}^{i}, w^{\sigma}, w_{i_{1}}^{\sigma}, w_{i_{1} i_{2}}^{\sigma}, \ldots, w_{i_{1} i_{2} \cdots i_{r}}^{\sigma}\right), \tag{23}
\end{equation*}
$$

is a chart on $\operatorname{imm} T_{n}^{r} Y$. The functions $w^{\sigma}, w_{i_{1}}^{\sigma}, w_{i_{1} i_{2}}^{\sigma}, \ldots, w_{i_{1} i_{2} \ldots i_{r}}^{\sigma}$ satisfy the recurrent formula

$$
\begin{equation*}
w_{i_{1} i_{2} \cdots i_{k} i_{k+1}}^{\sigma}=\Delta_{i_{k+1}} w_{i_{1} i_{2} \cdots i_{k}}^{\sigma}, \tag{24}
\end{equation*}
$$

and are L_{n}^{r}-invariant.
(b) The canonical group action on $\operatorname{imm} T_{n}^{r} Y$ is described on $W^{(i)}$ by the equations

$$
\begin{aligned}
& \bar{y}^{i}=y^{i} \\
& \bar{y}_{k_{1} k_{2} \cdots k_{s}}^{i}=\sum_{p=1}^{s} \sum_{\left(I_{1}, I_{2}, \ldots, I_{p}\right)} a_{I_{1}}^{j_{1}} a_{I_{2}}^{j_{2}} \cdots a_{I_{p}}^{j_{p}} y_{j_{1} j_{2} \cdots j_{p}}^{i} \\
& \bar{w}_{i_{1} i_{2} \cdots i_{s}}^{\sigma}=w_{i_{1} i_{2} \cdots i_{s}}^{\sigma}
\end{aligned}
$$

where $i, i_{1}, i_{2}, \ldots, i_{s} \in(i), \sigma \in(\sigma), 0 \leq s \leq r$. Equations

$$
\begin{equation*}
w_{i_{1} i_{2} \cdots i_{s}}^{\sigma}=c_{i_{1} i_{2} \cdots i_{s}}^{\sigma}, \tag{26}
\end{equation*}
$$

where $c_{i_{1} i_{2} \cdots i_{s}}^{\sigma} \in \mathbf{R}$, are equations of the orbits of this action.
Proof. (a) We proceed in three steps.

1. To prove existence of $t w^{\sigma}, w_{i_{1}}^{\sigma}, w_{i_{1} i_{2}}^{\sigma}, \ldots, w_{i_{1} i_{2} \ldots i_{r}}^{\sigma}$, we proceed by induction.

First we prove that the assertion (a) is true for $r=1$. Consider the pair $\left(W^{(i)}, \Psi^{(i)}\right)$, $\Psi^{(i)}=\left(y^{i}, y_{p}^{i}, w^{\sigma}, w_{i}^{\sigma}\right)$, where by (22), $w^{\sigma}=y^{\sigma}, y_{p}^{\sigma}=y_{p}^{i} w_{i}^{\sigma}$. Obviously $w_{j}^{\sigma}=z_{j}^{p} y_{p}^{\sigma}$, where $j \in(i)$, which shows that $\left(W^{(i)}, \Psi^{(i)}\right)$ is a new chart. Moreover, $w_{i}^{\sigma}=z_{i}^{p} d_{p} y^{\sigma}=$ $z_{i}^{p} d_{p} w^{\sigma}$. It remains to show that the functions $w^{\sigma}, w_{i}^{\sigma}$ are L_{n}^{1}-invariant. Since the group action (4) is represented by the equations $\bar{y}^{i}=y^{i}, \bar{y}^{\sigma}=y^{\sigma}, \bar{y}_{p}^{i}=a_{p}^{j} y_{j}^{i}, \bar{y}_{p}^{\sigma}=a_{p}^{j} y_{j}^{\sigma}$, the inverse of the matrix $\bar{y}_{p}^{i}=a_{p}^{j} y_{j}^{i}$ is $\bar{z}_{q}^{p}=z_{q}^{s} b_{s}^{p}$, where $q \in(i)$, and b_{s}^{p} stands for the inverse of a_{s}^{p}. Hence $\bar{w}^{\sigma}=w^{\sigma}$ and $\bar{w}_{i}^{\sigma}=\bar{z}_{i}^{k} \bar{y}_{k}^{\sigma}=z_{i}^{s} b_{s}^{k} a_{k}^{p} y_{p}^{\sigma}=z_{i}^{p} y_{p}^{\sigma}=w_{i}^{\sigma}$ proving invariance.

Now we apply induction. Consider (22) with symmetric $w_{i_{1} i_{2} \cdots i_{q}}^{\sigma}, 1 \leq q \leq k$. Using the formal derivative morphism we get

$$
\begin{align*}
& y_{p_{1} p_{2} \cdots p_{k} p_{k+1}}^{\sigma}=d_{p_{k+1}} y_{p_{1} p_{2} \cdots p_{k}}^{\sigma} \\
& \quad=\sum_{q=1}^{k} \sum_{\left(I_{1}, I_{2}, \ldots, I_{q}\right)}\left(d_{p_{k+1}}\left(y_{I_{1}}^{i_{1}} y_{I_{2}}^{i_{2}} \cdots y_{I_{q}}^{i_{q}}\right) w_{i_{1} i_{2} \cdots i_{q}}^{\sigma}+y_{I_{1}}^{i_{1}} y_{I_{2}}^{i_{2}} \cdots y_{I_{q}}^{i_{q}} d_{p_{k+1}} w_{i_{1} i_{2} \cdots i_{q}}^{\sigma}\right) \tag{27}
\end{align*}
$$

$$
\begin{aligned}
& =\sum_{q=1}^{k} \sum_{\left(I_{1}, I_{2}, \ldots, I_{q}\right)} d_{p_{k+1}}\left(y_{I_{1}}^{i_{1}} y_{I_{2}}^{i_{2}} \cdots y_{I_{q}}^{i_{q}}\right) w_{i_{1} i_{2} \cdots i_{q}}^{\sigma} \\
& +\sum_{q=1}^{k-1} \sum_{\left(I_{1}, I_{2}, \ldots, I_{q}\right)} y_{I_{1}}^{i_{1}} y_{I_{2}}^{i_{2}} \cdots y_{I_{q}}^{i_{q}} y_{p_{k+1}}^{i_{q+1}} \Delta_{i_{q+1}} w_{i_{1} i_{2} \cdots i_{q}}^{\sigma} \\
& +\sum_{\left(I_{1}, I_{2}, \ldots, I_{q}\right)} y_{p_{1}}^{i_{1}} y_{p_{2}}^{i_{2}} \cdots y_{p_{k}}^{i_{k}} y_{p_{k+1}}^{i_{k+1}} \Delta_{i_{k+1}} w_{i_{1} i_{2} \cdots i_{k}}^{\sigma} .
\end{aligned}
$$

Now we apply the induction hypothesis (24) to the second summand. We get

$$
\begin{align*}
& y_{p_{1} p_{2} \cdots p_{k} p_{k+1}}^{\sigma}=\sum_{q=1}^{k} \sum_{\left(I_{1}, I_{2}, \ldots, I_{q}\right)} d_{p_{k+1}}\left(y_{I_{1}}^{i_{1}} y_{I_{2}}^{i_{2}} \cdots y_{I_{q}}^{i_{q}}\right) w_{i_{1} i_{2} \cdots i_{q}}^{\sigma} \\
& \quad+\sum_{q=1}^{k-1} \sum_{\left(I_{1}, I_{2}, \ldots, I_{q}\right)} y_{I_{1}}^{i_{1}} y_{I_{2}}^{i_{2}} \cdots y_{I_{q}}^{i_{q}} y_{p_{k+1}}^{i_{q+1}} w_{i_{1} i_{2} \cdots i_{q} i_{q+1}}^{\sigma} \tag{28}\\
& \quad+y_{p_{1}}^{i_{1}} y_{p_{2}}^{i_{2}} \cdots y_{p_{k}}^{i_{k}} y_{p_{k+1}}^{i_{k+1}} \Delta_{i_{k+1}} w_{i_{1} i_{2} \cdots i_{k}}^{\sigma} .
\end{align*}
$$

In this formula, we sum through partitions $\left(I_{1}, I_{2}, \ldots, I_{q}\right)$ of the set $\left\{p_{1}, p_{2}, \ldots, p_{k}\right\}$, and $i_{1}, i_{2}, \ldots, i_{q}, i_{q+1} \in(i)$. We want to sum through partitions $\left(J_{1}, J_{2}, \ldots, J_{q}\right)$ of the set $\left\{p_{1}, p_{2}, \ldots, p_{k}, p_{k+1}\right\}$. Note that such partitions arise in two possible ways, either by adding p_{k+1} to an element of some partition $\left(I_{1}, I_{2}, \ldots, I_{q}\right)$, or as a partition of the form $\left(I_{1}, I_{2}, \ldots, I_{q},\left\{p_{k+1}\right\}\right)$. Then, however, if we denote

$$
\begin{equation*}
w_{i_{1} i_{2} \cdots i_{k} i_{k+1}}^{\sigma}=\Delta_{i_{k+1}} w_{i_{1} i_{2} \cdots i_{k}}^{\sigma}, \tag{29}
\end{equation*}
$$

the expression (28) can be written in the form

$$
\begin{equation*}
y_{p_{1} p_{2} \cdots p_{k} p_{k+1}}^{\sigma}=\sum_{q=1}^{k} \sum_{\left(J_{1}, J_{2}, \ldots, J_{q}\right)} y_{J_{1}}^{i_{1}} y_{J_{2}}^{i_{2}} \cdots y_{J_{q}}^{i_{q}} w_{i_{1} i_{2} \cdots i_{q}}^{\sigma} \tag{30}
\end{equation*}
$$

where the summation is taking place through partitions of the set $\left\{p_{1}, p_{2}, \ldots, p_{k}, p_{k+1}\right\}$. This proves existence of the functions $w^{\sigma}, w_{i_{1}}^{\sigma}, w_{i_{1} i_{2}}^{\sigma}, \ldots, w_{i_{1} i_{2} \cdots i_{r}}^{\sigma}$. By Lemma 4, the functions $w_{i_{1} i_{2}}^{\sigma}, w_{i_{1} i_{2} i_{3}}^{\sigma}, \ldots, w_{i_{1} i_{2} \ldots i_{r}}^{\sigma}$ are symmetric in the subscripts.
2. To prove uniqueness of the functions $w^{\sigma}, w_{i_{1}}^{\sigma}, w_{i_{1} i_{2}}^{\sigma}, \ldots, w_{i_{1} i_{2} \cdots i_{r}}^{\sigma}$, one rewrites (22) similarly as in (28), and determines $w_{i_{1} i_{2} \cdots i_{k}}^{\sigma}$ using regularity of the matrix y_{p}^{i}.
3. It remains to prove invariance condition $\bar{w}_{j_{1}, j_{2} \cdots j_{s}}^{\sigma}=w_{j_{1} j_{2} \cdots j_{s}}^{\sigma}$ stating that the functions (24) are constant along the L_{n}^{r}-orbits in $\left(W^{(i)}, \Psi^{(i)}\right)$.

Consider equations (5). If P is a point of $\operatorname{imm} T_{n}^{r} Y$, and $Q=P \circ A$, then by Lemma 3, there exist a chart $(V, \psi), \psi=\left(y^{K}\right)$, and an n-subsequence (i) of $(1,2, \ldots$, $n+m$) such that $P, Q \in W^{(i)}$. If (σ) is the complementary subsequence, the coordinates of P, Q, and A satisfy (9) and (10).

Using (22) we can write

$$
\begin{align*}
& \bar{y}_{i_{1} i_{2} \cdots i_{s}}^{\sigma}=\sum_{p=1}^{s} \sum_{\left(I_{1}, I_{2}, \ldots, I_{p}\right)} \bar{y}_{I_{1}}^{j_{1}} \bar{y}_{I_{2}}^{j_{2}} \cdots \bar{y}_{I_{p}}^{j_{p}} \bar{w}_{j_{1} j_{2} \cdots j_{p}}^{\sigma}, \\
& y_{j_{1} j_{2} \cdots j_{p}}^{\sigma}= \tag{31}
\end{align*} \sum_{l=1}^{p} \sum_{\left(J_{1}, J_{2}, \ldots, J_{l}\right)} y_{J_{1}}^{t_{1}} y_{J_{2}}^{t_{2}} \cdots y_{J_{l}}^{t_{l}} w_{t_{1} t_{2} \cdots t_{l}}^{\sigma}, ~ l
$$

where $\left(I_{1}, I_{2}, \ldots, I_{p}\right)$ is a partition of the set $\left\{i_{1}, i_{2}, \ldots, i_{s}\right\}$, and $\left(J_{1}, J_{2}, \ldots, J_{l}\right)$ is a partition of the set $\left\{j_{1}, j_{2}, \ldots, j_{p}\right\}$. Then by (9)

$$
\begin{align*}
& \sum_{p=1}^{s} \sum_{\left(I_{1}, I_{2}, \ldots, I_{p}\right)} \bar{y}_{I_{1}}^{j_{1}} \bar{y}_{I_{2}}^{j_{2}} \cdots \bar{y}_{I_{p}}^{j_{p}} \bar{w}_{j_{1} j_{2} \cdots j_{p}}^{\sigma} \\
& \quad=\sum_{p=1}^{s} \sum_{\left(I_{1}, I_{2}, \ldots, I_{p}\right)} a_{I_{1}}^{j_{1}} a_{I_{2}}^{j_{2}} \cdots a_{I_{p}}^{j_{p}}\left(\sum_{l=1}^{p} \sum_{\left(J_{1}, J_{2}, \ldots, J_{l}\right)} y_{J_{1}}^{t_{1}} y_{J_{2}}^{t_{2}} \cdots y_{J_{l}}^{t_{l}} w_{t_{1} t_{2} \cdots t_{l}}^{\sigma}\right) \tag{32}
\end{align*}
$$

Now we wish to determine the terms $w_{t_{1} t_{2} \cdots t_{p}}^{\sigma}$ on the right side with fixed p. Changing the notation of the indices, we get the expression

$$
\begin{equation*}
\sum_{q=1}^{s} \sum_{\left(I_{1}, I_{2}, \ldots, I_{q}\right)} a_{I_{1}}^{j_{1}} a_{I_{2}}^{j_{2}} \cdots a_{I_{q}}^{j_{q}}\left(\sum_{p=1}^{q} \sum_{\left(J_{1}, J_{2}, \ldots, J_{p}\right)} y_{J_{1}}^{t_{1}} y_{J_{2}}^{t_{2}} \cdots y_{J_{p}}^{t_{p}} w_{t_{1} t_{2} \cdots t_{p}}^{\sigma}\right) \tag{33}
\end{equation*}
$$

from which we see that $w_{t_{1} t_{2} \cdots t_{p}}^{\sigma}$ are contained in every summand with $q \geq p$. Thus, the required terms are given by

$$
\begin{equation*}
\left(\sum_{q=p}^{s} \sum_{\left(I_{1}, I_{2}, \ldots, I_{q}\right)} \sum_{\left(J_{1}, J_{2}, \ldots, J_{p}\right)} a_{I_{1}}^{j_{1}} a_{I_{2}}^{j_{2}} \cdots a_{I_{q}}^{j_{q}} y_{J_{1}}^{t_{1}} y_{J_{2}}^{t_{2}} \cdots y_{J_{p}}^{t_{p}}\right) w_{t_{1} t_{2} \cdots t_{p}}^{\sigma} \tag{34}
\end{equation*}
$$

In this formula, $\left(I_{1}, I_{2}, \ldots, I_{q}\right)$ is a partition of $\left(i_{1}, i_{2}, \ldots, i_{s}\right)$, and $\left(J_{1}, J_{2}, \ldots, J_{p}\right)$ is a partition of $\left(j_{1}, j_{2}, \ldots, j_{q}\right)$.

Now we adopt the following notation. If $I=\left(i_{1}, i_{2}, \ldots, i_{s}\right)$ is a multi-index, then the symbol $\left(I_{1}, I_{2}, \ldots, I_{p}\right) \sim I$ means that $\left(I_{1}, I_{2}, \ldots, I_{p}\right)$ is a partition of the set $\left\{i_{1}, i_{2}\right.$, $\left.\ldots, i_{s}\right\}$.

