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Jets and contact elements!

D. Krupkaand M. Krupka

Abstract. The purpose of this research-expository work is to introduce basic concepts
of the theory of jets, and to study their general properties. An r-jet of area function
of several real variables at a point is simply the collection of the coefficients of ther-th
Taylor polynomial of f at this point. The concept of an r-jet is easily generalized to
differentiable mappings of smooth manifolds in terms of charts. The structure of the
following manifolds of jetsis discussed:

(a) higher order differential groups,

(b) jets of mappings of a Euclidean space into a manifold, with source at the origin
(velocities, regular velocities, higher order frames),

(c) manifolds of contact elements (higher order Grassmann prolongations of a mani-
fold, i.e., the quotients of manifolds of regular velocities by the differential groups
acting on them).

(d) jet prolongations of fibered manifolds and fibrations,

(e) jet prolongationsof Liegroups, Liegroup actions, principal and associated bundles.

Keywords and phrases. Jet, regular jet, velocity, differential groups, frame, contact el-
ement, Grassmann prolongation, prolongation of a fibered manifold, prolongation of a
Lie group, prolongation of a principal bundle, prolongation of an associated bundle.

M S classification. 58A20.
Introduction
In this work, we present a self-contained introduction to the theory of jets, suitable

for a deeper, systematic study of the subject. We explain basic ideas, and give proofs
of all assertions. The choice of topic we discuss corresponds with the use of the theory
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of jetsin differential geometry (natural bundles, differential invariants), the calculus of
variations on smooth manifolds (L agrange theory, natural variational principles), andin
mathematical physics (higher order mechanics and field theory).

Our basic references are [3], [4], [5], [6], and [8]. It is not our aim to simplify, or
to shorten the exposition to a minimum. Instead, we insist on a deeper, active under-
standing of basic mations, aswell as techniques of working with jets. We do not discuss
possible generalizations of the theory to more abstract categories than the basic ones
of the smooth differential geometry (the categories of smooth manifolds and fiber bun-
dles). Recent developments in this direction can be found in [5]; neither it is our goal to
discuss applications (see e.g. [6], [7], [11]). Numerous references to all these subjects
can befound in[5], [8], [10], and [11].

1. Jets of smooth mappings

1.1. The higher order chain rule. Let n and k be positive integers. As usual, we
denote by D; f = 9f/dx' the i-the partial derivative of a function f : R" — R. If
| = {i1,io,...,Ix} isaset of positive integers such that 1 < iq,1i5,...,1x < n, we
denote

Q) D, = Dy, Di, - - - Dj,.
Since the partial derivative operators commute, the symbol on the left hand side is cor-
rectly defined. The following explicit formula has numerous applications.
Lemmal LetU c R"andV C R™ beopen sets, let f : V — R be a smooth
function, andlet g = (g°), 1 < o < m, be a smooth mapping of U into V. Then
Dis--- Di,Diy(f o g)(V)

S
(2) = Z Z Dak T Daz Dol f(g(t) legﬂk(t)
k=1 (I1,12,...,1k)

- D1,g%2(t) D1, g7 (1),
where the second sum is understood to be extended to all partitions (14, I, ..., lx) of
theset {iy, iz, ...,Is}.
Proof. To prove (2), we proceed by induction. We have
Di,(f o 9)(t) = D, f(g(t)) Di, 9" (1),
3 Di, Di, (f o g)(t) = D, Do, f(g(t)) Di,g°%(t) Di, g™ (t)
+ Do f(g(1)) Diyi,9° (V).
Now assuming that
Disy -+~ Di, Diy (f o ) (1)
S
(4) =Y ) Dy Dy,Dy, Q1)) Dy g()

k=1 (J1,32,.... k)
-+ D3,g%2(t) Dy, g (1)
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we obtain
Di,Di, , -+ Di, Di,(f 0 9)(1)

=Y Y DgDg - Dy, Dy, F(g()) Diyg™ (1) Dy g (1)

k=1 (J1,,..., J)
- D3,g2(t) Dy, g™ (V)

S
G  +>. > (Da - DeDe, F(G1) (D™ (1)
k=1 (3, d,..., )
.- D3,g%%(t) Di, D30 (t) + D3, g% (t) - - - Di,D3,g%2(t) D3, g (t)

+ -+ Di;Dg g% (t) - - - D3,g72(t) D3, g° (1))
S
=Y Y. Dy DyDg, f(G1) Dy g™ () - - Di,g7 (1) Dy, g7 (1)
k=1 (l1,12,....1k)
which gives (2).

Formula (2) is called the higher order chain rule, or simply the chain rule.

1.2. Jets of smooth mappings. Let X and Y be two manifolds, x € X apoint, W,
W, two neighborhoods of x. We say that two mappings of classC° f; : W; — Y, and
fo 1 W, — Y aretangent of order 0 at X, if fi(x) = f(X). If r > 1lisaninteger, we
say that two mappings of classC" f; : Wy — Y and f, : Wo, — Y are tangent to the
r-th order at X, if they are tangent of order O (as mappings of class C9), and there exist
achart (U, ¢), ¢ = (X"),a xandachart (V, ¥), v = (y?), a f1(X) = fo(x) such that
UcwW nW,, f,(U), f(U) CcV,and
(1) DX fip ™ H(@(x) = DY fap™H (9 (X))
for al k < r. We say that two mappings of classC*® f; : Wy — Yand fo : W, — Y
aretangent to order oo at X, if they are tangent to order r for every r.

Letr > 1. If in components, ¥ f1o ™! = (y° fip™1), Y™t = (y° fop™1), then f;
and f, aretangent to order r at x if and only if f1(x) = f,(x) and
@) Di, Di, - - Di (7 f19 D (9(x)) = Di; Di, - - Diy (Y7 29~ H (@ (X))

foralk=12,...,r,wherel <iq,is, ..., ix<n,1<oc<m .

If f,, f, aretangent to order r at X, then for any chart (U, ), ¢ = (), at x and any
chart (V, ¥), ¥ = (¥°), a f1(x) = f2(%),
€) DX 1071 (@(X)) = DX f207 ) (@(X))

foralk=1,2,...,r.Toseeit we express the derivative
Di,Di, - - Di (77 f10~ H(@(x))
=Di,Di, - Di (Y ¥ oy fip 0 0o H(@(X))

asapolynomial inthevariables Dj, (y* f19 ™) (¢(X)), Dj, Dj, (Y fip™H(@(X)), ..., D}
Dj, - Dj (y" f1o™ 1) (p(X)) (Section 1.1, Lemma 1). Then the derivative Di,Di, - - - Dj,

(4)
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(y° 2071 (@(x)) is expressed by the same polynomial in the variables Dj, (y" f29 ™)
(9()), D, Dj,(¥" fap (9 (X)), ..., D}, D, - - Dj (¥ fap™H)((x)). Now (3) fol-
lows from (2).

Letr > 0 be aninteger, or r = oco. Fix two points x € X,y € Y, and dencte by

X Y) the set of mappings of classC" f : W — Y, where W is a neighborhood
of X, such that f (x) = y (W isnot fixed). Therelation“ f, g aretangent to order r at x”
onCjy. X Y) isobvioudly reflexive, transitive, and symmetric, so it is an equivalence.
Equival ence classes of this equivalence are called r -jets with source x and target y. The
r-jet whose representative isamapping f € ch’y)(x, Y) iscaled ther-jet of f at X,
and isdenoted by J; f. If thereis no danger of confusion we call anr -jet with source x
and target y smply anr -jet, or ajet.

The set of r-jets with source X € X and target y € Y is denoted by Jj, ,, (X, Y).
Clearly, J%f = (x,y), and J )G Y) = {(x, ).