As before, let $I=\left(i_{1}, i_{2}, \ldots, i_{s}\right)$, and p be fixed. Consider the expression

$$
\begin{equation*}
\left(\sum_{\left(I_{1}, I_{2}, \ldots, I_{p}\right)} \bar{y}_{I_{1}}^{t_{1}} \bar{y}_{I_{2}}^{t_{2}} \cdots \bar{y}_{I_{p}}^{t_{p}}\right) w_{t_{1} t_{2} \cdots t_{p}}^{\sigma} \tag{35}
\end{equation*}
$$

We wish to show that this expression is equal to (34), i.e.

$$
\begin{align*}
& \left(\sum_{\left(I_{1}, I_{2}, \ldots, I_{p}\right)} \bar{y}_{I_{1}}^{t_{1}} \bar{y}_{I_{2}}^{t_{2}} \cdots \bar{y}_{I_{p}}^{t_{p}}\right) w_{t_{1} t_{2} \cdots t_{p}}^{\sigma} \tag{36}\\
& \quad=\left(\sum_{q=p}^{s} \sum_{\left(I_{1}, I_{2}, \ldots, I_{q}\right)} \sum_{\left(J_{1}, J_{2}, \ldots, J_{p}\right)} a_{I_{1}}^{j_{1}} a_{I_{2}}^{j_{2}} \cdots a_{I_{q}}^{j_{q}} y_{J_{1}}^{t_{1}} y_{J_{2}}^{t_{2}} \cdots y_{J_{p}}^{t_{p}}\right) w_{t_{1} t_{2} \cdots t_{p}}^{\sigma} .
\end{align*}
$$

Write formula (10) of Section 2.2 in the form

$$
\begin{align*}
& \bar{y}_{I}^{K}=\sum_{p=1}^{|I|} \sum_{\left(I_{1}, I_{2}, \ldots, I_{p}\right)} a_{I_{1}}^{j_{1}} a_{I_{2}}^{j_{2}} \cdots a_{I_{p}}^{j_{p}} y_{j_{1} j_{2} \cdots j_{p}}^{K}, \tag{37}\\
& \quad\left(I_{1}, I_{2}, \ldots, I_{p}\right) \sim I .
\end{align*}
$$

Using the same notation, we have

$$
\begin{align*}
& \bar{y}_{I_{1}}^{t_{1}}=\sum_{q_{1}=1}^{\left|I_{1}\right|} \sum_{\left(I_{1,1}, 1 I_{1,2}, \ldots, I_{1, q_{1}}\right)} a_{I_{1,1}}^{j_{1,1}} a_{I_{1,2}}^{j_{1,2}} \cdots a_{I_{1, q_{1}}}^{j_{1, q_{1}}} y_{j_{1,1} j_{1,2} \cdots j_{1, q_{1}}}^{t_{1}}, \\
& \quad\left(I_{1,1}, I_{1,2}, \ldots, I_{1, q_{1}}\right) \sim I_{1}, \\
& \bar{y}_{I_{2}}^{t_{2}}=\sum_{q_{2}=1}^{\left|I_{2}\right|} \sum_{\left(I_{2,1}, I_{2,2}, \ldots, I_{2, q_{2}}\right)} a_{I_{2,1}}^{j_{2,1}} a_{I_{2,2}}^{j_{2,2}} \cdots a_{I_{2, q_{2}}}^{j_{2, q_{2}}} y_{j_{2,1}, j_{2,2} \cdots j_{2, q_{2}}^{t_{2}}} \tag{38}\\
& \quad\left(I_{2,1}, I_{2,2}, \ldots, I_{2, q_{2}}\right) \sim I_{2}, \\
& \ldots \\
& \quad\left(I_{p, 1}, I_{p, 2}, \ldots, I_{p, q_{p}}\right) \sim I_{p},
\end{align*}
$$

where $\left(I_{1}, I_{2}, \ldots, I_{p}\right) \sim I$. Thus,

$$
\begin{aligned}
& \left(\sum_{\left(I_{1}, I_{2}, \ldots, I_{p}\right)} \bar{y}_{I_{1}}^{t_{1}} \bar{y}_{I_{2}}^{t_{2}} \cdots \bar{y}_{I_{p}}^{t_{p}}\right) w_{t_{1} t_{2} \cdots t_{p}}^{\sigma} \\
& \quad=\left(\sum_{q_{1}=1}^{\left|I_{1}\right|} \sum_{\left(I_{1,1}, I_{1,2}, \ldots, I_{1, q_{1}}\right)} a_{I_{1,1}}^{j_{1,1}} a_{I_{1,2}}^{j_{1,2}} \cdots a_{I_{1, q_{1}}}^{j_{1, q_{1}}} y_{J_{1}}^{t_{1}}\right)
\end{aligned}
$$

$$
\begin{align*}
& \cdot\left(\sum_{q_{2}=1}^{\left|I_{2}\right|} \sum_{\left(I_{2,1}, I_{2,2}, \ldots, I_{2, q_{2}}\right)} a_{I_{2,1}}^{j_{2,1}} a_{I_{2,2}}^{j_{2,2}} \cdots a_{I_{2, q_{2}}}^{j_{2, q_{2}}} y_{J_{2}}^{t_{2}}\right) \tag{39}\\
& \cdot\left(\sum_{q_{p}=1}^{\left|I_{p}\right|} \sum_{\left(I_{p, 1}, I_{p, 2}, \ldots, I_{p, q_{p}}\right)} a_{I_{p, 1}}^{j_{p, 1}} a_{I_{p, 2}}^{j_{p, 2}} \cdots a_{I_{p, q_{p}}}^{j_{p, q_{p}}} y_{J_{p}}^{t_{p}}\right) w_{t_{1} t_{2} \cdots t_{p}}^{\sigma},
\end{align*}
$$

where $J_{1}=\left(j_{1,1}, j_{1,2}, \ldots, j_{1, q_{1}}\right), J_{2}=\left(j_{2,1}, j_{2,2}, \ldots, j_{2, q_{2}}\right), \ldots, J_{p}=\left(j_{p, 1}, j_{p, 2}, \ldots\right.$, $j_{p, q_{p}}$). This expression can be written in a different way. Notice that since

$$
\begin{align*}
& \left(I_{1,1}, I_{1,2}, \ldots, I_{1, q_{1}}\right) \sim I_{1},\left(I_{2,1}, I_{2,2}, \ldots, I_{2, q_{2}}\right) \sim I_{2} \tag{40}\\
& \quad \ldots,\left(I_{p, 1}, I_{p, 2}, \ldots, I_{p, q_{p}}\right) \sim I_{p}
\end{align*}
$$

then

$$
\begin{equation*}
\left(I_{1,1}, I_{1,2}, \ldots, I_{1, q_{1}}, I_{2,1}, I_{2,2}, \ldots, I_{2, q_{2}}, \ldots, I_{p, 1}, I_{p, 2}, \ldots, I_{p, q_{p}}\right) \sim I \tag{41}
\end{equation*}
$$

where $\left|I_{1}\right|+\left|I_{2}\right|+\cdots+\left|I_{p}\right|=|I|=s$ and if we define

$$
\begin{equation*}
q=q_{1}+q_{2}+\cdots+q_{p} \tag{42}
\end{equation*}
$$

we get

$$
\begin{equation*}
p \leq q \leq\left|I_{1}\right|+\left|I_{2}\right|+\cdots+\left|I_{p}\right|=|I|=s . \tag{43}
\end{equation*}
$$

Now, having in mind the corresponding summation ranges,

$$
\begin{align*}
& \left(\sum_{\left(I_{1}, I_{2}, \ldots, I_{p}\right)} \bar{y}_{I_{1}}^{t_{1}} y_{I_{2}}^{t_{2}} \cdots \bar{y}_{I_{p}}^{t_{p}}\right) w_{t_{1} t_{2} \cdots t_{p}}^{\sigma} \\
& \quad=\sum a_{I_{1,1}}^{j_{1,1}} a_{I_{1,2}}^{j_{1,2}} \cdots a_{I_{1, q_{1}}}^{j_{1, q_{1}}} a_{I_{2,1}}^{j_{2,1}} a_{I_{2,2}}^{j_{2,2}} \cdots a_{I_{2, q_{2}}}^{j_{2, q_{2}}} \cdots a_{I_{p, 1}}^{j_{p, 1}} a_{I_{p, 2}}^{j_{p, 2}} \cdots a_{I_{p, q_{p}}}^{j_{p, q_{p}}} \tag{44}\\
& \quad \cdot y_{J_{1}}^{t_{1}} y_{J_{2}}^{t_{2}} \cdots y_{J_{p}}^{t_{p}} w_{t_{1} t_{2} \cdots t_{p}}^{\sigma} .
\end{align*}
$$

Denoting

$$
\begin{align*}
& \left(s_{1}, s_{2}, \ldots s_{q}\right) \\
& \quad=\left(j_{1,1}, j_{1,2}, \ldots, j_{1, q_{1}}, j_{2,1}, j_{2,2}, \ldots, j_{2, q_{2}}, \ldots, j_{p, 1}, j_{p, 2}, \ldots, j_{p, q_{p}}\right) \\
& \left(P_{1}, P_{2}, \ldots, P_{q}\right) \tag{45}\\
& \quad=\left(I_{1,1}, I_{1,2}, \ldots, I_{1, q_{1}}, I_{2,1}, I_{2,2}, \ldots, I_{2, q_{2}}, \ldots, I_{p, 1}, I_{p, 2}, \ldots, I_{p, q_{p}}\right)
\end{align*}
$$

we get $\left(P_{1}, P_{2}, \ldots, P_{q}\right) \sim I$, and

$$
\begin{align*}
& \left(\sum_{\left(I_{1}, I_{2}, \ldots, I_{p}\right)} \bar{y}_{I_{1}}^{t_{1}} \bar{y}_{I_{2}}^{t_{2}} \cdots \bar{y}_{I_{p}}^{t_{p}}\right) w_{t_{1} t_{2} \cdots t_{p}}^{\sigma} \\
& \quad=\left(\sum_{q=p}^{s} \sum_{\left(P_{1}, P_{2}, \ldots, P_{q}\right)} \sum_{\left(J_{1}, J_{2}, \ldots, J_{p}\right)} a_{P_{1}}^{s_{1}} a_{P_{2}}^{s_{2}} \cdots a_{P_{q}}^{s_{q}} y_{J_{1}}^{t_{1}} y_{J_{2}}^{t_{2}} \cdots y_{J_{p}}^{t_{p}}\right) w_{t_{1} t_{2} \cdots t_{p}}^{\sigma} \tag{46}
\end{align*}
$$

This proves (36).
Returning to (32), and substituting from (36) we get a basic formula

$$
\begin{equation*}
\sum_{p=1}^{s} \sum_{\left(I_{1}, I_{2}, \ldots, I_{p}\right)} \bar{y}_{I_{1}}^{j_{1}} \bar{y}_{I_{2}}^{j_{2}} \cdots \bar{y}_{I_{p}}^{j_{p}}\left(\bar{w}_{j_{1} j_{2} \cdots j_{p}}^{\sigma}-w_{j_{1} j_{2} \cdots j_{p}}^{\sigma}\right)=0 \tag{47}
\end{equation*}
$$

Now it is easy to show that $\bar{w}_{j_{1} j_{2} \cdots j_{s}}^{\sigma}=w_{j_{1} j_{2} \cdots j_{s}}^{\sigma}$ provided $\bar{w}_{j_{1} j_{2} \cdots j_{k}}^{\sigma}=w_{j_{1} j_{2} \cdots j_{k}}^{\sigma}$ for all $k \leq s-1$.

If $s=1$, we get $\bar{y}_{i_{1}}^{j_{1}}\left(\bar{w}_{j_{1}}^{\sigma}-w_{j_{1}}^{\sigma}\right)=0$, and since the matrix \bar{y}_{i}^{j} is regular, $\bar{w}_{j}^{\sigma}=w_{j}^{\sigma}$.
If $s=2$, we have

$$
\bar{y}_{i_{1} i_{2}}^{j_{1}}\left(\bar{w}_{j_{1}}^{\sigma}-w_{j_{1}}^{\sigma}\right)+\bar{y}_{i_{1}}^{j_{1}} \bar{y}_{i_{2}}^{j_{2}}\left(\bar{w}_{j_{1} j_{2}}^{\sigma}-w_{j_{1} j_{2}}^{\sigma}\right)=\bar{y}_{i_{1}}^{j_{1}} \bar{y}_{i_{2}}^{j_{2}}\left(\bar{w}_{j_{1} j_{2}}^{\sigma}-w_{j_{1} j_{2}}^{\sigma}\right)=0,
$$

which implies, again using regularity of the matrix \bar{y}_{i}^{j}, that $\bar{w}_{j_{1} j_{2}}^{\sigma}=w_{j_{1} j_{2}}^{\sigma}$.
Now assume that $\bar{w}_{j_{1} j_{2} \cdots j_{k}}^{\sigma}=w_{j_{1} j_{2} \cdots j_{k}}^{\sigma}$ for all $k \leq s-1$. Then (39) reduces to

$$
\begin{equation*}
\bar{y}_{i_{1}}^{j_{1}} \bar{y}_{i_{2}}^{j_{2}} \cdots \bar{y}_{i_{s}}^{j_{s}}\left(\bar{w}_{j_{1} j_{2} \cdots j_{s}}^{\sigma}-w_{j_{1} j_{2} \cdots j_{s}}^{\sigma}\right)=0 \tag{48}
\end{equation*}
$$

which gives us $\bar{w}_{j_{1} j_{2} \cdots j_{s}}^{\sigma}-w_{j_{1} j_{2} \cdots j_{s}}^{\sigma}=0$ as required.
(b) This assertion is immediate.

The charts of the form $\left(W^{(i)}, \Psi^{(i)}\right)$ are referred to as the adapted charts to the canonical group action of L_{n}^{r} on $\operatorname{imm} T_{n}^{r} Y$.

We can now easily prove the following result.

Theorem 2. If Y is Hausdorff, then the canonical right action of L_{n}^{r} defines on $\operatorname{imm} T_{n}^{r} Y$ the structure of a right principal L_{n}^{r}-bundle.

Proof. We have to show that the equivalence \mathcal{R} "there exists $A \in L_{n}^{r}$ such that $P=Q \circ A$ " is a closed submanifold of the product manifold $\operatorname{imm} T_{n}^{r} Y \times \operatorname{imm} T_{n}^{r} Y$, and that the group action (4) is free.

But \mathcal{R} is obviously a submanifold, by Theorem 1, (b). To prove that \mathcal{R} is closed, consider a point $(P, Q) \in \operatorname{imm} T_{n}^{r} Y \times \operatorname{imm} T_{n}^{r} Y$ such that $(P, Q) \neq \mathcal{R}$. Then $P \neq Q$, and we distinguish two possibilities: (1) $\tau_{n}^{r, 0}(P)=\tau_{n}^{r, 0}(Q)$, (2) $\tau_{n}^{r, 0}(P) \neq \tau_{n}^{r, 0}(Q)$.

In the case (1), $P, Q \in V_{n}^{r}$ for any chart (V, ψ) on Y, Clearly, because Y is Hausdorff, in both cases the points P, Q can be separated by open sets. The product of these open sets does not intersect \mathcal{R}, proving that \mathcal{R} is closed.

To show that the action (4) is free, we assume that $P=P \circ A$ for some r-velocity $P \in \operatorname{imm} T_{n}^{r} Y$ and some $A \in L_{n}^{r}$. Since P is regular, there exists $Q \in J_{(y, 0)}^{r}\left(Y, \mathbf{R}^{n}\right)$, where y is the target of P, such that $Q \circ P=J_{0}^{r} \operatorname{id}_{\mathbf{R}^{n}}$ (see (2)), which implies $A=$ $J_{0}^{r} \mathrm{id}_{\mathbf{R}^{n}}$.
2.4. Frames. Let X be a smooth n-dimensional manifold. An invertible n-velocity of order r at a point $x \in X$ is called an r-frame at x. Obviously, the set of r-frames at the points of X coincides with the subset imm $T_{n}^{r} X$ of $T_{n}^{r} X$ formed by the r-jets $P=J_{0}^{r} \zeta$ with source $0 \in \mathbf{R}^{n}$ and target in X, such that for any representative ζ of P, and any $\operatorname{chart}(U, \varphi), \varphi=\left(x^{i}\right)$,

$$
\begin{equation*}
\operatorname{det}\left(D_{i}\left(x^{j} \zeta\right)(0)\right) \neq 0 \tag{1}
\end{equation*}
$$

We denote

$$
\begin{equation*}
F^{r} X=\operatorname{imm} T_{n}^{r} X, \tag{2}
\end{equation*}
$$

We have the canonical jet projections $\tau^{r, s}: F^{r} X \rightarrow F^{s} X$ and $\tau^{r}: F^{r} X \rightarrow X$, defined as the restrictions of the canonical jet projections $\tau_{n}^{r, s}: T_{n}^{r} X \rightarrow T_{n}^{s} X$ and $\tau_{n}^{r, 0}: T_{n}^{r} X \rightarrow$ X to the set $F^{s} X$ (Section 2.2, (2)). Note that Theorem 2 can be applied to $F^{r} X$.

Theorem 3. (a) The set is an open, dense, L_{n}^{r}-invariant subset of $T_{n}^{r} X$.
(b) The canonical right action $(P, A) \rightarrow P \circ A$ of L_{n}^{r} on $F^{r} X$ defines the structure of a right principal L_{n}^{r}-bundle over X.

Proof. (a) This follows from the condition (1).
(b) We have to show that the right action $(P, A) \rightarrow P \circ A$ is free, and the orbit space $F^{r} X / L_{n}^{r}$ has a smooth structure such that the quotient projection of $F^{r} X$ onto $F^{r} X / L_{n}^{r}$ is a submersion.

Let $P \in F^{r} X$ and $A, B \in L_{n}^{r}$ be such that $P \circ A=P \circ B$. Since P is invertible, we have $J_{0}^{r} \mathrm{id}_{\mathbf{R}^{n}}=P^{-1} \circ P \circ A=P^{-1} \circ P \circ B$ hence $A=B$.

It is clear that the L_{n}^{r}-orbits in $F^{r} X$ coincide with the sets $\left(\tau^{r}\right)^{-1}(x) \subset F^{r} X$. In particular, the equivalence on $F^{r} X$ defined by the group action $(P, A) \rightarrow P \circ A$ coincides with the equivalence associated with the jet projection τ^{r}. Therefore, we may take $F^{r} X / L_{n}^{r}=X$.
$F^{r} X$, considered as a right principal L_{n}^{r}-bundle over X, is referred to as the bundle of r-frames over X.

Let X (resp. Y) be an n-dimensional (resp. m-dimensional) smooth manifold. We wish to describe the manifold of r-jets $J^{r}(X, Y)$ as an associated fiber bundle.

Consider the manifold $L_{n, m}^{r}$ of r-jets with source at $0 \in \mathbf{R}^{n}$ and target at $0 \in \mathbf{R}^{m}$ (Section 1.2, (13)). $L_{n, m}^{r}$ is endowed with natural actions of the differential groups L_{n}^{r} and L_{m}^{r} defined by the composition of jets \circ, and of the product of differential groups $L_{n}^{r} \times L_{m}^{r}$. The group operation in $L_{n}^{r} \times L_{m}^{r}$ is defined by

$$
\begin{equation*}
(A, H) \cdot\left(A^{\prime}, H^{\prime}\right)=\left(A \circ A^{\prime}, H \circ H^{\prime}\right), \tag{3}
\end{equation*}
$$

$L_{n}^{r} \times L_{m}^{r}$ acts to the left on $L_{n, m}^{r}$ by

$$
\begin{equation*}
(A, G) \cdot P=G \circ P \circ A^{-1} . \tag{4}
\end{equation*}
$$

$L_{n}^{r} \times L_{m}^{r}$ also acts to the right on the product of the r-frame bundles $F^{r} X \times F^{r} Y$ by

$$
\begin{equation*}
(S, T) \cdot(A, H)=(S \circ A, T \circ H) \tag{5}
\end{equation*}
$$

We have the following assertion.
Theorem 4. (a) $F^{r} X \times F^{r} Y$ with the action (5) is a principal $\left(L_{n}^{r} \times L_{m}^{r}\right)$-bundle with base $X \times Y$.
(b) The mappings

$$
\begin{align*}
& F^{r} X \times F^{r} Y \times L_{n, m}^{r} \ni((S, T), P) \rightarrow T \circ P \circ S^{-1} \in J^{r}(X, Y), \tag{6}\\
& F^{r} X \times T_{n}^{r} Y \ni(S, R) \rightarrow R \circ S^{-1} \in J^{r}(X, Y) \tag{7}
\end{align*}
$$

are frame mappings.
Proof. (a) The canonical projection of $F^{r} X \times F^{r} Y$ onto $X \times Y$ is obviously a surjective submersion. To show that the action (5) is free, assume that $(S, T) \cdot(A, H)=$ (S, T). Then $S \circ A=S, T \circ H=T$, and we use invertibility of S and T.
(b) Consider e.g. (7). If $Q \in J^{r}(X, Y)$, then for any $S \in F^{r} X$, equation $R \circ S^{-1}=Q$ has a solution $R=Q \circ S$. Thus, (7) is surjective. To verify invariance, choose an element $A \in L_{n}^{r}$. Then for any $(S, R) \in F^{r} X \times T_{n}^{r} Y,(R \circ A) \circ(S \circ A)^{-1}=R \circ A \circ A^{-1} \circ S^{-1}=$ $R \circ S^{-1}$, proving L_{n}^{r}-invariance.

Corollary 1. (6) defines on $J^{r}(X, Y)$ the structure of a fiber bundle with fiber $L_{n, m}^{r}$, associated with the principal $L_{n}^{r} \times L_{m}^{r}$-bundle $F^{r} X \times F^{r} Y$.

Corollary 2. (7) defines on $J^{r}(X, Y)$ the structure of a fiber bundle with fiber $T_{n}^{r} Y$, associated with the principal L_{n}^{r}-bundle $F^{r} X$.

Remark 4 (linear frames). Let X be an n-dimensional manifold. The principal $L_{n}^{1}-$ bundle $F^{1} X$, denoted by $F X$, is usually called the bundle of linear frames, or simply the bundle of frames over X.
$F X$ can alternatively be defined as follows. The elements of the set $F X$ are bases, or frames, of the tangent spaces $T_{x} X$, where x runs through X. We have the mapping $\pi: F X \rightarrow X$, assigning to a basis $\Xi=\left(\xi_{1}, \xi_{2}, \ldots, \xi_{n}\right)$ at $x \in X$ the point x. If $(U, \varphi), \varphi=\left(x^{i}\right)$, is a chart at x, then the associated $\operatorname{chart}(V, \psi), \psi=\left(x^{i}, x_{j}^{i}\right)$, is
defined as follows. We take $V=\pi^{-1}(U)$, and $\Xi \in V$. Then the coordinates $x^{i}(\Xi)$ are taken to be $x^{i}(\pi(\Xi))$, and $x_{j}^{i}(\Xi)$ are defined by the decomposition

$$
\begin{equation*}
\xi_{j}=x_{j}^{k}(\Xi)\left(\frac{\partial}{\partial x^{k}}\right)_{x} \tag{8}
\end{equation*}
$$

in the tangent space $T_{x} X$. The associated charts are taken to define a smooth structure on $F X$.
$F X$ is endowed with a right action of the general linear group $G L_{n}(\mathbf{R})=L_{n}^{1}$. If $A \in G L_{n}(\mathbf{R}), A=\left(a_{j}^{i}\right)$, then $\Xi \cdot A=\left(\xi_{i} a_{1}^{i}, \xi_{i} a_{2}^{i}, \ldots, \xi_{i} a_{n}^{i}\right)$. In coordinates,

$$
\begin{equation*}
x^{i}(\Xi \cdot A)=x^{i}(\Xi), \quad x_{j}^{k}(\Xi \cdot A)=x_{p}^{k}(\Xi) a_{j}^{p} \tag{9}
\end{equation*}
$$

This action defines on $F X$ the structure of a principal $G L_{n}(\mathbf{R})$-bundle.
An invertible 1-jet with source $0 \in \mathbf{R}^{n}$ and target $x \in X$ is canonically identified with a linear isomorphism from \mathbf{R}^{n} to $T_{x} X$, and also with the basis of $T_{x} X$, consisting of the images of the vectors of the canonical basis of \mathbf{R}^{n} under this linear isomorphism.

3. Jet prolongations of smooth manifolds

3.1. Contact elements. Let $r \geq 0, m, n \geq 1$ be integers, let X be a smooth manifold of dimension n, and let Y be a smooth manifold of dimension $n+m$.

Denote by $C_{(x, y)}^{r}(X, Y)$ the set of mappings of class $C^{r} f: W \rightarrow Y$, where W is a neighborhood of x, such that $f(x)=y$ (Section 1.2), and consider the set

$$
\begin{equation*}
C^{r}(X, Y)=\bigcup_{(x, y) \in X \times Y} C_{(x, y)}^{r}(X, Y) \tag{1}
\end{equation*}
$$

We say that two mappings $f, g \in C^{r}(X, Y)$ have contact to order r at $\left(x_{1}, x_{2}\right)$, if f is defined at x_{1}, g is defined at x_{2}, and there exist charts $\left(U_{1}, \varphi_{1}\right)$ at x_{1} and $\left(U_{2}, \varphi_{2}\right)$ at x_{2} such that

$$
\begin{equation*}
J_{0}^{r}\left(f \varphi_{1}^{-1} \operatorname{tr}_{-\varphi_{1}\left(x_{1}\right)}\right)=J_{0}^{r}\left(f \varphi_{2}^{-1} \operatorname{tr}_{-\varphi_{2}\left(x_{2}\right)}\right) \tag{2}
\end{equation*}
$$

The relation " f and g have contact to order r at $\left(x_{1}, x_{2}\right)$ " is an equivalence on $C^{r}(X, Y)$. Equivalence classes of this equivalence are called contact elements of order r with target y, or simply contact elements. The contact element whose representative is a mapping $f \in C_{(x, y)}^{r}(X, Y)$ is called the contact element of f at x, and is denoted by $G_{x}^{r} f$. The set of contact elements with target y is denoted by $G_{y}^{r}(X, Y)$.

The equivalence on $C^{r}(X, Y)$ " f and g have contact to order r at $\left(x_{1}, x_{2}\right)$ " induces an equivalence on the set of r-jets $J^{r}(X, Y)$ "there exist charts $\left(U_{1}, \varphi_{1}\right)$ and $\left(U_{2}, \varphi_{2}\right)$ such that $J_{0}^{r}\left(f \varphi_{1}^{-1} \operatorname{tr}_{-\varphi_{1}\left(x_{1}\right)}\right)=J_{0}^{r}\left(f \varphi_{2}^{-1} \operatorname{tr}_{-\varphi_{2}\left(x_{2}\right)}\right)$ ". When we express a contact element as the class of jets, we denote

$$
\begin{equation*}
G_{x}^{r} f=\left[J_{x}^{r} f\right] \tag{3}
\end{equation*}
$$

Clearly, $J_{x_{1}}^{r} f, J_{x_{2}}^{r} g \in J^{r}(X, Y)$ are equivalent if and only if there exists a diffeomorphism $\alpha: U \rightarrow V$, where U is a neighborhood of x_{1} and V is a neighborhood of x_{2} sending x_{1} to x_{2}, such that $J_{x_{1}}^{r} f=J_{x_{2}}^{r} g \circ J_{x_{1}}^{r} \alpha$. Indeed, we can take α in the form $\alpha=\varphi_{2}^{-1} \operatorname{tr}_{-\varphi_{2}\left(x_{2}\right)} \circ \operatorname{tr}_{\varphi_{1}\left(x_{1}\right)} \varphi_{1}$.
3.2. Grassmann prolongations of a manifold. Let $r \geq 0, m, n \geq 1$ be integers, and let Y be a smooth manifold of dimension $n+m$.

Lemma 1. Let W be a neighborhood of the origin $0 \in \mathbf{R}^{n}$, and let $\zeta, \chi: W \rightarrow Y$ be two C^{r}-mappings. The following conditions are equivalent:
(a) ζ and χ have contact to order r at 0 .
(b) There exists an element $J_{0}^{r} \alpha \in L_{n}^{r}$ such that
(2) $J_{0}^{r} \zeta=J_{O}^{r} \chi \circ J_{0}^{r} \alpha$.

Proof. This is immediate.
In this section, we consider contact elements of immersions with source $0 \in \mathbf{R}^{n}$ and target in Y. Lemma 1 shows that such a contact element belongs to the quotient of the manifold of regular n-velocities of order r with target in $Y, \operatorname{imm} T_{n}^{r} Y$, by the differential group L_{n}^{r}, i.e., to the orbit space

$$
\begin{equation*}
G r_{n}^{r} Y=\operatorname{imm} T_{n}^{r} Y / L_{n}^{r} \tag{3}
\end{equation*}
$$

(Section 2.3, Theorem 2). We denote by $\pi_{n}^{r}: \operatorname{imm} T_{n}^{r} Y \rightarrow G r_{n}^{r} Y$ the canonical quotient projection.

For every $s, 0 \leq s \leq r$, we also have the canonical projection of $G r_{n}^{r} Y$ onto $G r_{n}^{s} Y$ defined by

$$
\begin{equation*}
\rho_{n}^{r, s}\left(G_{0}^{r} \zeta\right)=G_{0}^{s} \zeta . \tag{4}
\end{equation*}
$$

If $\tau_{n}^{r, s}$ is the canonical jet projection of $\operatorname{imm} T_{n}^{r} Y$ onto $\operatorname{imm} T_{n}^{s} Y$, we have the commutative diagram
(5)

$$
\begin{array}{rlr}
\operatorname{imm} T_{n}^{r} Y & \xrightarrow{\pi_{n}^{r}} G r_{n}^{r} Y \\
\quad \downarrow_{n}^{r, s} & & \downarrow_{n}^{\rho_{n}^{r, s}} \\
\operatorname{imm~} T_{n}^{s} Y & \xrightarrow{\pi_{n}^{s}} & G r_{n}^{s} Y .
\end{array}
$$

If $Y=\mathbf{R}^{n+m}$, we have the commutative diagram
(6)

$$
\begin{array}{ccc}
\operatorname{imm} T_{n}^{r} \mathbf{R}^{n+m} & \xrightarrow{\pi_{n}^{r}} & G r_{n}^{r} \mathbf{R}^{n+m} \\
\downarrow_{n}^{\tau_{n}^{r, s}} & & \downarrow_{n}^{\rho_{n}^{r, s}} \\
\operatorname{imm~} T_{n}^{s} \mathbf{R}^{n+m} & \xrightarrow{\pi_{n}^{r}} & G r_{n}^{s} \mathbf{R}^{n+m}
\end{array}
$$

In particular, if $s=0$, we have

$$
\begin{array}{rlr}
\operatorname{imm} T_{n}^{r} \mathbf{R}^{n+m} & \xrightarrow{\pi_{n}^{r}} & G r_{n}^{r} \mathbf{R}^{n+m} \\
\downarrow_{\tau_{n}^{r .0}} & & \downarrow^{\rho_{n}^{r 0}} \tag{7}\\
\mathbf{R}^{n+m} & \xrightarrow{\mathrm{id}_{\mathbf{R}^{n+m}}} & \mathbf{R}^{n+m}
\end{array}
$$

Clearly, $\operatorname{imm} L_{n, n+m}^{r}=\left(\tau_{n}^{r, 0}\right)^{-1}(0)$ (see Section 1.2, (13)). We define

$$
\begin{equation*}
G r_{n, n+m}^{r}=\left(\rho_{n}^{r, 0}\right)^{-1}(0)=\operatorname{imm} L_{n, n+m}^{r} / L_{n}^{r} . \tag{8}
\end{equation*}
$$

As fibers of surjective submersions, both imm $L_{n, n+m}^{r}$ and $G r_{n, n+m}^{r}$ are closed submanifolds. We call $G r_{n, n+m}^{r}$ the n-grassmannian of order r over \mathbf{R}^{n+m}, or simply a higher order grassmannian.

Note that $G r_{n, n+m}^{r}$ is endowed with a left action of the differential group L_{n+m}^{r},

$$
\begin{equation*}
L_{n+m}^{r} \times G r_{n, n+m}^{r} \ni(A,[P]) \rightarrow[A \circ P] \in G r_{n, n+m}^{r} \tag{9}
\end{equation*}
$$

If $F^{r} Y$ is the bundle of r-frames over Y, the product $F^{r} Y \times G r_{n, n+m}^{r}$ is endowed with the right action of L_{n+m}^{r}

$$
\begin{align*}
& L_{n+m}^{r} \times F^{r} Y \times G r_{n, n+m}^{r} \ni(A,(F,[P])) \\
& \quad \rightarrow\left(F \circ A,\left[A^{-1} \circ P\right]\right) \in F^{r} Y \times G r_{n, n+m}^{r} \tag{10}
\end{align*}
$$

We have the following result.
Theorem 1. (a) Let Y be Hausdorff. The orbit space $G r_{n}^{r} Y$ has a unique smooth structure such that the canonical quotient projection τ_{n}^{r} of $\operatorname{imm} T_{n}^{r} Y$ onto $G r_{n}^{r} Y$ is a submersion, and

$$
\begin{equation*}
\operatorname{dim} G r_{n}^{r} Y=m\binom{n+r}{n}+n \tag{11}
\end{equation*}
$$

(b) The mapping

$$
\begin{equation*}
F^{r} Y \times G r_{n, n+m}^{r} \ni(F,[P]) \rightarrow[F \circ P] \in G r_{n}^{r} Y \tag{12}
\end{equation*}
$$

is a frame mapping.
Proof. (a) This is a direct reformulation of Theorem 2, Section 2.3.
(b) It is sufficient to prove that (10) is L_{n+m}^{r}-invariant. Let $J_{0}^{r} \alpha \in L_{n+m}^{r}$ be a point. Then (12) assigns to the point $\left(J_{0}^{r} \mu \circ J_{0}^{r} \alpha,\left[J_{0}^{r} \alpha^{-1} \circ J_{0}^{r} \zeta\right]\right) \in F_{Y}^{r} \times G r_{n . n+m}^{r}$ the point $\left[J_{0}^{r}(\mu \alpha) \circ J_{0}^{r}\left(\alpha^{-1} \zeta\right)\right]=\left[J_{0}^{r} \mu \circ J_{0}^{r} \zeta\right] \in G r_{n}^{r} Y$ proving invariance.

The frame mapping (12) defines on $G r_{n}^{r} Y$ the structure of a fiber bundle over Y with fiber $G r_{n, n+m}^{r}$, associated with the bundle or frames $F^{r} Y$. With this structure, $G r_{n}^{r} Y$ is called the n-Grassmann prolongation of order r of Y, or simply the Grassmann prolongation of Y.

Let $\zeta: U \rightarrow Y$ be an immersion of a neighborhood U of the origin $0 \in \mathbf{R}^{n}$ into Y, and let $T_{n}^{r} \zeta$ be its r-prolongation (Section 2.2,11). By the r-contact prolongation of ζ we mean the mapping

$$
\begin{equation*}
U \ni t \rightarrow G_{n}^{r} \gamma(t)=\pi_{n}^{r}\left(T_{n}^{r} \gamma(t)\right) \in G_{n}^{r} Y . \tag{13}
\end{equation*}
$$

An explicit description of the smooth structure of the Grassmann prolongation $G_{n}^{r} Y$ follows immediately from the analysis of the canonical group action of the differential group L_{n}^{r} on imm $T_{n}^{r} Y$ (Section 2.3, Lemma 2, Theorem 1, Theorem 2).