Letr > O beaninteger, orr = oo. Let f e Cf, 0 X, Y), f:W—= Y.IfU
is a neighborhood of the point x € X and V isa ne|ghborhood of y € Y, we may,
usi ng continuity arguments, restrict the range and the domain of f toV andto U. Let
wy 1V = Yandn-ryyw U N V) — W be the canonical inclusions. We
define f' € Cf, )(U V) by the formula f’ = LVY o f otyns-10vy, Which induces
a mapping v of I, y)(X Y) into Jf. » (U, V). Conversdly, if ' e Cix. » U, V), we
deflnef by f =wyoflot which induces a mapping ¢ of J )(U,V) into

unf-1v),w’ X,y
I, » (X, Y). Explicitly,
(5) U(J f)_-.] (VYO fOLUmf 1(\/))
L(fo)zJ (L\/Yof OLUrljf 1(V)W)

Both v and : are bijections, and v = (! isitsinverse. The mappings, v are called the
canonical identifications of J’ »U, V) and J, » X Y).

Now we introduce aC' structure on theset Jr pXY). Let (U, ), 9 = (x') bea
chartat x, andlet (V, v), ¥ = (y°), beachartaty We set for every J; € J(X » X Y)
(6) Yiyei (35 £) = Di,Di, -+ Dy (¥ Fo H(p(x)),
wheel<k<r,l<o<madl<ii<ia<. .. <ig<n. Vg are real-valued
functions on J(fx » X Y). Then we set
(7) Aoy (I £) = (W ) ¥, (5 B Yo, (5 )

This defines (in components) a mapping X;,w . X Y) — RN, where

o ()5 () (7))

In connection with the use of Section 1.1, Lemma 1, we also apply a different nota-
tion. If | = {iq,i5,...,ix} isaset of positiveintegerssuchthat 1 <iq,ip,...,ix < n,
we denote

9 Y () =Di(y” foHex)),
where D, isgiven by Section 1.1, (1).
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Lemma2. Let X and Y be two smooth manifolds. There exists one and only one
smooth structure on J’ X Y) such that for every chart (U, ¢), ¢ = (x), at x and

every chart (V. 1), ¥ = (y), at y, (3, 0%, Y), %), X0y (IE ) = (9, ) is @

chart on J{X X Y).

Proof. First we show that the mapping wa )(X Y) — RN isabijection. It
followsimmediately from the definition of an r-JetthaI Xy ISiNjective. To show that it
is surjective, choose apoint A= (A7, A7, -\ A, ) e RN; here we assume that
1§i1§i2§---<ik<nforeveryk_12 rWeextendthewstemAto
all sequences (j1, jo, ..., jk) putting A ;= A;’lI2 whenever (ji, jo, ..., jk) isa
permutation of (i, iy, ..., k), and defineamapping g : R” — R™ g = (g9), by the
formula

oyl 2 n 0 (] j1 1 j 1\ iz
g7 (X", X5, ..., X )=yg+Ajl(x'1—x0)+ A (X1t = xgH (X2 — x5?)

jl2

(10) | | |
+- + A:Tl|2 (le _Xél)(sz —Xéz)...(xjr _Xér)7

where xo = (x3) = ¢(X), Yo = (¥§) = ¥ (y). Then ¥ "1ge(x) = y. Putting
(11) f =y 'ge

we obtain a smooth mapping defined on a neighborhood of x, such that f(x) = .
Therefore, J; f € Jj; » (X, Y), and by (7), x;,, (3 f) = (Di,9° (X0), Di, Di,9° (Xo),
, Di,Di, - - - D;, 97 (xo)) = A. This proves t(filat X4y 1S SUrjective and completes the
proof that it is bijective.
Let (U, ¢), ¢ = (x"),and (U, ), » = (X'), betwo chartsat x and let (V, ), ¥ =
(y?),and (V, ¥), ¥ = (y°), betwo chartsat y. We havefor every J/ f € J' . (X,Y)

(120 ¥7,., (9 f)=DiDi, - Dy (¥ fo H(@(X).

Expressing the right-hand side as in (4), and using Section 1.1, Lemma 1, we obtain
apolynomial in yj (J; ), yj,;,(3% ), yjll2 i (x F). Since these polynomials are
components of the mapping x; o (x,, w) , this mapping is smooth. This proves com-
patibility of thecharts(J(X’y)(X Y), Xw//) (J(X’y)(x Y), Xw)

The chart (J
vV, ¥).

Remark 1. The manifold topology on J;; ,, (X, Y) is the topology of the Euclidean
space RN,

x.y)

oy (XY, X;,w) is said to be associated with the pair of charts (U, ¢),

Remark 2 (geometric interpretation of an r-jet). We denote
(13 L:Lm = ‘J(rO,O) R", RM),

and definefor every Jj f € L;

n,m?
(14) a’;,.i (I ) = Di;Di, - - Dy £7(0),
where f = (f?),1<o<m,1<k<rl1<i;<i)<-.--<igx=<n. Theread-vaued

functionsa’;, ; defineachart on Jj, , (R", R™) (inthiscase ¢ = idgn, ¥ = idgm).
This chart, aswell asits coordi natefunctlons (14), are caled canonical.
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Consider the product
(25) LAR", R™ x L(S)(Rn R™) x--- x Lig(R", RM),

where L (R", R™) isthe vector space of linear mappings from R" to R™, and L(s) R",
R™) is the vector space of k-linear, symmetric mappings from R" x R" x --- x R"
(k factors) to R™. Us ng the canonical bases of R" and R™, we can identify vectors
in LAR",R™ (resp L(S)(Rn R™) with their matrices (A7) (resp. (A;,..;,)), Where
l<o<m1<iy,lis, ..., ik <n. Thematrix (A, i) is symmetric in the subscripts,
so that the dimension of the vector space (15) isN (8)

Clearly, (15) carries canonical topologica and smooth structures of a finite-dimen-
sional vector space.

Since J, (X Y), Lh.m» and the vector space (15) are diffeomorphic with RN,
they are aII élffeomorphlc A diffeomorphism of L ,, and the vector space (15) is
obtained by extending the set of canonical coordlnates a’;,.i, toal (not necessar-
ily non-decreasing) sequences (j1, j2, ..., jk) by putting a" i = &%,.i, Whenever
(j1, J2s -+ -, jx) isapermutation of (i1, i, ..., k). Thedlffeomorphlsm of)talnedlnthls
way iscal Ied the canonical identification, and gives us ageometric interpretation of the
r-jetsbelongingtothe set L{ ,

Let X and Y be smooth manifoldsn = dim X, m = dimY. We denote
VX, Y)={x} xY, JI%X,Y)=XxY,

19 rx.v=J¥i,xn. Ixn=Jrxw, r=u
yeY xeX

Forevery J, f € J"(X,Y), P = J} f, weset
(17) PN f) =38, O<s<r, uAfH)=x, VI =FfX.

These formulas define the canonical r -jet projections p™5 : J"(X,Y) — J5(X,Y),
:J(XY) - X,andv : J'(X,Y) = Y. u" (resp. v") is sometimes called the
source (resp. target) projection. The r-jet projections restrict naturally to the subsets
ey (X, Y) and J (X, Y) of 3" (X, Y).
WelntroduceaCr structure on the sets Jr 9 X Y), J(X,Y),and J"(X,Y). Let
U, ¢), <p—(x) beachart on X, and let (V, x//) ¥ = (yK ) beachart on Y. We set
(18) = (p"9) MU x V), Xow = (x', y* X X s Xiigedy )

wheel<k<r,l<K<ml<ii<ip<..--<ikx<n,ad Xi}jiz-nik are real-valued
functionson W' defined by

(19  xK,. (3 )= Di,Di, - Dy (¥ fo ™) (p(x)).
Clearly, X&w isamapping of W' into ¢(U) x ¥ (V) x RN, where

@ n=n(( () ()= () )

Sometimes it is convenient to use an alternative notation. If | = {i1,io,..., ik} isa
set of positiveintegerssuchthat 1 <iq, ip, ..., ik < n, we denote

) X G H =D o HeX).
where D; =D;, D, - - - Dj, (see Section 1.1). Then in components, x;, , = (X', y*, x/*).
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Lemma3. Let X and Y be smooth manifolds.