Consider a chart $(V, \psi), \psi=\left(y^{K}\right)$ on Y, the associated chart $\left(V_{n}^{r}, \psi_{n}^{r}\right), \psi_{n}^{r}=\left(y^{K}\right.$, $y_{i_{1}}^{K}, y_{i_{1} i_{2}}^{K}, \ldots, y_{i_{1} i_{2} \ldots i_{r}}^{K}$) on $\operatorname{imm} T_{n}^{r} Y$, an n-subsequence (i) of the sequence $(1,2, \ldots$, $n+m)$, and the adapted chart $\left(W^{(i)}, \Psi^{(i)}\right), \Psi^{(i)}=\left(y^{i}, y_{j_{1}}^{i}, y_{j_{1} j_{2}}^{i}, \ldots, y_{j_{1} j_{2} \cdots j_{r}}^{i}, w^{\sigma}, w_{i_{1}}^{\sigma}\right.$, $\left.w_{i_{1} i_{2}}^{\sigma}, \ldots, w_{i_{1} i_{2} \cdots i_{r}}^{\sigma}\right)$, where

$$
\begin{equation*}
w^{\sigma}=y^{\sigma}, \quad w_{i_{1} i_{2} \cdots i_{k}}^{\sigma}=\Delta_{i_{k}} \cdots \Delta_{i_{2}} \Delta_{i_{1}} w^{\sigma}, \tag{14}
\end{equation*}
$$

and

$$
\Delta_{i}(P)
$$

$$
\begin{aligned}
& =z_{i}^{s}(P)\left(\sum_{k=0}^{r-1} \sum_{q_{1} \leq q_{2} \leq \cdots \leq q_{k}} \sum_{l=0}^{r-1} \sum_{i_{1} \leq i_{2} \leq \cdots \leq i_{l}}\left(\frac{\partial w_{i_{1} i_{2} \cdots i_{l}}^{\sigma}}{\partial y_{q_{1} q_{2} \cdots q_{k}}^{K}}\right)_{P} y_{q_{1} q_{2} \cdots q_{k} s}^{K}(P)\left(\frac{\partial}{\partial w_{i_{1} i_{2} \cdots i_{l}}^{\sigma}}\right)_{P}\right. \\
& \left.+\sum_{k=0}^{r-1} \sum_{q_{1} \leq q_{2} \leq \cdots \leq q_{k}} \sum_{l=0}^{r-1} \sum_{i_{1} \leq i_{2} \leq \cdots \leq i_{l}}\left(\frac{\partial y_{i_{1} i_{2} \cdots i_{l}}^{s}}{\partial y_{q_{1} q_{2} \cdots q_{k}}^{K}}\right)_{P} y_{q_{1} q_{2} \cdots q_{k} s}^{K}(P)\left(\frac{\partial}{\partial y_{i_{1} i_{2} \cdots i_{l}}^{s}}\right)_{P}\right)_{l=0}^{r-1} \sum_{i_{1} \leq i_{2} \leq \cdots \leq i_{l}}\left(w_{i_{1} i_{2} \cdots i_{l} l}^{\sigma}(P)\left(\frac{\partial}{\partial w_{i_{1} i_{2} \cdots i_{l}}^{\sigma}}\right)_{P}+z_{i}^{s}(P) y_{i_{1} i_{2} \cdots i_{l} s}^{k}(P)\left(\frac{\partial}{\partial y_{i_{1} i_{2} \cdots i_{l}}^{k}}\right)_{P}\right),
\end{aligned}
$$

thus,

$$
\begin{align*}
\Delta_{i} & =\frac{\partial}{\partial y^{i}}+\sum_{l=0}^{r-1} \sum_{i_{1} \leq i_{2} \leq \cdots \leq i_{l}} w_{i_{1} i_{2} \cdots i_{l} i}^{\sigma} \frac{\partial}{\partial w_{i_{1} i_{2} \cdots i_{l}}^{\sigma}} \tag{16}\\
& +\sum_{l=1}^{r-1} \sum_{i_{1} \leq i_{2} \leq \cdots \leq i_{l}} z_{i}^{s} y_{i_{1} i_{2} \cdots i_{l} s}^{k} \frac{\partial}{\partial y_{i_{1} i_{2} \cdots i_{l}}^{k}} .
\end{align*}
$$

Recall that a chart on $Y,(V, \psi), \psi=\left(y^{K}\right)$, induces the associated chart $\left(V_{n}^{r}, \psi_{n}^{r}\right)$, $\psi_{n}^{r}=\left(y^{K}, y_{i_{1}}^{K}, y_{i_{1} i_{2}}^{K}, \ldots, y_{i_{1} i_{2} \cdots i_{r}}^{K}\right)$, on imm $T_{n}^{r} Y$, and for any n-subsequence (i) of the sequence $\{1,2, \ldots, n+m\}$, whose complementary subsequence is denoted by (σ), the chart $\left(W^{(i)}, \Psi^{(i)}\right), \Psi^{(i)}=\left(y^{i}, y_{p_{1}}^{i}, y_{p_{1} p_{2}}^{i}, \ldots, y_{p_{1} j_{2} \cdots p_{r}}^{i}, w^{\sigma}, w_{i_{1}}^{\sigma}, w_{i_{1} i_{2}}^{\sigma}, \ldots, w_{i_{1} i_{2} \cdots i_{r}}^{\sigma}\right)$, on $\operatorname{imm} T_{n}^{r} Y$, adapted to the canonical action of the group L_{n}^{r} (Section 2.3, Theorem 1); in this chart, $i, i_{1}, i_{2}, \ldots, i_{r} \in(i), i_{1} \leq i_{2} \leq \cdots \leq i_{r}, p_{1} \leq p_{2} \leq \cdots \leq p_{r} \leq n$. Denoting

$$
\begin{equation*}
W_{G}^{(i)}=\pi_{n}^{r}\left(W^{(i)}\right), \quad \Psi_{G}^{(i)}=\left(y^{i}, w^{\sigma}, w_{i_{1}}^{\sigma}, w_{i_{1} i_{2}}^{\sigma}, \ldots, w_{i_{1} i_{2} \cdots i_{r}}^{\sigma}\right), \tag{17}
\end{equation*}
$$

we obtain the associated chart $\left(W_{G}^{(i)}, \Psi_{G}^{(i)}\right)$ on $G r_{n}^{r} Y$.
Assume that we have another chart, $(\bar{V}, \bar{\psi}), \psi=\left(\bar{y}^{K}\right)$, on Y such that $V \cap \bar{V} \neq \emptyset$, and an n-subsequence (j) of the sequence $\{1,2, \ldots, n+m\}$. Denote by (v) the complementary subsequence. Then on $W^{(i)} \cap \bar{W}^{(j)}$

$$
\begin{equation*}
\bar{\Delta}_{j}=\bar{z}_{j}^{s} \bar{d}_{s}=\bar{z}_{j}^{s} d_{s}=\bar{z}_{j}^{s} \delta_{s}^{p} d_{p}=\bar{z}_{j}^{s} y_{s}^{i} z_{i}^{p} d_{p}=\bar{z}_{j}^{s} y_{s}^{i} \Delta_{i} \tag{18}
\end{equation*}
$$

where $i \in(i), j \in(j)$. Consider the factor $\bar{z}_{j}^{s} y_{s}^{i}$. If $P \in W^{(i)} \cap \bar{W}^{(i)}$ and $A \in L_{n}^{r}$, we have $\bar{z}_{j}^{s}(P \circ A) \bar{y}_{s}^{k}(P \circ A)=\delta_{j}^{k}$ and, in the canonical coordinates on the differential group $L_{n}^{r}, \bar{y}_{s}^{k}(P \circ A)=\bar{y}_{t}^{k}(P) a_{s}^{t}(A)$. This implies that $\bar{z}_{j}^{s}(P \circ A)=\bar{z}_{j}^{t}(P) a_{t}^{s}\left(A^{-1}\right)$, hence $\bar{z}_{j}^{s}(P \circ A) y_{s}^{i}(P \circ A)=\bar{z}_{j}^{s}(P) y_{s}^{i}(P)$. In particular, the function

$$
\begin{equation*}
\Psi_{j}^{i}=\bar{z}_{j}^{s} y_{s}^{i} \tag{19}
\end{equation*}
$$

defined on $W^{(i)} \cap \bar{W}^{(i)}$, depends only on $[P] \in \pi_{n}^{r}\left(W^{(i)}\right) \cap \pi_{n}^{r}\left(\bar{W}^{(i)}\right)$ (in fact, Ψ_{j}^{i} depends on $\rho_{n}^{r, 1}([P])$ only).

Now we discuss transformation properties of the functions $w^{\sigma}, w_{i_{1}}^{\sigma}, w_{i_{1} i_{2}}^{\sigma}, \ldots, w_{i_{1} i_{2} \cdots i_{r}}^{\sigma}$ belonging to the associated charts on the Grassmann prolongation $G r_{n}^{r} Y$ of Y.

Theorem 2. Let $(V, \psi), \psi=\left(y^{A}\right)$, and $(\bar{V}, \bar{\psi}), \bar{\psi}=\left(\bar{y}^{A}\right)$ be two charts on Y such that $V \cap \bar{V} \neq \emptyset$, let $\left.\left(W_{G}^{(i)}, \Psi_{G}^{(i)}\right), \Psi_{G}^{(i)}\right)=\left(y^{i}, w^{\sigma}, w_{i_{1}}^{\sigma}, w_{i_{1} i_{2}}^{\sigma}, \ldots, w_{i_{1} i_{2} \ldots i_{r}}^{\sigma}\right)$ and $\left(\bar{W}_{G}^{(j)}, \bar{\Psi}_{G}^{(j)}\right), \bar{\Psi}_{G}^{(j)}=\left(y^{j}, w^{v}, w_{j_{1}}^{v}, w_{j_{1} j_{2}}^{v}, \ldots, w_{j_{1} j_{2} \ldots j_{r}}^{v}\right)$ be the associated charts on $G r_{n}^{r} Y$. Let the transformation equations from (V, ψ) to $(\bar{V}, \bar{\psi})$ have the form

$$
\begin{equation*}
\bar{y}^{i}=F^{i}\left(y^{k}, w^{\nu}\right), \quad \bar{w}^{\sigma}=F^{\sigma}\left(y^{k}, w^{\nu}\right) . \tag{20}
\end{equation*}
$$

Then

$$
\begin{equation*}
\bar{w}_{j_{1}}^{v}=\Psi_{j_{1}}^{i} \Delta_{i} \bar{w}^{v}=\Psi_{j_{1}}^{i}\left(\frac{\partial F^{v}}{\partial y^{i}}+w_{i}^{\sigma} \frac{\partial F^{v}}{\partial w^{\sigma}}\right), \tag{21}
\end{equation*}
$$

and the functions $w_{i_{1} i_{2} \cdots i_{k} i_{k+1}}^{v}$ obey the recurrent transformation formulas

$$
\begin{equation*}
\bar{w}_{j_{1} j_{2} \cdots j_{k} j_{k+1}}^{v}=\Psi_{j_{k+1}}^{i} \Delta_{i} \bar{w}_{j_{1} j_{2} \cdots j_{k}}^{v} . \tag{22}
\end{equation*}
$$

Proof. (22) follows from (17) and (14). Then using (14), (19), and (20) we get

$$
\begin{equation*}
\bar{w}_{j_{1} j_{2} \cdots j_{k} j_{k+1}}^{v}=\bar{\Delta}_{j_{k+1}} \bar{w}_{j_{1} j_{2} \cdots j_{k}}^{v}=\Psi_{j_{k+1}}^{i} \Delta_{i} \bar{w}_{j_{1} j_{2} \cdots j_{k}}^{v} . \tag{23}
\end{equation*}
$$

proving (23).
3.3. Prolongations of a fibered manifold. In this section, Y is a fibered manifold with base X and projection π. We denote $n=\operatorname{dim} X, \operatorname{dim} Y=n+m$.

Let $r \geq 0$ be an integer. Let $y \in Y$ be a point, let $x=\pi(y)$, and let $\operatorname{Sec}_{x, y}^{r} Y$ be the set of C^{r} sections γ of Y defined at x, such that $\gamma(x)=y$. We say that two sections $\gamma, \delta \in \operatorname{Sec}_{x, y}^{r} Y$ are tangent to order r at x, if there exists a fibered chart $(V, \psi), \psi=\left(x^{i}, y^{\sigma}\right)$, at y, whose associated chart on X is denoted by $(U, \varphi), \varphi=\left(x^{i}\right)$, such that

$$
\begin{equation*}
D_{i_{1}} D_{i_{2}} \cdots D_{i_{s}}\left(y^{\sigma} \gamma \varphi^{-1}\right)(\varphi(x))=D_{i_{1}} D_{i_{2}} \cdots D_{i_{s}}\left(y^{\sigma} \delta \varphi^{-1}\right)(\varphi(x)) \tag{1}
\end{equation*}
$$

for all $s=1,2, \ldots, r$ and all $i_{1}, i_{2}, \ldots, i_{s}$ such that $1 \leq i_{1} \leq i_{2} \leq \cdots \leq i_{s} \leq n$.
The binary relation " γ, δ are tangent to order r at x " is obviously an equivalence on the set $\operatorname{Sec}_{x, y}^{r} Y$. The class, containing a section $\gamma \in \operatorname{Sec}_{x, y}^{r} Y$ is called the r-jet of γ at x, and is denoted by $J_{x}^{r} \gamma$. The set of classes with respect to this equivalence relation is denoted by $J_{(x, y)}^{r} Y$. We define

$$
\begin{equation*}
J^{r} Y=\bigcup_{(x, y)} J_{(x, y)}^{r} Y . \tag{2}
\end{equation*}
$$

The canonical jet projections are the mappings $\pi^{r, s}: J^{r} Y \rightarrow J^{s} Y$, where $1 \leq s \leq r$, $\pi^{r, 0}: J^{r} Y \rightarrow Y$ and $\pi^{r}: J^{r} Y \rightarrow X$ defined by

$$
\begin{equation*}
\pi^{r, s}\left(J_{x}^{r} \gamma\right)=J_{x}^{s} \gamma, \quad \pi^{r, 0}\left(J_{x}^{r} \gamma\right)=y, \quad \pi^{r}\left(J_{x}^{r} \gamma\right)=x . \tag{3}
\end{equation*}
$$

Let $(V, \psi), \psi=\left(x^{i}, y^{\sigma}\right)$, be a fibered chart on Y, and let $(U, \varphi), \varphi=\left(x^{i}\right)$ be the associated chart on X. We define the associated chart $\left(V^{r}, \psi^{r}\right), \psi^{r}=\left(x^{i}, y^{\sigma}, y_{i_{1}}^{\sigma}, y_{i_{1} i_{2}}^{\sigma}\right.$, $\ldots, y_{i_{1} i_{2} \cdots i_{r}}^{\sigma}$), on J^{Y} by the following condition:

$$
\begin{equation*}
V^{r}=\left(\pi^{r, 0}\right)^{-1}(V) \tag{4}
\end{equation*}
$$

and, if $J_{x}^{r} \gamma \in V^{r}$, then

$$
\begin{align*}
& x^{i}\left(J_{x}^{r} \gamma\right)=x^{i}(x), \quad y^{\sigma}\left(J_{x}^{r} \gamma\right)=y^{\sigma}(y) \\
& y_{i_{1} i_{2} \cdots i_{r}}^{\sigma}\left(J_{x}^{r} \gamma\right)=D_{i_{1}} D_{i_{2}} \cdots D_{i_{r}}\left(y^{\sigma} \gamma \varphi^{-1}\right)(\varphi(x)) \tag{5}\\
& \quad 1 \leq i_{1} \leq i_{2} \leq \cdots \leq i_{r} \leq n .
\end{align*}
$$

where $1 \leq i \leq n, 1 \leq \sigma \leq m, 1 \leq s \leq r$, and $1 \leq i_{1} \leq i_{2} \leq \cdots \leq i_{s} \leq n$.
Lemma 2. There exists a unique smooth structure on $J^{r} Y$ such that for every fibered chart (V, ψ) on $Y,\left(V^{r}, \psi^{r}\right)$ is a chart on $J^{r} Y$. The dimension of $J^{r} Y$ is

$$
\begin{equation*}
\operatorname{dim} J^{r} Y=n+m\binom{n+r}{n} \tag{6}
\end{equation*}
$$

Proof. We want to show that if we have an atlas on Y, consisting of fibered charts (V, ψ), then the associated charts $\left(V^{r}, \psi^{r}\right)$ form an atlas on $J^{r} Y$. To this purpose it is obviously sufficient to verify smoothness of the transformations between two charts. If (V, ψ) and $(\bar{V}, \bar{\psi})$ are two charts such that $V \cap \bar{V} \neq \emptyset$, then writing $\bar{y}^{\sigma} \gamma \bar{\varphi}^{-1}=$ $\bar{y}^{\sigma} \psi^{-1} \circ \psi \gamma \varphi^{-1} \circ \varphi \bar{\varphi}^{-1}$, we get, using the chain rule, the transformation formula

$$
\begin{align*}
& \bar{y}_{i_{1} i_{2} \cdots i_{s}}^{\sigma}=D_{i_{1}} D_{i_{2}} \cdots D_{i_{s}}\left(\bar{y}^{\sigma} \gamma \bar{\varphi}^{-1}\right)(\bar{\varphi}(x)) \\
& \quad=D_{i_{1}} D_{i_{2}} \cdots D_{i_{s}}\left(\bar{y}^{\sigma} \psi^{-1} \circ \psi \gamma \varphi^{-1} \circ \varphi \bar{\varphi}^{-1}\right)(\bar{\varphi}(x)) . \tag{7}
\end{align*}
$$

Thus, the transformation equations are polynomial hence smooth.
Now it is easy to compute the dimension. We get

$$
\begin{align*}
& \operatorname{dim} J^{r} Y=n+m+m n+m\binom{n+1}{2}+\cdots+m\binom{n+r-1}{r} \tag{8}\\
& \quad=n+m\binom{n+r}{r}
\end{align*}
$$

Example 1. If $r=2$, formula (7) gives

$$
\begin{align*}
\bar{y}_{i_{1}}^{\sigma} & =\left(\frac{\partial \bar{y}^{\sigma}}{\partial x^{j_{1}}}+\frac{\partial \bar{y}^{\sigma}}{\partial y^{v}} y_{j_{1}}^{v}\right) \frac{\partial x^{j_{1}}}{\partial \bar{x}^{i_{1}}} \\
\bar{y}_{i_{1} i_{2}}^{\sigma} & =\left(\frac{\partial^{2} \bar{y}^{\sigma}}{\partial x^{j_{1}} \partial x^{j_{2}}}+\frac{\partial^{2} \bar{y}^{\sigma}}{\partial y^{v} \partial x^{j_{2}}} y_{j_{1}}^{v}\right) \frac{\partial x^{j_{2}}}{\partial \bar{x}^{i_{2}}} \frac{\partial x^{j_{1}}}{\partial \bar{x}^{i_{1}}} \tag{9}\\
& +\left(\frac{\partial \bar{y}^{\sigma}}{\partial x^{j_{1}}}+\frac{\partial \bar{y}^{\sigma}}{\partial y^{v}} y_{j_{1}}^{v}\right) \frac{\partial^{2} x^{j_{1}}}{\partial \bar{x}^{i_{1}} \partial \bar{x}^{i_{2}}} .
\end{align*}
$$

The concepts of the r-jet of a C^{r} section of a fibered manifold Y, and of the r-jet prolongation $J^{r} Y$ of Y, have been introduced in full analogy with the concepts of the r-jet of an arbitrary C^{r} mapping, and of the manifold of r-jets $J^{r}(X, Y)$.
$J^{r} Y$ can also be defined as a submanifold of $J^{r}(X, Y)$, and of the Grassmann prolongation $G r_{n}^{r} Y$. We denote

$$
\begin{equation*}
\operatorname{imm}_{\pi} T_{n}^{r} Y=\left\{J_{0}^{r} \zeta \in \operatorname{imm} T_{n}^{r} Y \mid J_{0}^{r} \pi \circ J_{0}^{r} \zeta \in F^{r} X\right\} \tag{10}
\end{equation*}
$$

Theorem 3. (a) is a closed submanifold of $J^{r}(X, Y)$.
(b) $\mathrm{imm}_{\pi} T_{n}^{r} Y$ is an open, L_{n}^{r}-invariant set in imm $T_{n}^{r} Y, J^{r} X=\left(\mathrm{imm}_{\pi} T_{n}^{r} Y\right) / L_{n}^{r}$ is an open set in $\mathrm{Gr}_{n}^{r} Y$, and the diagram

in which the horizontal arrows are the canonical inclusions, and the vertical arrows are the quotient projections, commutes.

Proof. (a) Let $(V, \psi), \psi=\left(x^{i}, y^{I}\right)$, be a fibered chart on $Y,(U, \varphi), \varphi=\left(x^{i}\right)$, the associated chart on $X .(V, \psi)$ and (U, φ) define the associated chart $\left(W^{r}, \chi_{\varphi, \psi}^{r}\right)$ on $J^{r}(X, Y)$ (Section 3.1). Recall that

$$
\begin{equation*}
W^{r}=\left(\rho^{r, 0}\right)^{-1}(U \times V), \quad \chi_{\varphi, \psi}^{r}=\left(x^{i}, y^{I}, \chi_{i_{1} i_{2} \cdots i_{k}}^{I}\right) \tag{12}
\end{equation*}
$$

where $1 \leq k \leq r, 1 \leq \sigma \leq m, 1 \leq i_{1} \leq i_{2} \leq \cdots \leq i_{k} \leq n, \rho^{r, 0}: J^{r}(X, Y) \rightarrow X \times Y$ is the canonical jet projection, and $\chi_{i_{1} i_{2} \ldots i_{k}}^{\sigma}$ are real-valued functions on W^{r} defined by $\chi_{i_{1} i_{2} \cdots i_{k}}^{I}\left(J_{x}^{r} f\right)=D_{i_{1}} D_{i_{2}} \cdots D_{i_{k}}\left(y^{I} f \varphi^{-1}\right)(\varphi(x))$, where $I=i, \sigma$. More precisely,

$$
\begin{equation*}
\chi_{i_{1} i_{2} \cdots i_{k}}^{I}=\left(\chi_{i_{1} i_{2} \cdots i_{k}}^{i}, \chi_{i_{1} i_{2} \cdots i_{k}}^{\sigma}\right) \tag{13}
\end{equation*}
$$

Since every section γ satisfies $x^{i} \circ \gamma=x^{i}, J^{r} Y \cap W^{r}$ is expressed by the equations

$$
\begin{equation*}
\chi_{i_{1}}^{i}=\delta_{i_{1}}^{i}, \chi_{i_{1} i_{2}}^{i}=0, \ldots, \chi_{i_{1} i_{2} \cdots i_{r}}^{i}=0 \tag{14}
\end{equation*}
$$

Now it is immediate that $J^{r} Y$ is a submanifold, and a closed subset of $J^{r}(X, Y)$.
(b) We have a smooth mapping

$$
\begin{equation*}
\operatorname{imm} T_{n}^{r} Y \ni J_{0}^{r} \zeta \rightarrow J_{0}^{r} \pi \circ J_{0}^{r} \zeta=J_{0}^{r}(\pi \circ \zeta) \in T_{n}^{r} X \tag{15}
\end{equation*}
$$

Since the manifold of r-frames $F^{r} X$ is an open set in $T_{n}^{r} X$, the preimage of $F^{r} X$ in $\operatorname{imm} T_{n}^{r} Y$ by the mapping (15), i.e., the set $\operatorname{imm}_{\pi} T_{n}^{r} Y$, is open. If $J_{0}^{r} \alpha \in L_{n}^{r}$ and $J_{0}^{r} \zeta \in$ $\operatorname{imm}_{\pi} T_{n}^{r} Y$, then obviously, $J_{0}^{r} \zeta \circ J_{0}^{r} \alpha=J_{0}^{r}(\zeta \alpha) \in \operatorname{imm}_{\pi} T_{n}^{r} Y$, that is, $\operatorname{imm}_{\pi} T_{n}^{r} Y$ is an L_{n}^{r}-invariant subset.

Since by definition, $G r_{n}^{r} Y=\operatorname{imm} T_{n}^{r} Y / L_{n}^{r}$, the set $\mathrm{imm}_{\pi} T_{n}^{r} Y / L_{n}^{r}$ is obviously open in $G r_{n}^{r} Y$, and we have the commutative diagram

in which the horizontal arrows are the canonical inclusions, and the vertical arrows are the quotient projections. It remains to show that $J^{r} Y$ can be considered as the quotient $\mathrm{imm}_{\pi} T_{n}^{r} Y / L_{n}^{r}$.

If $J_{0}^{r} \zeta \in \mathrm{imm}_{\pi} T_{n}^{r} Y$, then the formula

$$
\begin{equation*}
\gamma=\zeta \circ(\pi \zeta)^{-1} \tag{17}
\end{equation*}
$$

defines a section of Y over a neighborhood of $x=\pi(\zeta(0))$. Thus, we have a mapping

$$
\begin{equation*}
\mathrm{imm}_{\pi} T_{n}^{r} Y \ni J_{0}^{r} \zeta \rightarrow J_{\pi(\zeta(0))}^{r}\left(\zeta \circ(\pi \zeta)^{-1}\right) \in J^{r} Y \tag{18}
\end{equation*}
$$

It is easily seen that this mapping is surjective, and its fibers coincide with L_{n}^{r} orbits.
Let $J_{x}^{r} \gamma \in J^{r} Y$ be any element. If γ is a representative of $J_{x}^{r} \gamma$, defined on a neighborhood of x, then for any chart (U, φ) at $x, \zeta=\gamma \circ \varphi^{-1} \operatorname{tr}_{-\varphi(x)}$ is an immersion of a neighborhood of $0 \in \mathbf{R}^{n}$ into Y, and $\pi \zeta=\varphi^{-1} \operatorname{tr}_{-\varphi(x)}$ is an immersion of a neighborhood of $0 \in \mathbf{R}^{n}$ into X. Thus, (U, φ) defines an element $J_{x}^{r} \zeta \in \operatorname{imm}_{\pi} T_{n}^{r} Y$. The mapping (18) obviously sends $J_{x}^{r} \zeta$ to $J_{x}^{r} \gamma$, proving surjectivity. Moreover, for every $J_{0}^{r} \alpha \in L_{n}^{r}$,

$$
\begin{align*}
& J_{\pi(\zeta \alpha(0))}^{r}\left(\zeta \alpha \circ(\pi \zeta \alpha)^{-1}\right)=J_{\pi(\zeta(0))}^{r}\left(\zeta \alpha \circ \alpha^{-1} \circ(\pi \zeta)^{-1}\right) \tag{19}\\
& \quad=J_{\pi(\zeta(0))}^{r}\left(\zeta \circ(\pi \zeta)^{-1}\right) .
\end{align*}
$$

Thus, (18) is constant on L_{n}^{r} orbits. If $J_{\pi(\zeta(0))}^{r}\left(\zeta \circ(\pi \zeta)^{-1}\right)=J_{\pi(\chi(0))}^{r}\left(\chi \circ(\pi \chi)^{-1}\right)$, then $J_{0}^{r} \zeta=J_{0}^{r} \chi \circ J_{0}^{r}\left((\pi \chi)^{-1} \circ \pi \zeta\right)$ proving that any two elements of a fiber of (18) belong to the same orbit.

Let Y_{1} (resp. Y_{2}) be a fibered manifold with base X_{1} (resp. X_{2}) and projection π_{1} (resp. π_{2}), and let $\alpha: Y_{1} \rightarrow Y_{2}$ be a morphism of fibered manifolds. Denote by α_{0} : $X_{1} \rightarrow X_{2}$ the projection of α. If α_{0} is a diffeomorphism, then for any section γ of $Y_{1}, \alpha \gamma \alpha_{0}^{-1}$ is a section of Y_{2}. We define a mapping $J^{r} \alpha: J^{r} Y_{1} \rightarrow J^{r} Y_{2}$ by

$$
\begin{equation*}
J^{r} \alpha\left(J_{x}^{r} \gamma\right)=J_{\alpha_{0}(x)}^{r} \alpha \gamma \alpha_{0}^{-1} \tag{20}
\end{equation*}
$$

If α is smooth then $J^{r} \alpha$ is also smooth. Obviously,

$$
\begin{equation*}
\pi^{r, s} \circ J^{r} \alpha=J^{s} \alpha \circ \pi^{r, s}, \quad \pi^{r} \circ J^{r} \alpha=\alpha_{0} \circ \pi^{r}, \quad J^{r} \mathrm{id}_{Y}=\mathrm{id}_{J^{r} Y} . \tag{21}
\end{equation*}
$$

for every $s, 0 \leq s<r$, and every fibered manifold Y.
$J^{r} \alpha$ is called the r-jet prolongation, or simply the prolongation, of α.
Lemma 3. If $\alpha: Y_{1} \rightarrow Y_{2}$ and $\beta: Y_{2} \rightarrow Y_{3}$ are morphisms of fibered manifolds, whose projections are diffeomorphisms, then

$$
\begin{equation*}
J^{r}(\beta \circ \alpha)=J^{r} \beta \circ J^{r} \alpha . \tag{22}
\end{equation*}
$$

Proof. This is an immediate consequence of definitions.
Remark 1. One can easily determine the chart expression of $J_{\tilde{V}}{ }^{r} \alpha$. Consider for simplicity the case $r=1$. Let $(V, \psi), \psi=\left(x^{i}, y^{\sigma}\right),\left(\operatorname{resp} .\left(\tilde{V}_{2}, \tilde{\psi}\right), \tilde{\psi}=\left(\tilde{x}^{j}, \tilde{y}^{J}\right)\right)$ be a fibered chart on $Y_{1}\left(\operatorname{resp} . Y_{2}\right)$, let $(U, \varphi), \varphi=\left(x^{i}\right)\left(\operatorname{resp} .(\tilde{U}, \tilde{\varphi}), \tilde{\varphi}=\left(\tilde{x}^{j}\right)\right)$ be the associated chart on X_{1} (resp. X_{2}). Assume that $\alpha(V) \subset \tilde{V}$. Let us denote

$$
\begin{equation*}
\tilde{x}^{i} \alpha=f^{i}, \quad \tilde{y}^{J} \alpha=F^{J}, \quad x^{k} \alpha^{-1}=g^{k} \tag{23}
\end{equation*}
$$

Then we get

$$
\begin{align*}
\tilde{y}_{j}^{J} & \circ J^{1} \alpha\left(J_{x}^{r} \gamma\right)=\tilde{y}_{j}^{J}\left(J_{\alpha_{0}(x)}^{1} \alpha \gamma \alpha_{0}^{-1}\right) \\
& =D_{j}\left(\tilde{y}^{J} \alpha \psi^{-1} \circ \psi \gamma \varphi^{-1} \circ \varphi \alpha_{0}^{-1} \tilde{\varphi}^{-1}\right)\left(\tilde{\varphi} \alpha_{0} \varphi^{-1}(\varphi(x))\right) \\
& \left.=D_{k}(\tilde{(} y)^{J} \alpha \psi^{-1}\right)(\psi(\gamma(x))) D_{j}\left(x^{k} \alpha_{0}^{-1} \tilde{\varphi}^{-1}\right)\left(\tilde{\varphi}\left(\alpha_{0}(x)\right)\right) \tag{24}\\
& +D_{\sigma}\left(\tilde{y}^{J} \alpha \psi^{-1}\right)(\psi(\gamma(x))) y_{k}^{\sigma}\left(J_{x}^{1} \gamma\right) D_{j}\left(x^{k} \alpha_{0}^{-1} \tilde{\varphi}^{-1}\right)\left(\tilde{\varphi}\left(\alpha_{0}(x)\right)\right) .
\end{align*}
$$

Thus,

$$
\begin{equation*}
\tilde{y}_{j}^{J} \circ J^{r} \alpha=\frac{\partial F^{J}}{\partial x^{k}} \frac{\partial g^{k}}{\partial \tilde{x}^{j}}+\frac{\partial F^{J}}{\partial y^{\sigma}} y_{k}^{\sigma} \frac{\partial g^{k}}{\partial \tilde{x}^{j}}=d_{k} F^{J} \frac{\partial g^{k}}{\partial \tilde{x}^{j}} \tag{25}
\end{equation*}
$$

where d_{k} stands for the formal derivative operator.
Remark 2. A manifold X can naturally be viewed as a fibered manifold over X, with projection id_{X}. If $\gamma: U \rightarrow X$ is smooth section of this fibered manifold over an open set U, then $\gamma(x)=x$ for every $x \in U$. Thus, $\gamma=\mathrm{id}_{U}$. In particular, $J_{x}^{r} \gamma=J_{x}^{r} \mathrm{id}_{U}$. The mapping $J^{r} X \ni J_{x}^{r} \mathrm{id}_{U} \rightarrow x \in X$ is a diffeomorphism called the canonical identification. Using the canonical identification, we always identify $J^{r} X$ with X. If $\alpha: X_{1} \rightarrow X_{2}$ is a morphism viewed as fibered manifolds, then α is a diffeomorphism, and $J^{r} \alpha$ is canonically identified with α.

Remark 3. A section γ of a fibered manifold Y over X, with projection π, can naturally be viewed as a morphism of fibered manifolds. Indeed, we have the commutative diagrams

Remark 4. Note that, with the convention of Remark 2,

$$
\begin{equation*}
J^{r} \alpha \circ J^{r} \gamma \circ \alpha_{0}^{-1}=J^{r} \alpha \gamma \alpha_{0}^{-1} . \tag{27}
\end{equation*}
$$

Remark 5. Let (V, ψ) be a fibered chart on a fibered manifold Y with base X, and let (U, φ) be the associated chart on X. Then using the notation of Remark 1 , and applying (22) and (Section 3.2, (10)) to ψ, we get $J^{r} \psi\left(J_{x}^{r} \gamma\right)=J_{\varphi(x)}^{r} \psi \gamma \varphi^{-1}$, i.e.,

$$
\begin{equation*}
\psi^{r}=J^{r} \psi \tag{28}
\end{equation*}
$$

3.4. Prolongations of fibrations. Let Y be a fibration with base X, projection π, and fiber Q, and consider the r-jet prolongation $J^{r} Y$.

Lemma 4. $J^{r} Y$ has the structure of a fibration with base X, projection π^{r}, and fiber $T_{n}^{r} Q$.

Proof. Let (U, φ) be a chart on X, and let $\Phi: \pi^{-1}(U) \rightarrow U \times Q$ be a trivialization. Define $\tilde{\Phi}$ by the condition $\Phi(y)=(\pi(y), \tilde{\Phi}(y))$, and consider the morphism of fibered manifolds $\Phi_{\varphi}: \pi^{-1}(U) \rightarrow \varphi(U) \times Q$, defined by $\Phi_{\varphi}(y)=(\varphi(\pi(y)), \tilde{\Phi}(y))$. The r-jet prolongation $J^{r} \Phi_{\varphi}:\left(\pi^{r}\right)^{-1}(U) \rightarrow J^{r}(\varphi(U) \times Q)$ of Φ_{φ} is defined by $J^{r} \Phi_{\varphi}^{r}\left(J_{x}^{r} \gamma\right)=$ $J_{\varphi(x)}^{r} \Phi_{\varphi} \gamma \varphi^{-1}$, where $J_{x}^{r} \gamma \in\left(\pi^{r}\right)^{-1}(U)$. But $\Phi_{\varphi} \gamma \varphi^{-1}$ is of the form $\left(\Phi_{\varphi} \gamma \varphi^{-1}\right)\left(x^{\prime}\right)=$ ($\left.x^{\prime}, \Phi \gamma \varphi^{-1}\left(x^{\prime}\right)\right)$, i.e.,

$$
\begin{equation*}
\Phi_{\varphi} \gamma \varphi^{-1}=\left(\mathrm{id}_{\varphi(U)}, \tilde{\Phi} \gamma \varphi^{-1}\right) \tag{1}
\end{equation*}
$$

where $\tilde{\Phi} \gamma \varphi^{-1}$ is a mapping of $\varphi(U)$ into Q. Thus, identifying $J_{\varphi(x)}^{r}\left(\Phi_{\varphi} \gamma \varphi^{-1}\right)$ with the point $\left(\varphi(x), J_{0}^{r}\left(\tilde{\Phi} \gamma \varphi^{-1} \operatorname{tr}_{-\varphi(x)}\right)\right)$ of $\varphi(U) \times T_{n}^{r} Q$, and setting

$$
\begin{equation*}
\Phi_{\varphi}^{r}\left(J_{x}^{r} \gamma\right)=\left(x, J_{0}^{r}\left(\tilde{\Phi} \gamma \varphi^{-1} \circ \operatorname{tr}_{-\varphi(x)}\right)\right) \tag{2}
\end{equation*}
$$

we get the commutative diagram

Φ_{φ}^{r} is obviously a trivialization.
Note that to define trivializations of $J^{r} Y$, we need not only trivializations of Y, but also charts on the base X of Y. The trivialization Φ_{φ}^{r} is said to be associated with the pair (Φ, φ).