(a) There exists one and only one smooth structure on J" (X, Y) such that for every
chart (U, ¢) on X and every chart (V, %) onY, (W', X;w) isacharton J'(X,Y).In
this smooth structure, ther -jet projections are smooth surjective submersions.

(b) For every x € X, theset J, (X,Y) isasubmanifold of I'(X,Y). If (U,¢)isa
chartat x,and (V, ) isachartonY, thenthechart (W', x )isadaptedtoJ (X, Y).

(c) For every (x,y) € X x Y, the set Jr (X Y) |sasubman|fold of J'(X,Y). If
(U, p) isachart at x, and (V, ¥) |sachart aty then the chart (W', Xo 1//) is adapted

t0 Jfy, (X, Y).

Proof. (a) First we show that X¢ is a bijection. It follows immediately from the
definition of an r-jet that X s 1S |nject|ve To show that it is surjective, choose Xg €
pU), Yo € ¥(V), and apomt P=(PX.PK,.....PK,.i) e RN herel <i; < <
-<ik<nforeveryk =1,2,...,r. Weextend P to all sequences (j1, j2, ..., Jk)
putting ij = P,'EZ whenever(Jl, 12,.. , Jx) isapermutation of (i, o, ..., k),

and defineamapping g : R” — R™ g = (gX), by theformula

1 . o .
g Ot X% XM =y 4+ PRt — X+ = sz(XJl — XgH (X2 — x?)

(22)

igig- (le - Xélxsz - X(l)z) (= Xér)

1
++ SR
where xg = (xé),yo = (y). Then x = ¢7X(x0) € U,y = v "Xyo) € V, and
g(Xo) = Yo. Putting f = v ~1gyp, we obtain a smooth mapping defined on a neighbor-
hood of x, such that f (x) = y. Since the chart expression of f satisfiesyfo~! = g,
we have

Xb.p (J5 ) = (X (), y*(¥), Di,g" (x0), Di, Di, g" (Xo),
(23) ...,DyD;, - DikgK(xo))
= (X0, Y& PFOPS L PS L)

112 7112 igig-ir

This provesthat x;, ,, issurjective and completes the proof that it is bijective.

Let (U, ¢), ¢ = (x'),and (U, ?), ¢ = (x"), betwo chartson X suchthat U NU = @,
and let (V, w)w_(y) and (V 1/7)¢—(y)betwochartsatoanuchthat
VNV # . Define (W', x' ), x' . = (X, yK, sz--tk) by (18) and (19). We have for
every J, f e W nW'

)_(iiiiz'--ik(‘J; f) = DilDiz T Dik(yK f(/)_l)(@(x))
=D;,Di,--- Dy (YUt o fo o pgH(@(x)).

Using the higher order chain rule (Section 1.1, Lemma 1), we obtain sz ()
as a polynomial in X,l(J f), X,m(Jrf) ..,sz Jk(J f). Since these polynomials
are components of the mapping X, 7 ° (X, I/,) , this mapping is smooth. This proves
compatibility of the charts (W', X ) (W', % X5, I/7)

It |s immediately seen that the jet projections (17) are expressed in the charts
(W', x5, asthe Cartesian projections. This shows that the jet projections are smooth.

(b) The set W' N JI(X,Y) is expressed by equations of the form x' = a', where
a' € R aresome constants This proves (b).

r7
<7JJ// ?.¥

(24)



46 D. Krupka and M. Krupka

(0) Theset W' NJy,,, (X, Y) isexpressed by equationsof theform x' = a', y* = bX,

wherea', bX e R are some constants. This proves (c).

The chart (W', X;w) is said to be associated with the charts (U, @), (V, ¥).

Remark 3. Notethat we have some canonical identifications. Ther -jet J(;(X)wf ot
is by definition the equivalence class expressed in the canonical coordinates on R"
and R"™™ by the collection of real numbers x'(x), y¥(f(x)) Dj,(y* fo~H(p(X)),
D, D, (Y€ fo™H)(p(X)), ..., Dj;Dj, - D} (¥’ fo 1) (p(x)), i.e., by the same collec-
tionas J; f intheassociated chart (W', X;w). Thus, we have

(25)  xp (B = feh

Let X and Y be smooth manifolds, W ¢ X anopenset,and f : W — Y asmooth
mapping. Setting
(26) Jfx)=J f

we defineamapping J' f : W — J"(X,Y). Thismapping is called ther -jet prolonga-
tion, or simply the jet prolongation of f.

Let (U, ), ¢ = (X) (resp. (V, ¥), ¥ = (y)) beachart at x (resp. at y = f(x)),
and let (W', X;,w) be the associated chart on J" (X, Y). Then J' f is expressed by

Xy 0" Fop™H(X)
= (X, (y* fo™H(X), Dy, Dy, - - - Dy (¥¥ fo 1) (X)),
and is therefore smooth.

(27

1.3. The composition of jets. Let X, Y, and Z be three real, finite-dimensional
smooth manifolds. We say that r-jets P ¢ J{X’u)(x, Y),Q € J(ry’z)(Y, Z) are com
posable, if any representatives of P and Q are composable (as mappings). Clearly, P
and Q are composableif and only if the target of P coincides with the source of Q, i.e.,
ifu=y.

Let P (resp. Q) be represented by f (resp. g), i.e, P = J, f, Q = Jjg. Assume
that P, Q are composable. Shrinking the domain of definition of f if necessary, we may
assume that the composed mapping g o f isdefined. Then also ther-jet J;(go f)is
defined. It is easy to determine the coordinates of J; (g o f) interms of the coordinates
of P and Q.

Let (U, 9), ¢ = (X') (resp. (V, ¥), ¥ = (y7), resp. (W, ), n = (z")) beachart at x
(resp. y = f(x), resp. z= g(y)). We have in the chart (J{X’z)(x, Z2), X;,n), X;,n(‘]; (go
f)) = (wf,.;) (Section 1.2, Lemma2),

Xy (Je(@o ) = (Di,(Z*gf o (9(x)), Di,Di,(Z*gf o™ (9(x)),
..., DDy, -+ Dy, (Z*gf e (X)),
i.e,foreveryk=1,2,...,r,
wihi,i, (Je(@o £)) = Dy, Dy, - - D (Z*gf o M (9(x))
= Dj,Dj, - Dy (Z*gy Lo ¥ f o (p(X).

)

)
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We apply the higher order chain ruleto this expression (Section 1.1, Lemmal). Denote
the corresponding associated charts by (J(X y)(X Y), er ) Xw w(‘] f) = (Vi)

(‘](y’z)(Y Z) X]//’y]) Xl'//’)](‘]rg) 0'10‘2 o’k) Ther]
wihi,is (K (@0 1))

©) .
=3 Y 2 (DY D) YR DY),
k=1 (I1,12,....1k)
i.e., with obvious simplification,
S
4 Whiyis =D D ZneraVie YRV
k=1 (I1,12,...,1k)

Now by Section1.2, (2),if Jyg = Jyg'and Iy f = J; f', then J;(go f) = J;(g'o f')
which meansthat ther -jet J; (g o ) dependson P and Q only.