Remark 6. Formula (2) can be applied to special cases of prolongations of principal and associated fiber bundles.
3.5. Prolongations of Lie groups. Let G be a Lie group, and let $T_{n}^{r} G$ be the manifold of r-jets with source $O \in \mathbf{R}^{n}$ and target in G. Let $S, T \in T_{n}^{r} G, S=J_{0}^{r} f, T=J_{0}^{r} g$, be any elements. We define a group operation in $T_{n}^{r} G$ by

$$
\begin{equation*}
S \cdot T=J_{0}^{r}(f \cdot g) \tag{1}
\end{equation*}
$$

where $(f \cdot g)(x)=f(x) \cdot g(x)$ is defined by the group operation in G. The unity of $T_{n}^{r} G$ is the r-jet $e_{T_{n}^{r} G}=J_{0}^{r} e_{G}$, where e_{G} denotes the unity of G, and also the constant mapping of \mathbf{R}^{n} with value e_{G}. The inverse of $S=J_{0}^{r} f$ is the r-jet $S^{-1}=J_{0}^{r} f$, where $f^{-1}(x)=(f(x))^{-1}$, and the inversion is taken in the group G.

Denoting for a moment the group operation in G by Ψ, we can write $f \cdot g=\Psi \circ$ $(f \times g)$. Then $S \cdot T=J_{(f(0), g(0))}^{r} \Psi \circ J_{0}^{r}(f \times g)$ which shows that the group operation (1) is smooth. In particular, $T_{n}^{r} G$ is a Lie group.

An element $A \in L_{n}^{r}$ defines a mapping $\varphi(A): T_{n}^{r} G \rightarrow T_{n}^{r} G$ by the formula

$$
\begin{equation*}
\varphi(A)(S)=S \circ A^{-1} \tag{2}
\end{equation*}
$$

Since for every $S, T \in T_{n}^{r} G, A, B \in L_{n}^{r}, \varphi(A)(S \cdot T)=(S \cdot T) \circ A^{-1}=\left(S \circ A^{-1}\right)$. $\left(T \circ A^{-1}\right)=\varphi(A)(S) \cdot \varphi(A)(T)$ and $\varphi(A \cdot B)(S)=S \circ(A \cdot B)^{-1}=\left(S \circ B^{-1}\right) \circ A^{-1}=$ $\varphi(A)(\varphi(B)(S))=\varphi(A) \circ \varphi(B)(S), \varphi(A)$ is an automorphism of the Lie group $T_{n}^{r} G$, and the mapping $A \rightarrow \varphi(A)$ is a homomorphism of L_{n}^{r} into the group aut $T_{n}^{r} G$ of automorphisms of $T_{n}^{r} G$. The mapping $(A, S) \rightarrow \varphi(A)(S)$ is obviously smooth. Thus, (2) defines the exterior semi-direct product

$$
\begin{equation*}
G_{n}^{r}=L_{n}^{r} \times_{s} T_{n}^{r} G \tag{3}
\end{equation*}
$$

Recall that the group operation in G_{n}^{r} is given by

$$
\begin{equation*}
(A, S) \cdot(B, T)=\left(A \cdot B, S \cdot\left(T \circ A^{-1}\right)\right) \tag{4}
\end{equation*}
$$

The Lie group G_{n}^{r} is called the (r, n)-prolongation, or simply the prolongation of G. Note that

$$
\begin{equation*}
e_{G_{n}^{r}}=\left(e_{L_{n}^{r}}, e_{T_{n}^{r} G}\right), \quad(A, S)^{-1}=\left(A^{-1}, S^{-1} \circ A\right) \tag{5}
\end{equation*}
$$

3.6. Prolongations of Lie group actions. Let G be a Lie group, and let Y be a right G-manifold. Let $p \in T_{n}^{r} Y$ and $(A, S) \in G_{n}^{r}$. If $p=J_{0}^{r} \tau$ and $A=J_{0}^{r} \alpha, S=J_{0}^{r} \sigma$, then the representatives of these r-jets define the mapping $x \rightarrow \tau(\alpha(x)) \cdot \sigma(\alpha(x))$, whose r-jet is denoted by $(p \cdot S) \circ A$. We define

$$
\begin{equation*}
p \cdot(A, S)=(p \cdot S) \circ A \tag{1}
\end{equation*}
$$

We claim that the mapping $T_{n}^{r} Y \times G_{n}^{r} \ni(p,(A, S)) \rightarrow p \cdot(A, S) \in T_{n}^{r} Y$ is a right action of G_{n}^{r} on $T_{n}^{r} Y$. Indeed, using (1) and Section 3.5, (4), we get

$$
\begin{align*}
& p \cdot((A, S) \cdot(B, T))=p \cdot\left(A \cdot B, S \cdot\left(T \circ A^{-1}\right)\right) \\
& \quad=((p \cdot S) \circ A) \cdot(B, T)=(p \cdot(A, S)) \cdot(B, T) \tag{2}
\end{align*}
$$

$T_{n}^{r} Y$ is therefore a right G_{n}^{r}-manifold called the r-jet prolongation of the right G manifold Y.

Let G be a Lie group, and let Y be a left G-manifold. Writing $y \cdot g=g^{-1} \cdot y$ we obtain the corresponding right action of G on Y. Prolonging this right action, using formula (1), we obtain a right action of G_{n}^{r} on $T_{n}^{r} Y$. Our aim now will be to determine the corresponding formula for the associated left action of G_{n}^{r} on $T_{n}^{r} Y$.

The inverse of an element $(A, S) \in G_{n}^{r}$ is given by $(A, S)^{-1}=\left(A^{-1}, S^{-1} \circ A\right)$ (Section 3.5, (5)), Thus, $(A, S) \cdot p=p \cdot(A, S)^{-1}=\left(p \cdot\left(S^{-1} \circ A\right)\right) \circ A^{-1}=\left(p \circ A^{-1}\right) \cdot S^{-1}$. Therefore, if $A=J_{0}^{r} \alpha, S=J_{0}^{r} \sigma$, and $p=J_{0}^{r} \tau$, then $(A, S) \cdot p$ is the r-jet of the mapping $x \rightarrow\left(\tau\left(\alpha^{-1}(x)\right) \cdot \sigma(x)^{-1}=\sigma(x) \cdot \tau\left(\alpha^{-1}(x)\right)\right.$ defined by the left action of G on Y. Passing to r-jets we get

$$
\begin{equation*}
(A, S) \cdot p=S \cdot\left(p \circ A^{-1}\right) \tag{3}
\end{equation*}
$$

$T_{n}^{r} Y$ endowed with this left action of G_{n}^{r} is called the r-jet prolongation of the left G-manifold Y.
3.7. Prolongations of principal bundles. Now we investigate the structure of the r-jet prolongation $J^{r} Y$ of a fibration Y, endowed with the structure of a principal G bundle. We know that $J^{r} Y$ is a fibration with base X, and with fiber $T_{n}^{r} G$. As usual, we denote by π^{r} the canonical projection of $J^{r} Y$ onto X.

Our first aim in this section is to determine trivializations and the corresponding transition functions of $J^{r} Y$ (Section 3.4).

Assume that we have two charts on $X,(U, \varphi)$ and (V, ψ), such that $U \cap V \neq \emptyset$, and Y is trivializable over U and V. Let $\Phi: \pi^{-1}(U) \rightarrow U \times G$ and $\Psi: V \rightarrow V \times G$ be G-equivariant trivializations. Φ and Ψ define smooth mappings $\tilde{\Phi}: \pi^{-1}(U) \rightarrow G$ and $\tilde{\Psi}: \pi^{-1}(V) \rightarrow G$ by

$$
\begin{equation*}
\Phi(y)=(\pi(y), \tilde{\Phi}(y)), \quad \Psi(y)=(\pi(y), \tilde{\Psi}(y)) \tag{1}
\end{equation*}
$$

The transition function $\chi: U \cap V \rightarrow G$ is defined by

$$
\begin{equation*}
\tilde{\Psi}(y)=\chi(x) \cdot \tilde{\Phi}(y) \tag{2}
\end{equation*}
$$

where $x=\pi(y)$.
The associated trivializations $\Phi_{\varphi}^{r}:\left(\pi^{r}\right)^{-1}(U) \rightarrow U \times T_{n}^{r} G, \Psi_{\psi}^{r}:\left(\pi^{r}\right)^{-1}(V) \rightarrow$ $V \times T_{n}^{r} G$ of $J^{r} Y$ are expressed by

$$
\begin{equation*}
\Phi_{\varphi}^{r}\left(J_{x}^{r} \gamma\right)=\left(x, \tilde{\Phi}_{\varphi}^{r}\left(J_{x}^{r} \gamma\right)\right), \quad \Psi_{\psi}^{r}\left(J_{x}^{r} \gamma\right)=\left(x, \tilde{\Psi}_{\psi}^{r}\left(J_{x}^{r} \gamma\right)\right), \tag{3}
\end{equation*}
$$

where

$$
\begin{equation*}
\tilde{\Phi}_{\varphi}^{r}\left(J_{x}^{r} \gamma\right)=J_{0}^{r}\left(\tilde{\Phi} \gamma \varphi^{-1} \circ \operatorname{tr}_{-\varphi(x)}\right), \quad \tilde{\Psi}_{\psi}^{r}\left(J_{x}^{r} \gamma\right)=J_{0}^{r}\left(\tilde{\Psi} \gamma \psi^{-1} \circ \operatorname{tr}_{-\psi(x)}\right) \tag{4}
\end{equation*}
$$

(see also Section 3.4 (2)). We have the following result.
Lemma 5. The transition function between the trivializations $\tilde{\Phi}_{\varphi}^{r}$ and $\tilde{\Psi}_{\psi}^{r}$ is defined by

$$
\begin{equation*}
\tilde{\Psi}_{\psi}^{r}\left(J_{x}^{r} \gamma\right)=(A, S) \cdot \tilde{\Phi}_{\varphi}^{r}\left(J_{x}^{r} \gamma\right) \tag{5}
\end{equation*}
$$

where $(A, S) \in G_{n}^{r}$,

$$
\begin{equation*}
A=J_{0}^{r}\left(\operatorname{tr}_{\psi(x)} \circ \psi \varphi^{-1} \circ \operatorname{tr}_{-\varphi(x)}\right), \quad S=J_{0}^{r}\left(\chi \psi^{-1} \circ \operatorname{tr}_{-\psi(x)}\right) \tag{6}
\end{equation*}
$$

Proof. Writing $T=J_{0}^{r}\left(\tilde{\Phi} \gamma \varphi^{-1} \circ \operatorname{tr}_{-\varphi(x)}\right)$ and $U=J_{0}^{r}\left(\tilde{\Psi} \gamma \psi^{-1} \circ \operatorname{tr}_{-\psi(x)}\right)$, we have to show that $R=(A, S) \cdot T=S \cdot\left(T \circ A^{-1}\right)$. But

$$
\begin{align*}
& T \circ A^{-1}=J_{0}^{r}\left(\tilde{\Phi} \gamma \varphi^{-1} \circ \operatorname{tr}_{-\varphi(x)}\right) \circ J_{0}^{r}\left(\operatorname{tr}_{\varphi(x)} \circ \varphi \psi^{-1} \circ \operatorname{tr}_{-\psi(x)}\right) \tag{7}\\
& \quad=J_{0}^{r}\left(\tilde{\Phi} \gamma \psi^{-1} \circ \operatorname{tr}_{-\psi(x)}\right),
\end{align*}
$$

hence

$$
\begin{align*}
S & \left(T \circ A^{-1}\right)=J_{0}^{r}\left(\chi \psi^{-1} \circ \operatorname{tr}_{-\psi(x)}\right) \cdot J_{0}^{r}\left(\tilde{\Phi} \gamma \psi^{-1} \circ \operatorname{tr}_{-\psi(x)}\right) \\
& =J_{0}^{r}\left(\left(\chi \psi^{-1} \circ \operatorname{tr}_{-\psi(x)}\right) \cdot\left(\tilde{\Phi} \gamma \psi^{-1} \circ \operatorname{tr}_{-\psi(x)}\right)\right) \tag{8}\\
& =J_{0}^{r}\left((\chi \cdot \tilde{\Phi} \gamma) \circ \psi^{-1} \circ \operatorname{tr}_{-\psi(x)}\right)=J_{0}^{r}\left(\tilde{\Psi} \gamma \psi^{-1} \circ \operatorname{tr}_{-\psi(x)}\right)=R
\end{align*}
$$

as required.
Remark 7. Formula (5) defines the transition function with values in the group $G_{n}^{r}=L_{n}^{r} \times T_{n}^{r} G$,

$$
\begin{equation*}
\chi^{r}: U \cap V \ni x \rightarrow\left(J_{0}^{r}\left(\operatorname{tr}_{\psi(x)} \circ \psi \varphi^{-1} \circ \operatorname{tr}_{-\varphi(x)}\right), J_{0}^{r}\left(\chi \psi^{-1} \circ \operatorname{tr}_{-\psi(x)}\right)\right) \in G_{n}^{r} \tag{9}
\end{equation*}
$$

The structure of (5) coincides with the prolongation of the left translation on the structure group G of Y (Section 3.6, (3)).

Consider the bundle of r-frames $F^{r} X$, and the fiber product

$$
\begin{equation*}
W^{r} Y=F^{r} X \oplus J^{r} Y \tag{10}
\end{equation*}
$$

$W^{r} Y$ is a fibration over X with fiber G_{n}^{r}. The transition functions are easily determined by means of Lemma 5, (5). If $\left(J_{0}^{r} \mu, J_{x}^{r} \gamma\right) \in W^{r} Y$, then $\mu(0)=x$, and if (U, φ) is a chart at x such that Y is trivializable over U, then we have a trivialization

$$
\begin{align*}
& \left(J_{0}^{r} \mu, J_{x}^{r} \gamma\right) \rightarrow\left(x,\left(\tilde{\varphi}^{r}\left(J_{0}^{r} \mu\right), \tilde{\Phi}_{\varphi}^{r}\left(J_{x}^{r} \gamma\right)\right)\right) \\
& \quad=\left(x,\left(J_{0}^{r}\left(\operatorname{tr}_{\varphi(x)} \varphi \mu\right), J_{0}^{r}\left(\tilde{\Phi}^{\prime} \gamma \varphi^{-1} \circ \operatorname{tr}_{-\varphi(x)}\right)\right)\right) \tag{11}
\end{align*}
$$

where the same notation as in (1) is applied to $F^{r} X$. (11) is said to be associated with (Φ, φ). The corresponding transition function is expressed by the equations

$$
\begin{equation*}
\tilde{\psi}^{r}\left(J_{0}^{r} \mu\right)=A \cdot \tilde{\varphi}^{r}\left(J_{0}^{r} \mu\right), \quad \tilde{\Psi}_{\varphi}^{r}\left(J_{x}^{r} \gamma\right)=S \cdot\left(\tilde{\Phi}_{\varphi}^{r}\left(J_{x}^{r} \gamma\right) \circ A^{-1}\right) . \tag{12}
\end{equation*}
$$

(see (5)). Note that (12) corresponds with the left translation on the group G_{n}^{r} (Section 3.5, (4)).

Lemma 6. If Y is a right principal G bundle, then there exists a unique structure of a right principal G_{n}^{r}-bundle on $W^{r} Y$ such that all induced trivializations are G_{n}^{r} equivariant.