If P and Q are composabler-jets, P = J; f, Q = Jj g, we define

5) QoP=Ji(go f)

and call ther-jet Q o P the composite of P and Q. The mapping (P, Q) — Qo P of
(X y)(X Y) x Jr » (Y, Z) into J{X’z)(x, Z) wherey = f(x),z = g(y), iscaled the
composition of r -j ets. The composition of r-jets is associative.
Equation (3), or (4), isther -jet composition formula.
In particular, we have the following resuilt.

Lemma 4. The composition of r -jetsis smooth.

Proof. By (3), the coordinates of ther-jet Q o P depend polynomially on the coor-
dinates of ther -jets P, Q.

1.4. Regular jets, invertible jets. Let idy (resp. idy) be the identity mapping of
a manifold X (resp. Y), X € X (resp. y € Y) apoint. Then Jyidx € Jj ,, (X, X)
and Jr idy € J y» (Y. Y). For any r-iet P e Jr X, Y), P = J; f, the composites
Jr Idy oP = Jr Idy oy f,PoJidxy =3 fo Jr |dx, are defined, and

(1) JrldYoP= P, PO.J;Idx= P.

Anr-jet P e J; » X, Y) iscalled regular, if there existsanr-jet Q e J(y o (Y, X),
such that

2 Qo P =Jidx.
P iscalled invertible, if there exists Q e J v (Y5 X) such that
(©)] QOP:J;Idx, PoQ:J{/|dY_
Lemmab. (@) Anr-jet P € Jj, y)(X, Y) isregular if and only if every of its repre-
sentatives is an immersion at the point x.

(b) Anr-jet P € Jj;, )(X, Y) isinvertible if and only if every of its representativesis
a diffeomor phism on a neighborhood of x.
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Proof. (a) Let f be arepresentative of anr-jet P = J; f. Assume that we have an
r-jet Q = Jyg satisfying (2), and its representative g. Then the mappingsgo f andidx
represent the samer -jet with source and target x, and we have for any chart (U, ¢) at x
and any chart (V,¢¥) aty

@) D egfe H(p(x) = Degy H (¥ f(x) o DX fe H(p(X) = idrn.

In particular, rank D(¢gf ¢ ~1)(¢(x)) = n which is the dimension of the image of the
linear mapping D (pgfe 1) (p(x)) : R" — R". This implies that rank D*(y f ¢~1)
(p(x)) must be equal to n. Therefore, f is an immersion at x, by the rank theorem.
Conversely, if a representative f of P is an immersion at x, then we apply the rank
theorem again.

(b) If P isinvertible we easily find, using similar arguments, that dimY = m must
be equal to dim X = n, and then we apply the rank theorem. The converseis obvious.

The set of regular r-jets in Jr (X, Y), is denoted by imm Jr 9 (X, Y); it isan
open subset of J, X Y). ObV|0us|y usmg contlnwty of thedetermlnantfunctlon we
easily show that thesetWof points (Wi, Wiy oo W) € RN such that the matrix
(wy) is of maximal rank n, is openin RN. Then usmg a chart U, ), 9 = ), a x,

chart V,¥), v = (y°), a vy, and the associated chart (J P’)(X Y), Xw//) Xw,w =
(Vs Yiains - Yripeig) ON ik ) (X, Y), WeobtalnthesetlmmJ (X,Y) astheinverse
image of W by the continuous mapping x, , -

imm Ji, » (X, Y) # @ if and only if dimX =n<dmY =m.

Ifn = m then the set imm J/, X Y) consists of invertible r-jets. Conversely,
if the set imm J;, (X, Y) contauns an invertible r-jet, then the points x and y have
neighborhoods of the same dimension.

x.y)

2. Jet manifolds

2.1. Differential groups. Letr, n be positive integers. We denote

Thus, L}, isthe set oflnvertlbler-JetsmtheJet manifold Jg, o, (R", R"). Restricting the
canonlcal coordinates a' i2iz-ix ON (0.0 (R, R™) (Section 1 2, (14)) to L', we obtain the
canonical coordinateson L;,

) a,j,.j (Je) = Dj,Dj, -~ Dja' (0),

whereao = (@¢'),1 <i <nl<k<rlc< j1 < j2 < - < jk < n.Inthese

coordinates L, = {Jfa € 0 (R", R")| detaj (Jfa) # O}.

The canonical coordinates (2) will be also written by means of the convention in-
troduced in Section 1.2, (9). Namely, if | = {iy, o, ..., ik} isaset of positive integers
suchthat 1 <iq,iop, ..., Ik < n,weasowrite
() a =al

j1i2 ik

The composition of jets (see Section 1.3, (5)) defines an operation

@) L' xLf'5 (A B)—> AoBel
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ontheset L. Thisoperation isassociative, ther -jet Jj idrn € L], istheunity, and every
r-jet A e L), A= Jja hasauniqueinverse At = J5a~t. Thus, (4) defines a group
structure on L. Since the composition of r-jets is smooth (Section 1.3, Lemma 3), L},
is a Lie group. We call this Lie group the r-th differential group of R", or simply a
differential group. From Section 1.2, (8) we derive that

) dimL;:n((”:r)—l).

Notethat L} can be cannonically identified with the general linear group GL,(R).

Using ther -jet composition formula (Section 1.3, (4)) and the canonical coordinates
(2), (3), we can describe the group operation (4) @(plicitly If A,B e L, A = Ja,
B=J] ﬂ andC = Ao B = J{(a@of),anda’;, ;. = a%,.;.(Jfa). b
BB i, = 3y, (Js o B), then

j
(6) '1'2 s Z Z 1112 prjlbJ2 blg’

p=1(ly,l2,..

> |1I2 s a'iliZ‘“is

where the second sum is extended to all partitions (I4, Io, ..., I,) of the set (iy, iz,
Js).

Example 1 (group operation in L3). In applications explicit chart expressions for
group operation in differential groups are needed. Using the definition, we derive the
corresponding formulas for the group L3 in the canonical coordinates. Let A, B € L3
be two 3-jets. Let U, V, W C R" be three neighborhoods of the origin 0 € R", «
U — V,B:V — W two diffeomorphisms such that A = J$o, B = J3g. Denote by
(x") the canonical coordinateson R" (aswell ason U, V, and W). Writein components
o = (X'a), B = (X'B), and consider the diffeomorphismy = Boa of U into W, y =
(X'y). Then the product of Aand B in L2 isthe 3-jet C = J3y. To obtain the canonical
coordinates of C we should compute all partial derivatives of the componentsof y upto
the 3-rd order at the point 0 € R". Differentiating components of this diffeomorphism
at apoint X € U, we obtain

Dj,(x'y)(¥) = Djy (X' B o @)(X)
= Di(X' B)(@(x)) Dj, (x*a) (x),

D;,D;,(X'¥)(X) = D;,Dj,(X'B 0 a)(X)
= Dy, Di, (X' ) (@ (X)) Dj, (X'2a) (X) Dj, (X 4e0) (X)
+ Dk(X' B)(@(x)) Dj, Dj, (X ) (x),

() DiaDizDil(XIV)(X) = DjsDszil(XIIB o o) (X)