Proof. Only existence needs proof. If $(p, Z) \in W^{r} Y,(A, S) \in G_{n}^{r}$, we define

$$
\begin{equation*}
(p, Z) \cdot(A, S)=\left(p \cdot A, Z \cdot\left(S \circ p^{-1}\right)\right) \tag{13}
\end{equation*}
$$

It is directly verified that (13) is a right action of G_{n}^{r} on $W^{r} Y$. Indeed, if $(B, T) \in G_{n}^{r}$ is another element, we have, using the group operation in G_{n}^{r} (Section 3.5, (4)),

$$
\begin{align*}
& (p, Z) \cdot((A, S) \cdot(B, T))=(p, Z) \cdot\left(A \cdot B, S \cdot\left(T \circ A^{-1}\right)\right) \tag{14}\\
& \quad=\left(p \cdot A \cdot B, Z \cdot\left(\left(S \circ p^{-1}\right) \cdot\left(T \circ A^{-1}\right) \circ p^{-1}\right)\right) .
\end{align*}
$$

Thus,

$$
\begin{align*}
& ((p, Z) \cdot(A, S)) \cdot(B, T)=\left(p \cdot A, Z \cdot\left(S \circ p^{-1}\right)\right) \cdot(B, T) \\
& \quad=\left(p \cdot A \cdot B,\left(Z \cdot\left(S \circ p^{-1}\right)\right) \cdot T \circ(p \cdot A)^{-1}\right) \tag{15}\\
& \quad=(p, Z) \cdot((A, S) \cdot(B, T)) .
\end{align*}
$$

Let X be the base, and let π be the projection of Y. Assume that we have a chart (U, φ) on X, and a trivialization $\Phi: \pi^{-1}(U) \rightarrow U \times G$, and consider the associated trivialization (11) of $W^{r} Y$. This trivialization sends $(p, Z)=\left(J_{0}^{r} \mu, J_{x}^{r} \gamma\right)$ to $\left(x,\left(J_{0}^{r} \operatorname{tr}_{\varphi(x)} \varphi \mu, J_{0}^{r}\left(\tilde{\Phi} \gamma \varphi^{-1} \circ \operatorname{tr}_{-\varphi(x)}\right)\right)\right)$, and the element

$$
\begin{align*}
& (p, Z) \cdot(A, S)=\left(J_{0}^{r} \mu, J_{x}^{r} \gamma\right) \cdot\left(J_{0}^{r} \alpha, J_{0}^{r} \sigma\right)=\left(p \cdot A, Z \cdot\left(S \circ p^{-1}\right)\right) \tag{16}\\
& \quad=\left(J_{0}^{r} \mu \alpha, J_{x}^{r}\left(\gamma \cdot\left(\sigma \mu^{-1}\right)\right)\right.
\end{align*}
$$

is sent to

$$
\begin{equation*}
\left(x,\left(J_{0}^{r} \operatorname{tr}_{\varphi(x)} \varphi \mu \alpha, J_{0}^{r}\left(\tilde{\Phi} \circ\left(\gamma \cdot\left(\sigma \mu^{-1}\right)\right) \circ \varphi^{-1} \circ \operatorname{tr}_{-\varphi(x)}\right)\right)\right) . \tag{17}
\end{equation*}
$$

The first component yields

$$
\begin{equation*}
J_{0}^{r} \operatorname{tr}_{\varphi(x)} \varphi \mu \alpha=J_{0}^{r} \operatorname{tr}_{\varphi(x)} \varphi \mu \circ J_{0}^{r} \alpha=J_{0}^{r} \operatorname{tr}_{\varphi(x)} \varphi \mu \circ A . \tag{18}
\end{equation*}
$$

Consider the second component. We have at a point t, because $\tilde{\Phi}$ is G-equivariant,

$$
\begin{align*}
\tilde{\Phi} & \circ\left(\gamma \cdot\left(\sigma \mu^{-1}\right)\right) \circ \varphi^{-1} \circ \operatorname{tr}_{-\varphi(x)}(t) \\
& =\tilde{\Phi}\left(\left(\gamma \varphi^{-1} \operatorname{tr}_{-\varphi(x)}\right)(t) \cdot\left(\sigma \mu^{-1} \varphi^{-1} \operatorname{tr}_{-\varphi(x)}\right)(t)\right) \tag{19}\\
& =\tilde{\Phi}\left(\gamma \varphi^{-1} \operatorname{tr}_{-\varphi(x)}(t)\right) \cdot\left(\sigma \mu^{-1} \varphi^{-1} \operatorname{tr}_{-\varphi(x)}\right)(t)
\end{align*}
$$

Consequently,

$$
\begin{align*}
J_{0}^{r} & \left(\tilde{\Phi} \circ\left(\gamma \cdot\left(\sigma \mu^{-1}\right)\right) \circ \varphi^{-1} \circ \operatorname{tr}_{-\varphi(x)}\right) \\
& =J_{0}^{r} \tilde{\Phi}\left(\left(\gamma \varphi^{-1} \operatorname{tr}_{-\varphi(x)}\right) \cdot\left(\sigma \mu^{-1} \varphi^{-1} \operatorname{tr}_{-\varphi(x)}\right)\right) \\
& =J_{0}^{r} \tilde{\Phi} \gamma \varphi^{-1} \operatorname{tr}_{-\varphi(x)} \cdot\left(J_{0}^{r} \sigma \circ J_{0}^{r}\left(\mu^{-1} \varphi^{-1} \operatorname{tr}_{-\varphi(x)}\right)\right) \tag{20}\\
& =J_{0}^{r} \tilde{\Phi} \gamma \varphi^{-1} \operatorname{tr}_{-\varphi(x)} \cdot\left(S \circ J_{0}^{r}\left(\mu^{-1} \varphi^{-1} \operatorname{tr}_{-\varphi(x)}\right)\right) .
\end{align*}
$$

Altogether, (18) is expressed, with the help of the group operation in $G r_{n}^{r}$, by

$$
\begin{align*}
& (x, \\
& \left.\quad\left(J_{0}^{r} \operatorname{tr}_{\varphi(x)} \varphi \mu \alpha, J_{0}^{r}\left(\tilde{\Phi} \circ\left(\gamma \cdot\left(\sigma \mu^{-1}\right)\right) \circ \varphi^{-1} \circ \operatorname{tr}_{-\varphi(x)}\right)\right)\right) \tag{21}\\
& \quad=\left(x,\left(J_{0}^{r} \operatorname{tr}_{\varphi(x)} \varphi \mu \circ A, J_{0}^{r} \tilde{\Phi} \gamma \varphi^{-1} \operatorname{tr}_{-\varphi(x)} \cdot\left(S \circ J_{0}^{r}\left(\mu^{-1} \varphi^{-1} \operatorname{tr}_{-\varphi(x)}\right)\right)\right)\right) \\
& \quad=\left(x,\left(J_{0}^{r} \operatorname{tr}_{\varphi(x)} \varphi \mu, J_{0}^{r}\left(\tilde{\Phi} \gamma \varphi^{-1} \operatorname{tr}_{-\varphi(x)}\right)\right) \cdot(A, S)\right) .
\end{align*}
$$

Thus, the associated trivialization is G_{n}^{r}-equivariant with respect to the group action (13).
$W^{r} Y$ is called the r-th principal prolongation of the principal G-bundle Y.
3.8. Principal prolongations of frame bundles. Consider the bundle of s-frames $F^{s} X$ over an n-dimensional manifold X (Section 2.4). The principal prolongation $W^{r} F^{s} X$ (10) is a right principal $\left(L_{n}^{s}\right)_{n}^{r}$-bundle, where $\left(L_{n}^{s}\right)_{n}^{r}=L_{n}^{r} \times_{s} T_{n}^{r} L_{n}^{s}$ is the r the principal prolongation of L_{n}^{s}. We show that $W^{r} F^{s} X=F^{s} X \oplus J^{r} F^{s} X$ is reducible to the bundle of frames $F^{r+s} X$.

Let r, and s be positive integers, and consider an $(r+s)$-jet $A \in L_{n}^{r+s}, A=J_{0}^{r+s} \alpha$. The representative $\alpha: U \rightarrow \mathbf{R}^{n}$ of A defines the morphism

$$
\begin{equation*}
U_{x} \ni t \rightarrow \alpha_{x}(t)=\left(\operatorname{tr}_{x} \circ \alpha \circ \operatorname{tr}_{-\alpha^{-1}(x)}\right)(t) \in \mathbf{R}^{n} \tag{1}
\end{equation*}
$$

where U_{x} is a neighborhood of the origin $0 \in \mathbf{R}^{n}$. Obviously, $\alpha_{x}(0)=0$, which implies that for every $x \in U$,

$$
\begin{equation*}
\alpha^{(s)}(x)=J_{0}^{s} \alpha_{x}, \tag{2}
\end{equation*}
$$

is an element of the differential group L_{n}^{s}. Thus, formulas (1) and (2) define a mapping $U \ni x \rightarrow \alpha^{(s)}(x) \in L_{n}^{s}$. By the chain rule,

$$
\begin{align*}
& D \alpha_{x}(t)=D \operatorname{tr}_{x}\left(\left(\alpha \circ \operatorname{tr}_{-\alpha^{-1}(x)}\right)(t)\right) \circ D \alpha\left(\left(\operatorname{tr}_{-\alpha^{-1}(x)}\right)(t)\right) \circ D \operatorname{tr}_{\alpha^{-1}(x)}(t) \\
& \quad=\left(D \alpha \circ \operatorname{tr}_{-\alpha^{-1}(x)}\right)(t) \\
& D^{2} \alpha_{x}(t)=D^{2} \alpha\left(\left(\operatorname{tr}_{-\alpha^{-1}(x)}(t)\right) \circ D \operatorname{tr}_{-\alpha^{-1}(x)}(t)=\left(D^{2} \alpha \circ \operatorname{tr}_{-\alpha^{-1}(x)}\right)(t),\right. \tag{3}
\end{align*}
$$

$$
\begin{aligned}
& D^{s} \alpha_{x}(t)=D\left(D^{s-1} \alpha \circ \operatorname{tr}_{-\alpha^{-1}(x)}\right)(t)=D^{s} \alpha\left(\left(\operatorname{tr}_{-\alpha^{-1}(x)}(t)\right) \circ D \operatorname{tr}_{-\alpha^{-1}(x)}(t)\right. \\
& \quad=\left(D^{s} \alpha \circ \operatorname{tr}_{-\alpha^{-1}(x)}\right)(t)
\end{aligned}
$$

hence

$$
\begin{align*}
& D \alpha_{x}(0)=D \alpha\left(\alpha^{-1}(x)\right), D \alpha_{x}(0)=D^{2} \alpha\left(\alpha^{-1}(x)\right), \ldots \tag{4}\\
& \quad D^{s} \alpha_{x}(t)=D^{s} \alpha\left(\alpha^{-1}(x)\right)
\end{align*}
$$

Thus, we get a smooth mapping $U \ni x \rightarrow \alpha^{(s)}(x) \in L_{n}^{s}$, whose coordinate expression is determined by (4).

Analogously, let $p \in F^{r+s} X, J_{0}^{r+s} \mu \in F^{r+s} X$. The representative μ of p defines the morphism

$$
\begin{equation*}
U_{x} \ni t \rightarrow \mu_{x}(t)=\left(\mu \circ \operatorname{tr}_{-\mu^{-1}(x)}\right)(t)=\mu\left(t+\mu^{-1}(x)\right) \in \mathbf{R}^{n}, \tag{5}
\end{equation*}
$$

where U_{x} is a neighborhood of the origin $0 \in \mathbf{R}^{n}$. Obviously, $\mu_{x}(0)=x$, which implies that for every $x \in U$,

$$
\begin{equation*}
\mu^{(s)}(x)=J_{0}^{s} \mu_{x} . \tag{6}
\end{equation*}
$$

is an s-frame at $x \in X$. Thus, (5) and (6) define a mapping $U \ni x \rightarrow \mu^{(s)}(x) \in F^{s} X$.
Theorem 4. Let X be an n-dimensional manifold.
(a) The mapping

$$
\begin{equation*}
L_{n}^{r+s} \ni J_{0}^{r+s} \alpha \rightarrow \nu\left(J_{0}^{r+s} \alpha\right)=\left(J_{0}^{r} \alpha, J_{0}^{r} \alpha^{(s)}\right) \in\left(L_{n}^{s}\right)_{n}^{r} \tag{7}
\end{equation*}
$$

is a morphism of Lie groups, and an injective immersion. The set $v\left(L_{n}^{r+s}\right)$ is closed in $\left(L_{n}^{s}\right)_{n}^{r}$.
(b) The mapping

$$
\begin{equation*}
F^{r+s} X \ni J_{0}^{r+s} \mu \rightarrow \nu_{X}\left(J_{0}^{r+s} \mu\right)=\left(J_{0}^{r} \mu, J_{\mu(0)}^{r} \mu^{(s)}\right) \in W^{r} F^{s} X \tag{8}
\end{equation*}
$$

is a ν-morphism of principal bundles, and an injective immersion.
Proof. (a) If $J_{0}^{r+s} \alpha, J_{0}^{r+s} \beta \in L_{n}^{r+s}$, then

$$
\begin{equation*}
v\left(J_{0}^{r+s} \alpha \circ J_{0}^{r+s} \beta\right)=v\left(J_{0}^{r+s} \alpha \beta\right)=\left(J_{0}^{r} \alpha \beta, J_{0}^{r}(\alpha \beta)^{(s)}\right) . \tag{9}
\end{equation*}
$$

But

$$
\begin{align*}
& (\alpha \beta)^{(s)}(x)=J_{0}^{s}(\alpha \beta)_{x}=J_{0}^{s}\left(\operatorname{tr}_{x} \circ \alpha \beta \circ \operatorname{tr}_{-(\alpha \beta)^{-1}(x)}\right) \\
& \left.\quad=J_{0}^{s}\left(\operatorname{tr}_{x} \circ \alpha \circ \operatorname{tr}_{-\alpha^{-1}(x)}\right)\right) \circ J_{0}^{s}\left(\operatorname{tr}_{\alpha^{-1}(x)} \beta \circ \operatorname{tr}_{-\beta^{-1}\left(\alpha^{-1}(x)\right)}\right) \tag{10}\\
& \quad=J_{0}^{s} \alpha_{x} \circ J_{0}^{s} \beta_{\alpha^{-1}(x)}=\alpha^{(s)}(x) \circ \beta^{(s)}\left(\alpha^{-1}(x)\right) .
\end{align*}
$$

thus

$$
\begin{equation*}
\nu\left(J_{0}^{r+s} \alpha \circ J_{0}^{r+s} \beta\right)=\left(J_{0}^{r} \alpha \beta, J_{0}^{r} \alpha^{(s)} \circ J_{0}^{r}\left(\beta^{(s)} \circ \alpha^{-1}\right)\right) . \tag{11}
\end{equation*}
$$

On the other hand, setting $(A, S)=\left(J_{0}^{r} \alpha, J_{0}^{r} \alpha^{(s)}\right),(B, T)=\left(J_{0}^{r} \beta, J_{0}^{r} \beta^{(s)}\right)$, and multiplying these elements in $\left(L_{n}^{s}\right)_{n}^{r}$, we get

$$
\begin{align*}
& (A, S) \cdot(B, T)=\left(A \cdot B, S \cdot\left(T \circ A^{-1}\right)\right) \tag{12}\\
& \quad=\left(J_{0}^{r} \alpha \beta, J_{0}^{r} \alpha^{(s)} \circ\left(J_{0}^{r} \beta^{(s)} \circ J_{0}^{r} \alpha^{-1}\right)\right) .
\end{align*}
$$

Since (11) and (12) coincide, we see that v is a group morphism. Since v is smooth, it is a morphism of Lie groups.

We find the chart expression of v in the canonical coordinates. To this purpose we use the second canonical coordinates $b_{j_{1} j_{2} \cdots j_{k}}^{i}$ on L_{n}^{r+s} (Section 2.1, Remark 1), and the
second canonical coordinates $b_{j_{1} j_{2} \cdots j_{k}, p_{1} p_{2} \cdots p_{l}}^{i}$ on $\left(L_{n}^{s}\right)_{n}^{r}$ defined as follows. Recall that if $A \in L_{n}^{r+s}, A=J_{0}^{r+s} \alpha$, we have

$$
\begin{equation*}
b_{j_{1} j_{2} \cdots j_{k}}^{i}(A)=a_{j_{1} j_{2} \cdots j_{k}}^{i}\left(A^{-1}\right)=D_{j_{1}} D_{j_{2}} \cdots D_{j_{k}}\left(\alpha^{-1}\right)^{i}(0), \tag{13}
\end{equation*}
$$

where $a_{j_{1} j_{2} \cdots j_{k}}^{i}$ are the first canonical coordinates on L_{n}^{r+s}, and in components, $\alpha^{-1}=\left(\left(\alpha^{-1}\right),\left(\alpha^{-1}\right)^{2}, \ldots,\left(\alpha^{-1}\right)^{n}\right)$. If $S \in\left(L_{n}^{s}\right)_{n}^{r}, S=J_{n}^{r} \eta$, we set

$$
\begin{align*}
& b_{j_{1} j_{2} \cdots j_{k}, p_{1} p_{2} \cdots p_{l}}^{i}(S)=D_{p_{1}} D_{p_{2}} \cdots D_{p_{k}}\left(b_{j_{1} j_{2} \cdots j_{k}}^{i} \circ \eta\right)(0), \tag{14}\\
& \quad 1 \leq k \leq s, 0 \leq l \leq r .
\end{align*}
$$

Then by definition, for every $A \in L_{n}^{r+s}, A=J_{0}^{r+s} \alpha$

$$
\begin{align*}
& b_{j_{1} j_{2} \cdots j_{k}, p_{1} p_{2} \cdots p_{l}}(v(A))=D_{p_{1}} D_{p_{2}} \cdots D_{p_{k}}\left(J_{0}^{r} \alpha^{(s)}\right) \\
& \quad=D_{p_{1}} D_{p_{2}} \cdots D_{p_{k}}\left(b_{j_{1} j_{2} \cdots j_{k}}^{i} \circ \alpha^{(s)}\right)(0) \tag{15}
\end{align*}
$$

where

$$
\begin{equation*}
\alpha^{(s)}(x)=J_{0}^{s} \alpha_{x}, \quad \alpha_{x}=\operatorname{tr}_{x} \alpha \operatorname{tr}_{-\alpha^{-1}(x)} . \tag{16}
\end{equation*}
$$

Thus,

$$
\begin{equation*}
\left(b_{j_{1} j_{2} \cdots j_{k}}^{i} \circ \alpha^{(s)}\right)(x)=b_{j_{1} j_{2} \cdots j_{k}}^{i}\left(J_{0}^{s} \alpha_{x}\right)=a_{j_{1} j_{2} \cdots j_{k}}^{i}\left(J_{0}^{s} \alpha_{x}^{-1}\right) . \tag{17}
\end{equation*}
$$