= Dy Dk, Diy (X' B) (@ (X)) D (X'$ar) (X) D, (X'2a) (x) Dj, (X' 4@) (%)
+ Dy, Dy (X' B) (@(X)) Dj, Dj, (X'20r) () Dj, (X" 40) (%)
+ Dy, Dy (X' B) (@ (X)) Dj, (x*2) () D, D, (X" 4ar) (X)
+ Dk, Di (X' B) (@ () Djy (x*2) () Dj, D, (X" 4ar) (x)
+ Dk(X' B) (@ (X)) Dj, Dj, Dj, (Xa) (x).
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Substituting X = a(x) = 0, we get
Dj,(X')(0) = Dy(X' B)(0) Dj, (x*a)(0),
Dy, (x'y)(0) = Dy, Dy, (' B)(0) Dj, (X'2a) (0) Dj, (X*'r) (0)
+ Dy(X' 8)(0) D}, Dy, (x*)(0),
D;,D;,Dj,(X'y)(0)
(8) = Dy, Dy, Di, (X' B)(0) - D, (X**e)(0) - D, (x*°a)(0) - Dj, (Xt (0)
+ Dy, Dy (X' B)(0) - Dj, D, (x*20) (0) - Dj, (X1ex)(0)
+ Dy, Dy (X' B)(0) - D, (X*222)(0) - Dy, D, (Xe0) (0)
+ Dy, Dig (X' 8)(0) - Dj,(x%)(0) - Dj, Dj, (x*a) (0)
+ Dy(X' 8)(0) - Dj,Dj,Dj, (x*a)(0),
or, which isthe same,
al, (%) =a(33B) - a,ﬁ(Jéa)
al,; (35y) = 8l (5B - d2(IFa) - a (Ige)
+8(35h) - alj, (J5o0),
©) ﬂwﬂu&q @mh@ﬁ)a(%a)a(%a)a(%m
+ak2kl(Jo/3) ajsjz(\]oa) a (Jooz)
+ak2kl(Jo/3) a (Jooz) a]le(Joa)
+ Al (I5B) - a2(Ige) - Ly (o) + & (J58) - aY,),;, (Ie).
We usually abbreviate these formulas by writing
b

Jl’
1211 = bkzklalz 11 b 12J1’

i k3
CJstll - bk3k2k1 i3 12 Jl ,+ bkzklalslz 11 + bkzklalz 1311

+ bk2k1 is Jle + b

(10)

131211

with obvious meaning of the symbols. These formulas represent equations of the group
operation in the differential group L2 in canonical coordinates.

Now we compute the chart expression of the mapping L2 5 A — Al e L3. We
takeln(lo) B=A"1C = J33idrn. Then
(11) =8, ¢;,=0 ;=0

v j1i2 J1]2]3
and equatl ons (10) reduce to
i i
b 811’
k
k2k1a12 alll + b

i k1
kskzklals 12 11 +bk2k1a1312 i1 +bk2k1 i2 J3]1

+ bkzkl i3 1211 + b =0.

131211

=0,

1211

(12)
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The first equation determines b} as elements of the inverse matrix to the matrix (al).
Using this fact we get

ik i
baj, =4,
i — _aK hipizpit
(13) bpzpl_ anJlbkbpszl’
i N ki Jk2 ko Ak1 ko ki i ok i3 hi2 kit
bpapzpl - ( kzkl(ajlajsiz + aj, 85, + ajsaizil) + bkajsjzjl) bpsbpszl’

where it is assumed that we substitute for b} from the first equation into the second
and the third ones, and then for bszl from the second equation into the third one. We
conclude that the mapping A — A1, expressed in canonical coordinates by (13), is
represented by rational functions.

Remark 1. Sometimes it is useful to use the second canonical coordinateson L,
defined by

(14 b

JENEREY

(A = a (A,

IJ'1J'2~~J'l<
wherel<i<nl<k<rl<ji<jp<---<j=n

2.2. Velocities. Throughout this section, m,n > 1andr > O areintegers,and Y isa
smooth manifold of dimension n + m.

By an n-velocity of order r at apointy € Y wemean anr-jet P € Jg (R, Y),

P = J{¢. When thereis no danger of confusion, we omit n and r, and speak simply of
avelocity. We denote

@) Y = Joy®™ V),
yeY

and define surjective mappings 7;° : T, Y — T.Y,where0 <s <r, by
) w3 (J¢) = I¢.

Theset T Y is endowed with aright action of the differential group L, defined by the
jet composition

®) T'YxL' 5(P,A)—> PoAeTY.

Thisaction is said to be canonical.
Let (V, ), ¥ = (yX), beachart onY. We set

4 Vr: = (Trrfo)il(v)» w; = (yK’ yif’ yiljiy cee yifiz..‘i,),
wherel <K <n+m,1<i;<ip <---<i <n,andforevery P e V,, P = Ji¢,
(5 YiSipiy (P) = Di, Dy, - -+ Dy, (¥*2)(0),

where0O <k <r.

Note that formula (5) can be written in a dightly different way. To this purpose we
denote by tr: : R™™ — R™™ the translation sending avector & € R™™ to the origin
0 € R™™, By definition,

(6) tre(X) =x —&.
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Now writing in components tr; = (trg(), we have

7 yK,,....(P) = D}, Dy, -+~ Dy (trK o, w ) (0).

In the following theorem we use the set of r-jets L, ,, = Jj o, (R", R™) with source
a0 e R"andtarget at 0 € R™ (Section 1.2, Remark 2) Elements of thisset arecaled
standard n-velocities of order r in R™.

Theorem 1. Letm,n > 1andr > O beintegers, and let Y be a smooth manifold of
dimension n 4+ m.

There exists one and only one smooth structure on T!Y such that for any chart
V.¥). ¢ = (¥, on'Y, the pair (Vi, yp). ¥ = (VL ¥ WG, -0 Wi, ) IS @
charton T, Y. Thedimension of T'Y isgiven by

(8 N=(n+m)<n:r>.

In this smooth structure, the canonical right action of L;, on T} Y issmooth, and T!Y is

afibration with base Y, projection 7/, and fiber L, ., .

Proof. Using (7) we can see at once that v is a bijection of V, onto the open
set 1//(V) X L nem © R™™ x RN, where N is determined by Sectlon 1.2, (8)
Thus, (V!, ) isachat on T'Y. Let (V,¥), ¥ = (Y€), and (V,¥), ¥ = (¥5),
be two charts on Y such that V NV # (. Using the higher order chain rule (Sec-
tion 1.1, Lemma 1), it is easy to see that the corresponding coordinate transformation
from (V. y) to (V},, ¥ ispolynomial inthe coordinates v, v, . ..., v, ;. hence
smooth.

Therefore, the charts (V/!, ¥), (V! ¥,) are compatible.

Since the equations of the mapping ° : T,Y — TJY in terms of the charts
(Vo ¥n). (Vi ) aregiven by

K rs _ K
(9) yiliz-uik o Tn - yilizmik’

where0 < k < s, 7° isa submersion.
The smoothness of the right action follows from the polynomiality of the composi-
tion of jets (Section 1.3, (3)).

Theset T, Y endowed with the smooth structure defined in Theorem 1, and with the
canonical right action (3) of L], is called the manifold of n-velocities of order r over Y.
The chart (V}, ¥;) on T} Y is said to be associated with the chart (V, ¥).

The canonical group actlon (3) can be easily determined in the canonical coordinates

a'JlJ  onLy (Sect|on21 (2), (3)), andinachart (V, ¥), ¥ = (yX), on Y. Using the

assoCi ated chart A ), (3) is expressed by the equations
S . . .
(10) Y=Y Vi =2 DL Yipp@hanap.
p=1(l1,12,...,Ip)
where the second sum is extended to all partitions (11, 1o, ..., Ip) of theset (i1, io, .. .,

is) (see Section 1.3, (4)).

Example 2 (the action of L2 on T,2Y). In our standard notation, let P = J2¢, A =
Jéa. By (3), we consider the mapplngt — (YK o) (1).
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Since
Di (¢ 0 a)(®) = Di(y* &) (e(1) Dia (1),
Di D (¥ ¢ 0 @)(t) = DyDi(y"¢) (@ (1)) D' () Dicr*(t)
+ Dy O (@(t) Di Dje(b),
we have the following equations of the action of L2 on T 2Y
yO=yS yi=wal v =) +yeal.
It is clear from these formulas how to obtain equations of the actionof L}, on T, Y by a

process of aformal differentiation.

Let y be asmooth mapping of anopenset U ¢ R"into Y. Thenforany t € U, the
mapping X — y o tr_{(X) isdefined on a neighborhood of the origin 0 € R" so that the
r-jet Jg(y o tr_) isdefined. The mapping

(11 Ust— (Try)t) = (yotr) e T)Y

is called the r-prolongation, or simply the prolongation of y (for terminology, com-
pare with Section 1.2). Since yIlI2 i o Thy® = Dy Di,-- -Di (YK (y otr_1))(0) and
Di (Y¥(y o tr_))(x) = D;j (yKy)(x + t), we get for the chart expression of (11)

(12 Vg © Tay)(®) = Diy Di, - - Dy (Y ) (1).

In particular, Ty isasmooth mapping.

Assume that we have an element P € T,Y, P = Jj¢. A representative ¢ of P
defines the tangent mapping To T, ~1¢, which sends a tangent vector £ € ToR" to the
tangent vector ToT, ~%¢ - & of T/ ~1Y at 77" ~%(P) = J5 '¢. If &€ = &'(3/at"), then

by (12),
= AYipiy o T 1) i 0
g n Y (W0 ()
0 3

k=0 iy <in=e<ik Vi

(13)
_Z Z y|1|2 |k|(‘JO§)€ < )
I1I2 J(I;*l{

k=0 i1 <ip<---<ik

=£'d (P),
where
r—1 9
(14) d = Z Z y|1|2 Ak 3 Aok
k=0 i1<ip<---<ik yI1I2

isamorphism Ty > P — di(P) € TT;~Y over T;~'Y. Indeed, the tangent vectors

d; (P) are defined independently of the chosen chart: If (V, ), ¥ = (yX), is some
other chart at y = ¢(0), then

1
_ ) 9
(15  di= > Viidigok

k=0 j1<ja=<--<jk ay11]2"'jk

-
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and by (13),
(16) di = d.
d; iscaled thei-th formal derivative morphism.

Remark 2. In(14), 3/dy;,..;, areunderstood astangent vectorsto T ~1Y. Formula
(14) does not define a vector field on T, Y since it is not invariant when the tangent
vectors /0y, .;, are subject to coordinate transformationson T; Y.

Let f : VI~ — R be a smooth function. We define the i-th formal derivative
df: Vr: — R by

r-1 af
w df=> > Vi

K
k=0 Ju<io=<ik Wi jo-ji
Then by (12)
Dp(f o Ti y)(t)

r-1 r-1
a(foT.7™y) B
- Z Z ( : Dp(yiKU'z"-J'k oT, 1V)(t)
=0 Mo

K
k0 jr<fomosik \ WYirjzk
r—1 ry—1
o(f
(18) = Z Z (%) DpDj, Dj, - - Djk(yKV)(t)

k=0 ji<jo<--<jk Yitio-i M
r—1 r-1\-1

A(fo(yn, ™)

= (N y><t>)< v

k=0 ji<jo<--<jk Yitiz i (T

= (dpf 0TI,
ie.,
(19) dpf oTry = Dp(f o T 1y).
In particular, DgDp(f o T, 71y) = Dq(dp f o Tl y) = dgdp f o Ty, e,
(200  Ogdpf = dpdy .
Note that if wetake f =y, in(17), weget
QD) Y = Y-

Our aim now will be to derive explicit transformation formulas between the induced
chartson T,Y. Let us write the transformation equations from (V, v) to (V, ¥) in the
form

(22) yK — FK(yL)

We wish to determine the functions K, X ..., F__; defining the corresponding
transformation

oK K L L L L
@) Viipie = Rl (Y Vi Vi - Vi) LSk,
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from (V!, ¢ to (VI, vh).

Note that by (21) and (16),
(24) YEjz-.-jkij = aik+1ylﬁj2mjk = djmyﬁjz...jk = =dj, - dpd;, <
Thisformula may be applied whenever the transformation rules (22) for the coordinate
transformationson Y are known.

Lemma 1. The following formula holds

K
(25)  Fifipeis = XS: e PR s :
112:ls 1712 p ayLlang . apr

p=1(I1, 12, 1p)

where the second summation is extended over all partitions (4, I, ..., I,) of the set
(i1,0p,...,10g).

Proof. We proceed by induction.

1. First consider the caser = 1. We have V! = (z}9~1(V) and ¥} = (yK, yX)
wherel < K <n+4+m, 1 <i < n,and by definition,

(26) YKo =y*@O), ¥t = Diy*o)(0).
Obvioudly,

oK K /L oK aFK L
(27 yr =F"(y), Vi =V
ay
onV, NV} or, whichisthe same, FX = d;, F¥.
2. Now assumethat s > 1, and

7]

S Liyta . ybo_ OPF"
(28) 110211 - Z y|1 y|2 y|p ayLla

L Lp*®
p=L (11,17 1 p) y=?---oy"P
Then by (21)
Fitipeia sie = the Filipie
= Lyl L L L L Li L L
=Y > (Y Y Y A Y2 dy )
p=1(l1,l2,....1p)
3pFK s1 L L L apFK
. + 1 2., pd_s
aytiay-z. .. gyte pX—]:-“L;Jp) T e G gyt oyt
(29 Ly L L Li L L Lo L L
= Z (yllilsyIZZ"'ylpp _|_y|11y|2i28...ylpp 4+ ... +y|11y|22...ylp'ijs)
P=1(I5.12...1p)
IPFK = L. L Lp. L gPHIEK
. + 1 2 .. Py p+1
ay-ay-2- - 9y ;(ll,lzz;,lp) Yo  Hp hs dy-taytz. .. gy-rayten

—XS: Z yLlyLz._.pr 8pFK
B J 7 J L L Lo°
p=1 (3. %..... Jp) T P aytigyte. .. gyte
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and the formula (25) is verified.

2.3. Regular velocities. Let m,n > 1 be fixed integers. We need a convention

regarding partitions of the sequence (1,2,...,n,n+ 1,...,n 4+ m) in two comple-
mentary subsequences. A subsequence (iq,io,...,in) Of the sequence (1,2,...,n,
n+1,...,n+ m), consisting of n elements, is called an n-subsegquence. Indeed, one
has exactly

n+m
1
o ("7
different n-subsequences. Every n-subsequence (iq, iy, ..., in) has a unique comple-
mentary subsequence (o1, o2, ..., om). Note that since we consider subsequences, we

awaysassumethati; <i, <--- <ip,01 <02 < --- < o,
Wewrite(K) = (1,2,...,n,n+1,....n+m), (i) = (ir,ip,...,in),and (¢) =

(01,02, ...,0m),toexpressthaa K =1,2,...,n,n+1,....n4+m,i =iq,ip, ...,Ip,
and o = o1, 09, ..., 0om, respectively. We aso write, with obvious meaning, v € (o),
j € (), etc.

Letr > 0,m,n > 1beintegers, let Y be a smooth manifold of dimension n + m,
andlet T!'Y be the manifold of n-velocities of order r over Y. We shall consider the set
of regular n-velocities of order r in TY, denoted by imm T Y. Recall that a velocity
P e T)Y,P = Jj¢ iscaled regular, if there exists an r-jet Q € J, (, (Y, R"), such
that

(2) QOP=J6Ian

P isregular if and only if every representative ¢ of P isanimmersionat 0 € R" (Sec-
tion 2.1, Lemma5, (a)) or, equivalently, if and only if there exist achart (V, ¥), v =
(y), at y = ¢(0), and an n-subsequence (i) = (i1, io,...,in) of the sequence
Ky=(@,2,...,n,n+1,...,n+ m) such that

3  det(yj(P)) =det(Dj(y 0 )(0) #0.