$\underset{\left(J^{s} \alpha_{x}^{-1}\right)}{ }=\operatorname{tr}_{\alpha^{-1}(x)} \alpha^{-1} \operatorname{tr}_{-x}$, so we have, computing the canonical coordinates $a_{j_{1} j_{2} \cdots j_{k}}^{i}$ $\left(J_{0}^{s} \alpha_{x}^{-1}\right)$,

$$
\begin{align*}
& D_{j_{1}}\left(\alpha_{x}^{-1}\right)^{i}(t) \\
& \quad=D_{p}\left(\operatorname{tr}_{\alpha^{-1}(x)}\right)^{i}\left(\alpha^{-1} \operatorname{tr}_{-x}(t)\right) D_{q}\left(\alpha^{-1}\right)^{p}\left(\operatorname{tr}_{-x}(t)\right) D_{j_{1}}\left(\operatorname{tr}_{-x}\right)^{q}(t) \\
& \quad=\delta_{p}^{i} D_{q}\left(\alpha^{-1}\right)^{p}\left(\operatorname{tr}_{-x}(t)\right) \delta_{j_{1}}^{q}=\left(D_{j_{1}}\left(\alpha^{-1}\right)^{i} \circ \operatorname{tr}_{-x}\right)(t), \\
& D_{j_{1}} D_{j_{2}} \alpha_{x}^{-1}(t)=D_{p} D_{j_{1}}\left(\alpha^{-1}\left(\operatorname{tr}_{-x}(t)\right) D_{j_{2}}\left(\operatorname{tr}_{-x}\right)^{p}(t)\right. \tag{18}\\
& \quad=\left(D_{j_{1}} D_{j_{2}}\left(\alpha^{-1}\right)^{i} \circ \operatorname{tr}_{-x}\right)(t) \\
& \ldots \\
& D_{j_{1}} D_{j_{2}} \cdots D_{j_{s}} \alpha_{x}^{-1}(t)=D_{p} D_{j_{1}} D_{j_{2}}\left(\alpha^{-1}\right)^{i}\left(\operatorname{tr}_{-x}(t)\right) D_{j_{s}}\left(\operatorname{tr}_{-x}\right)^{p}(t) \\
& \quad=\left(D_{j_{1}} D_{j_{2}} \cdots D_{j_{s}}\left(\alpha^{-1}\right)^{i} \circ \operatorname{tr}_{-x}\right)(t) .
\end{align*}
$$

Setting $t=0$, we obtain

$$
\begin{align*}
& \left(b_{j_{1} j_{2} \cdots j_{k}}^{i} \circ \alpha^{(s)}\right)(x)=\left(D_{j_{1}} D_{j_{2}} \cdots D_{j_{k}}\left(\alpha^{-1}\right)^{i} \circ \operatorname{tr}_{-x}\right)(0) \tag{19}\\
& \quad=D_{j_{1}} D_{j_{2}} \cdots D_{j_{k}}\left(\alpha^{-1}\right)^{i}(x)
\end{align*}
$$

Now we are in a position to determine (15). We have

$$
\begin{align*}
& \left(b_{j_{1} j_{2} \cdots j_{k}, p_{1} p_{2} \cdots p_{l}}^{i} \circ v\right)(A)=D_{p_{1}} D_{p_{2}} \cdots D_{p_{k}}\left(b_{j_{1} j_{2} \cdots j_{k}}^{i} \circ \alpha^{(s)}\right)(0) \tag{20}\\
& \quad=D_{p_{1}} D_{p_{2}} \cdots D_{p_{k}} D_{j_{1}} D_{j_{2}} \cdots D_{j_{k}}\left(\alpha^{-1}\right)^{i}(0)=b_{j_{1} j_{2} \cdots j_{k}, p_{1} p_{2} \cdots p_{l}}^{i}(A) .
\end{align*}
$$

This is the desired chart expression for v.
Now it is trivial to conclude that v is an injective immersion, and $v\left(L_{n}^{r+s}\right)$ is a closed subset of $T_{n}^{r} L_{n}^{s}$. Replace the canonical coordinates on $T_{n}^{r} L_{n}^{s}$ by new coordinates
$s_{j_{1} j_{2} \cdots j_{k}, p_{1} p_{2} \cdots p_{l}}^{i}, t_{j_{1} j_{2} \cdots j_{k}, p_{1} p_{2} \cdots p_{l}}^{i}$ where $s_{j_{1} j_{2} \cdots j_{k}, p_{1} p_{2} \cdots p_{l}}^{i}$ are defined by symmetrization of $b_{j_{1} j_{2} \cdots j_{k}, p_{1} p_{2} \cdots p_{l}}^{i}$ in the subscripts, and $t_{j_{1} j_{2} \cdots j_{k}, p_{1} p_{2} \cdots p_{l}}^{i}$ are defined by

$$
\begin{equation*}
b_{j_{1} j_{2} \cdots j_{k}, p_{1} p_{2} \cdots p_{l}}^{i}=s_{j_{1} j_{2} \cdots j_{k}, p_{1} p_{2} \cdots p_{l}}^{i}+t_{j_{1} j_{2} \cdots j_{k}, p_{1} p_{2} \cdots p_{l}}^{i} . \tag{21}
\end{equation*}
$$

Then (20) is equivalent with the equations

$$
\begin{equation*}
s_{j_{1} j_{2} \cdots j_{k}, p_{1} p_{2} \cdots p_{l}}^{i} \circ v=b_{j_{1} j_{2} \cdots j_{k}, p_{1} p_{2} \cdots p_{l}}^{i}, t_{j_{1} j_{2} \cdots j_{k}, p_{1} p_{2} \cdots p_{l}}^{i} \circ v=0, \tag{22}
\end{equation*}
$$

and the set $v\left(L_{n}^{r+s}\right) \subset T_{n}^{r} L_{n}^{s}$ is expressed by the equations

$$
\begin{equation*}
t_{j_{1} j_{2} \cdots j_{k}, p_{1} p_{2} \cdots p_{l}}=0, \tag{23}
\end{equation*}
$$

so is obviously closed.
(b) If $J_{0}^{r+s} \mu \in F_{n}^{r+s} X$, and $J_{0}^{r+s} \alpha \in L_{n}^{r+s}$, we have

$$
\begin{align*}
& v_{X}\left(J_{0}^{r+s} \mu \cdot J_{0}^{r+s} \alpha\right)=\left(J_{0}^{r}(\mu \circ \alpha), J_{(\mu \circ \alpha)(0)}^{r}(\mu \circ \alpha)^{(s)}\right) \tag{24}\\
& \quad=\left(J_{0}^{r} \mu \circ J_{0}^{r} \alpha, J_{\mu(0)}^{r}(\mu \circ \alpha)^{(s)}\right) .
\end{align*}
$$

But by (6) and (5), $(\mu \circ \alpha)^{(s)}(x)=J_{0}^{s}(\mu \circ \alpha)_{x}$ and

$$
\begin{align*}
& (\mu \circ \alpha)_{x}=\mu \circ \alpha \circ \operatorname{tr}_{-(\mu \circ \alpha)^{-1}(x)} \tag{25}\\
& \quad=\mu \circ \operatorname{tr}_{-\mu^{-1}(x)} \circ \operatorname{tr}_{\mu^{-1}(x)} \alpha \operatorname{tr}_{-\alpha^{-1}\left(\mu^{-1}(x)\right)}=\mu_{x} \circ \alpha_{\mu^{-1}(x)},
\end{align*}
$$

so that

$$
\begin{align*}
& (\mu \circ \alpha)^{(s)}(x)=J_{0}^{r}\left(\mu_{x} \circ \alpha_{\mu^{-1}(x)}\right)=J_{0}^{r} \mu_{x} \circ J_{0}^{r} \alpha_{\mu^{-1}(x)} \tag{26}\\
& \quad=\mu(s)(x) \cdot \alpha^{(s)}\left(\mu^{-1}(x)\right),
\end{align*}
$$

where the dot is used for the group operation in L_{n}^{s} (in fact, this is the composition of jets). Thus, passing to r-jets, we get

$$
\begin{align*}
& J_{\mu(0)}^{r}(\mu \circ \alpha)^{(s)}=J_{\mu(0)}^{r}\left(\mu^{(s)} \cdot\left(\alpha^{(s)} \circ \mu^{-1}\right)\right) \tag{27}\\
& \quad=J_{\mu(0)}^{r} \mu^{(s)} \cdot J_{\mu(0)}^{r}\left(\alpha^{(s)} \circ \mu^{-1}\right)=J_{\mu(0)}^{r} \mu^{(s)} \cdot\left(J_{0}^{r} \alpha^{(s)} \circ J_{\mu(0)}^{r} \mu^{-1}\right)
\end{align*}
$$

To summarize, denote $A=J_{0}^{r+s} \alpha, p=J_{0}^{r+s} \mu$. Then, $\nu(A)=\left(J_{0}^{r} \alpha, J_{0}^{r} \alpha^{(s)}\right)$, and, $\nu_{X}(p)=\left(J_{0}^{r} \mu, J_{\mu(0)}^{r} \mu^{(s)}\right)$. We have

$$
\begin{equation*}
\nu_{X}(p \cdot A)=\left(J_{0}^{r} \mu \circ J_{0}^{r} \alpha, J_{\mu(0)}^{r} \mu^{(s)} \cdot\left(J_{0}^{r} \alpha(s) \circ J_{\mu(0)}^{r} \mu^{-1}\right)\right) \tag{28}
\end{equation*}
$$

On the other hand,

$$
\begin{align*}
& v_{X}(p) \cdot v(A)=\left(J_{0}^{r} \mu, J_{\mu(0)}^{r} \mu^{(s)}\right) \cdot\left(J_{0}^{r} \alpha, J_{0}^{r} \alpha^{(s)}\right) \tag{29}\\
& \quad=\left(J_{0}^{r} \mu \cdot J_{0}^{r} \alpha, J_{\mu(0)}^{r} \mu^{(s)} \cdot\left(J_{0}^{r} \alpha^{(s)} \circ J_{\mu(0)}^{r} \mu^{-1}\right)\right)=v_{X}(p \cdot A)
\end{align*}
$$

which proves (b).
Corollary 1. L_{n}^{r+s} is a Lie subgroup of $\left(L_{n}^{s}\right)_{n}^{r}$.
3.9. Prolongations of associated bundles. Now we study the structure of r-jet prolongations of associated fiber bundles. To this purpose we construct a frame mapping for the prolonged fiber bundles by means of a frame mapping on the initial fiber bundles.

Theorem 5. If Y_{Q} is a fiber bundle with fiber Q, associated with a principal G bundle Y, then the r-prolongation $J^{r} Y_{Q}$ has the structure of a fiber bundle with fiber $T_{n}^{r} Q$, associated to the principal G_{n}^{r}-bundle $W^{r} Y$.

Proof. Assume that we have a frame mapping $\rho: Y \times Q \rightarrow Y_{Q}$. We want to construct a frame mapping $\rho^{r}: W^{r} Y \times T_{n}^{n} Q \rightarrow J^{r} Y_{Q}$.

Let X be the base of Y_{G}, and let $x_{0} \in X$ be a point. Let $(p, Z) \in W^{r} Y, p=J_{0}^{r} \mu$, $Z=J_{x_{0} r}^{r} \gamma$ and $q \in T_{n}^{n} Q, q=J_{0}^{r} \zeta$. Since $W^{r} Y=F^{r} X \oplus J^{r} Y$, we have $\mu(0)=$ x_{0}. Let U be a neighborhood of x_{0}. Assume that U is chosen in such a way that the representatives $\mu: \mu^{1}(U) \rightarrow X, \gamma: U \rightarrow Y$, and $\zeta: \mu^{-1}(U) \rightarrow Q$ are defined. These representatives define a section $\delta: U \rightarrow Y_{Q}$ by

$$
\begin{equation*}
\delta=\rho \circ\left(\gamma \times \zeta \mu^{-1}\right) \tag{1}
\end{equation*}
$$

Then the r-jet $J_{x_{0}}^{r} \delta$ depends only on $J_{x_{0}}^{r} \gamma, J_{x_{0}}^{r} \mu^{-1}$, and $J_{0}^{r} \zeta$, i.e., on Z, p, and q. We define a mapping $\rho^{r}: W^{r} Y \times T_{n}^{r} Q \rightarrow J^{r} Y$ by

$$
\begin{equation*}
\rho^{r}((p, Z), q)=J_{x_{0}}^{r}\left(\rho \circ\left(\gamma \times \zeta \mu^{-1}\right)\right) . \tag{2}
\end{equation*}
$$

We claim that ρ^{r} is a frame mapping. If $(A, S) \in G_{n}^{r}, A=J_{0}^{r} \alpha, S=J_{0}^{r} \sigma$ and $q \in T_{n}^{n} Q, q=J_{0}^{r} \zeta$, we have, by Section 3.7, (13), $(p, Z) \cdot(A, S)=\left(p \cdot A, Z \cdot\left(S \circ p^{-1}\right)\right)$. By Section 3.5, (5), $(A, S)^{-1}=\left(A^{-1}, S^{-1} \circ A\right)$ and by Section 3.6, (3), $(A, S) \cdot q=$ $S \cdot\left(q \circ A^{-1}\right)$, and $\left.(A, S)^{-1} \cdot q=\left(A^{-1}, S^{-1} \circ A\right) \cdot q=\left(S^{-1} \circ A\right) \cdot q \circ A\right)$. Thus,

$$
\begin{align*}
& \rho^{r}\left((p, Z) \cdot(A, S),(A, S)^{-1} \cdot q\right) \tag{3}\\
& \quad=\rho^{r}\left(\left(p \cdot A, Z \cdot\left(S \circ p^{-1}\right)\right),\left(S^{-1} \cdot q\right) \circ A\right) .
\end{align*}
$$

But $p \cdot A=J_{0}^{r} \mu \alpha, Z \cdot\left(S \circ p^{-1}\right)=J_{x_{0}}^{r}\left(\gamma \cdot\left(\sigma \mu^{-1}\right)\right)$, and $\left(S^{-1} \cdot q\right) \circ A=J_{0}^{r}\left(\left(\sigma^{-1} \cdot \zeta\right) \circ \alpha\right)$, so that, using (2),

$$
\rho^{r}\left((p, Z) \cdot(A, S),(A, S)^{-1} \cdot q\right)
$$

$$
\begin{align*}
& =\rho^{r}\left(\left(p \cdot A, Z \cdot\left(S \circ p^{-1}\right)\right),\left(S^{-1} \cdot q\right) \circ A\right) \tag{4}\\
& =J_{x_{0}}^{r}\left(\rho \circ\left(\gamma \cdot\left(\sigma \mu^{-1}\right)\right) \times\left(\sigma^{-1} \cdot \zeta\right) \circ \mu^{-1}\right) .
\end{align*}
$$

But

$$
\begin{align*}
& \left(\rho \circ\left(\gamma \cdot\left(\sigma \mu^{-1}\right)\right) \times\left(\sigma^{-1} \cdot \zeta\right) \circ \mu^{-1}\right)(x) \\
& \quad=\rho\left(\gamma(x) \cdot \sigma \mu^{-1}(x), \sigma^{-1} \mu^{-1}(x) \cdot \zeta \mu^{-1}(x)\right) \tag{5}\\
& \quad=\rho\left(\left(\gamma(x), \zeta \mu^{-1}(x)\right)=\rho \circ\left(\gamma \times \zeta \mu^{-1}\right)(x)\right.
\end{align*}
$$

because ρ is the frame mapping for Y_{Q}. Therefore, we get finally,

$$
\begin{align*}
& \rho^{r}\left((p, Z) \cdot(A, S),(A, S)^{-1} \cdot q\right)=J_{x_{0}}^{r}\left(\rho \circ\left(\gamma \times \zeta \mu^{-1}\right)\right) \tag{6}\\
& \quad=\rho^{r}((p, Z), q)
\end{align*}
$$

This proves that ρ^{r} is a frame mapping.

References

[1] J. Dieudonné, Treatise on Analysis, Vol. III, Academic Press, New York-London, 1972.
[2] N. Bourbaki, Variétés Différentielles et Analytiques, Fascicule de Résultats, Hermann, Paris, 1967, 1971.
[3] C. Ehresmann, Les prolongements d'une variete différentiable I-V, C. R. Acad. Sc. Paris 223 (1951), 598-600, 777-779, 1081-1083, 234 (1952), 1028-1030, 1424-1426.
[4] D. R. Grigore, D. Krupka, Invariants of velocities and higher-order Grassmann bundles, Journ. Geom. Phys. 24 (1998) 244-264.
[5] I. Kolář, P. W. Michor, J. Slovák, Natural Operations in Differential Geometry, Springer-Verlag Berlin Heidelberg, 1993.
[6] D. Krupka, A setting for generally invariant Lagrangian structures in tensor bundles, Bull. Acad. Polon. Sci., Sér Math. Astronom. Phys. 22 (1974) 967-972.
[7] D. Krupka, Natural Lagrangian Structures (Semester on Differential Geometry, Banach Center, Warsaw, 1979), Banach Center Publications 12 (1984) 185-210.
[8] D. Krupka, J. Janyška, Lectures on Differential Invariants, J. E. Purkyně University, Brno, Czechia, 1990.
[9] D. Krupka, M. Krupka, Elements of the Theory of Jets I., preprint series in Global Analysis GA 4 / 1999, Mathematical Institute, Silesian University in Opava, 1999.
[10] D. Saunders, The Geometry of Jet Bundles, Cambridge Univ. Press, 1989.
[11] A. M. Vinogradov, I. S. Krasil'shchik, V. V. Lychagin, Introduction to the Geometry of Non-linear Differential Equations (Russian), Nauka, Moscow, 1986.

Demeter Krupka
Mathematical Institute
Silesian University in Opava
Bezručovo nám. 13, 74601 Opava
Czech Republic
E-mail: Demeter.Krupka@math.slu.cz
Received 17 July 2000

[^0]: ${ }^{1}$ Research supported by Grants CEZ:J10/98:192400002, VS 96003 "Global Analysis" of the Czech Ministry of Education, Youth and Sports, and by Grant 201/00/0724 of the Czech Grant Agency. This paper is in final form and no part of it will be published elsewhere.