Recall that T}Y is endowed with the canonical right action of the differential group
L}, defined by

4  Q=PoA

(see Section 2.2, (3), Theorem 1, (b)). Let (V, ¥), ¥ = (yX), beachart on Y, and let
Vo) ¥ = (Y Y e - v, ), bethe associated chart onimm TTY. (4) is
expressed by the equations

S
v v i1z | g

6 V=Y V=D D0 Vipanatcan,

p=1 (l1.l2,....1p)
where the second sum is extended to all partitions (I4, I, ..., 1) of the set (iy, iz,
..., is) (see Section 2.3, (10)). Clearly, here y-, yi . Vi o,r - - -+ Yoy pppy (F€SD. Y, VS,
Vi, - s Vi, » TESP. @) are the coordinates of apoint P € immTY (resp. itsimage
QeT Y, resp. Ac L))

The following lemma says that formula (4), or equivaently, (5), induces aright ac-

tiononimmT]Y.
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Lemma2. ThesetimmT.Y isan open, dense, Ly -invariant subset of T Y.

Proof. Let P € immT!Y, P = Ji¢, let (V,v), ¥ = (y¥), beachatat y = ¢(0),
and let (V!, y!), ¥ = (yK, yi*j, yifiz, o, yi*fiz”_ir), be the associated chart at P. Since
¢ isanimmersionat 0 € R", the matrix formed by yiK(P) = D (y¥¢)(0) isof maximal
rank equal to n. Assumethat det(yi‘(P)) # Ofor ann-subsequence (i) = (i1, ip,...,1p)
of the sequence (K) = (1,2,...,n,n+ 1, ..., n+ m). Then since the mapping V, >
P— det(yiJ(P)) € R iscontinuous, P has a heighborhood on which this function is
nonzero. This verifiesthat theset immT!Y C T!Y isopen.

IfPeimmT,Y,P=Jj¢,and Ac L], A= Jla,then Po A= J[(¢ o), where
¢ o isobviously animmersion at 0 € R". This proves invariance.

Theset immT, Y is called the manifold of regular n-velocities of order r over Y.

Now we wish to analyze the equivdlence R C immT;Y x immT, Y, associated
with the canonical group action (4).

We set for every n-subsequence (i) of thesequence (1, 2,...,n,n+1,...,n+m)

(6) WO = [P e V]| det(y} (P)) # O},

where (V! ¢) is the chart on immT!Y associated with (V, ). In (6), i € (i), and
1 < j < n W® isan open subset of V,. It is easily seen that W@ is L[ -invariant.
Indeed, if P € W® is a point, then by (5), for every A € L}, yl\(P o A) = ¥ =
ys (P)af’(A) and det(y| (P o A)) = det(y,(P)a(A)) = det(y|(P))det A # 0, i.e,
Po A e W®. shrinking the canonical coordinates (v, v/, v ..... ¥, ) to W®
we obtain a chart denoted by (W@, x ). We have

0
which implies that the charts (W@, x @) form an atlas on the manifold imm TY. The
coordinate transformation from (W® | x ©) to (W1, x 1) coincideswith the restriction
of the identity mapping of V! to W n' w0,
We introduce a collection of functions zX : W® — R, by

® Zy, = s,

wherei € (i),and 1 < j,k < n. Existence of these functions is guaranteed by the
condition (6). z‘ isarational function of y;j, and is therefore smooth.

Now consider equations (4), and the equivalence R on immT]Y “there exists A €
Ly suchthat Q = P o A”.

Lemma3. Let (P, Q) e immT]Y ximmT]Y bea point. The following conditions
are equivalent:

@ (P, Q) € R.

(b) There exist a chart (V, ¥), v = (yX), on' Y and an n-subsequence (i) of the
sequence (1, 2,...,n+ m) such that P, Q € W@, and the coordinates yi*jizmis (resp.
YiS.,.i. Tesp. a]) of P (resp. Q, resp. A) satisfy

S

oK _ K . _ o j1iqi2 . 4lp
y =Yy Yisigis = Z Z yjlj2"'jpa|la|2 a|p’
(9) p=1 (|1,|2,...,|p)

15ilai27"'9i87jl9j29"'ajpinalfsfra
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and the recurrent formula

S

(10) aglkzmks = Ziq (yL1k2~~'ks - Z Z aljllaljz2 o aljgy}liz'~~1p)’ he®.

p=2(I1,12,....1p)
where (o) is the complementary subsequence of (i).

Proof. 1. Assume that (a) is satisfied. Then there exist (V, ¥), v = (y¥), and (i),
such that P, Q, and A satisfy (4) hence (5) and P, Q € W®. If (¢) is the complemen-
tary subsequence, we can split (5) in two subsystems, taking K =i, and K = o. Then
the first subsystem reduces to the condition y' = y', and to the recurrent formula (10),
which determines the canonical coordinates of the group element A as certain rational
functionsof y, ... ¥i,j,.. ;.- The second subsystem of (5), together with the condition
y' =Y, gives(9).

2. If (b) is satisfied, conditions (9) and (10) imply (5), therefore, P and Q belong to
the same L} -orbit.

Let (V, ), ¥ = (y¥), beachart at apointy € Y,andlet (i) = (i, io,...,in) be
an n-subsequence of the sequence (1,2, ...,n,n+1,...,n+ m). We need aformula
expressing the formal derivative morphism (Section 2.2, (14)) in terms of the chart
(W® | x®) Notethat (i) defines asplitting of the sequence of the coordinate functions
(y%, y2, ..., y™™) into two subsequences (y') and (y°). Setting v = (y') defines, in
components, amapping of V onto aset U in R". Since v is the composite of v and
the Cartesian projection of R"*™ onto R", which is an open mapping, U is open.

Anr-jet P e V!, P = J{¢, belongsto W if and only if the mapping ¢V = vV or
of aneighborhood W of 0 € R" into R", sending 0 € R" into the point v (£(0)) € U,
isadiffeomorphismat 0 € R™.

Let P ¢ WO, P = J5¢. Recal that a representative ¢ of P defines the (r — 1)-
prolongation of ¢,

(11) Wst— (T, o)) =3 Heotry) eimmT, Ly

(Section 2.2, (11)). Then the composite T} 71¢ o (¢1)™ o ¥ o "0 is defined on a
neighborhood of P in W®, and takes values in " “1(W®) c immT!-1Y. Let & ¢
Tp immT,Y beatangent vector at P,

@ =Y ek . (%) ,
=0 Wijipis ) p
and consider the tangent vector
13 hYE=To(Ty oM oy Vo) &
of immT!-1Y at "' ~1(P) € «""~}(W®) c immT!~1Y. We get
h©(&) = (T topvor oy Ta o To(@ ) oy P oth0) - &

(14) = T((C(i))—low(i)og)(o)-rr:_1§' o Tp((f(i))_l o W(i) o _[r,O) £
=ToT! Yo Tp((é‘(i))_l oy®o .Er,O) £,
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But
(to oy o™ o TS, Yo Y o Youpenr)
=t @)y .y,
where (t1, t2, ..., t") are the canonical coordinates on R". Since
Te(c)oy®or"?) &
At o @)oo ()™ K 9
= “Giiois| 3@
0
Vh(P)

K
8yQ1Q2~~~Qs

(16) (3(tq o (;(i))l) '
(), ()
9y vO(y) 0

_ apeif 9
—amﬁ<m06

we have, comparing this expression with Section 2.2, (13) (14), hV(¢) = z'(P) &'
dq(P), where d, is the formal derivative morphism. Denoting

(17) A = Z'dg,

(15

we get the formula
18)  hOE) =¢&'aA;
Notice that in (17) and (18), summation throughi € (i) takes place.
Lemmad4. (a) For everyi, j € (i),
(19)  AiAj = AjA.
() If (V, ), ¥ = (y&),and (V, ), ¥ = (y¥), aretwo charts, and (i), (j) aretwo
n-subsequences of (1, 2, ..., n + m), then
(20) Aj = ZYiA;.
Proof. (a) First note that the relation yyz§ = &} implies dpyz} + Y¢dpZj = 0 hence

; b " Ys
zfﬂdpy'srz?lJ\rN z(i‘i’)y'sdpzllz 0, and Z'dpyiz5 + dpZ] = 0. Thus, for any smooth function
tTTTWY) > R,
= —2'ZlyE 22d, f + 207 dpd, .

This formula together with Section 2.2, (20), proves (19). _
(b) We have, with our standard notation, Aj = z5ds = Zjds = 2368dy, = Zyiz’d,
= 23y Ai, wherei € (i), j € (j).

Remark 3. Lemma 4(b) shows that the morphisms A; span a subbundle of the tan-
gent space Timm T ~Y, determined independently of charts.
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Using the charts (W@, x @), we can construct new charts on immT,Y adapted to
the canonical right action of L},. In the following theorem, these charts are described by
means of the morphism A; = z d , (17).

Theorem 1. (a) Let (i) be an n-subsequence of the sequence (1, 2, ..., n+ m) and
let (o) be the complementary subsequence There exist unlquefunctlonSw wi, wii,
o wi i Whereiy,ia, ..., iy € (i) and o € (o), defined on w®, symmetrlcmt e
subscripts, chh that

gq=1(I1,12,....19)
The pair (WO, w®) where

i) _ i o o o o
(23) v (y ypl’ yplpz’ T yPle“-pr’ W, Wiy Wigjys e s wi1i2~~ir)’

isa chart on immTZY. The functions w?, w{, wf;,, ..., wi;, ; satisfy the recurrent
formula
(24) wializmikikJrl AIk+1 i1ip-ik?

and are L] -invariant.
(b) The canonical group action onimm T Y is described on W by the equations

y =y,
vl — 1ql2  4lpyi
(25) Ve =D D analoalyi..
p=1(l1,l2,....1p)
=0
wili2~--is = wl]_l2 IS
wherei, i, i, ...,is€ (i),0 € (0),0 < s <r. Equations
o — (o2
(26) Wjiisis = Cigigenis

wherec’;, ;. € R, are equations of the orbits of this action.

Proof. () We proceed in three steps

1. To prove existence of t w?, wf, wf; , ..., w{;, ; , We proceed by induction.

First we provethat the assertion fa) |strueforr =1 Consider the pair (W®, lIJ('))
v =y Yp, w7, wi), whereby (22), w” = y’, y7 = yyuwf ObV|oustw =z yp,
wherej € (|) which shows that (WO, lIl(')) isanew chart. Moreover w = zf’d y =
z dpwf’ It remains to show that the functions w’, w{ are Ll-lnvarlant Smcethegroup
actlon (4) is represented by the equatlonsy =y, y =y, yp = apylp Yo = apyI ,
the inverse of the matrix yp = apyJ |qu qus whereq € (i), and stands for the
inverse of al. Hence w” = w” and w{ = Z'yy = z’bkayy; = z"y5 = w proving
invariance.

Now we apply induction. Consider (22) with symmetric w{
the formal derivative morphism we get

1<qg<k.Using

i1ig-ig?

o _
Yprp-pepess = Apcis Yorpoo i

(27) _ K d i1,,i2 iq o i1y,i2 iqd o
- Z ( Pk+1(Y|1Y|2 e y|q) Wiligig +YLYL Yi Dk+1wi1i2---iq)
gq=1(I1,12,....19)
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k . . .
Z Z Apycs (VY2 - YiDWT,
.nlg)

1 (1,12
k—1
i1y,i2 iq\fq+1 A o
Z Z yllylz e quypk+1A|q+1wili2...iq
=1 (I1,12,...,1 )
i2 ik \Jk+1 A. o
+ Z y Yoz Yo Ypers Dk Witipeiy
(I1,12,...,

Now we apply the induction hypothesis (24) to the second summand. We get
k

yglPZ"'pkpk+l = Z Z dpk+1(yiiyz e y:g)wiiiz-..iq

g=1 (I3, l2,....19)

(28) k1 o )
+ Z y:iy:i quygk-:—];l iqip-- Iqlq+1
=1 (lg,l2,...,1g)

+ y ylpzz yll;(kyll;killAiKJrlwiglizmik‘
In this formula, we sum through partitions (l4, Io, ..., lq) of the set {ps, p2, ..., Pk},
andiy,io, ..., lq, Ig41 € (). Wewant to sum through partitions (Ji, J, ..., Jq) of the
set {p1, P2, ..., Px, Pre1}- Note that such partitions arise in two possible ways, either

by adding px1 to an element of some partition (I4, I», ..., Iy), or as a partition of the
form (4, Io, ..., g, { Pks1})- Then, however, if we denote

o
(29) wi1i2~»-ikik+1 AIkJrl iqip-ik?

the expression (28) can be written in the form

a i1,,02 iq o
(30) Ypipo- pepers = Z § Ya¥s Y Wisipig
q=1 (J1,%,--.,Jg)

wherethe summationistaking placethrough partitionsof theset{pl, P2, ..., Pk, Prsi}-
This proveﬁ existence of the functlons w?, wi, wi ,w?. .. By Lemma 4, the

I1I2 I
functionsw?._, w’ are wmmetrlc int 2he subscrl pts

I1I2 I1I2I3 I%Iz ir

2.To proveunlquenessoft efunctionsw?, wi, wij,. ..., W, ,onerewrltes(22)
similarly asin (28), and determines w{, usi ng regularlty of the matrix Yp-

3. It remains to prove invariance condltlon WS, jyejs = W j,ej StALing that the func-
tions (24) are constant along the L! -orbitsin (W, \Il '))

Consider equations (5). If P is apoint of immT,Y, and Q = P o A, then by
Lemma 3, thereexist achart (V, ¥), v = (y*), and an n-subsequence (i) of (1,2, ...,
n-+m) suchthat P, Q € WV, If (¢) isthe complementary subsequence, the coordinates
of P, Q, and A satisfy (9) and (10).

Using (22) we can write

. Sp—o
Yijigis = Z Z Y|IY|2"'y|pwjljz---jp»

p=1(lq,lo,..., |p
p
CZ— Z fryfe . tlwa
leJZ“'Jp - leyJ2 yJ| tito-- 0
=1 (31,32, J)

(31)
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where (11, I, ..., Ip) isapartition of the set {iq,io,...,is}, and (I, J,..., J) isa
partition of the set {j1, j2, ..., jp}. Then by (9)

Z Z y yf; “y.p_lllz ‘Jp

p=1(lq,l2,..., Ip)

. p
— 152 Ip t1\t i o
Z Z aI1a|2 o a'p (Z Z Ya Y5 YaWute ) :

p=1(l1,l12,.. =1 (31, %2,....9)

(32)

Now we wish to determine the terms wy,, 1, ON theright sidewith fixed p. Changing
the notation of the indices, we get the expressi on

S

142 a ty \ft2 o o

@ D ) aaro-ay (Z > yalyaz'“yapwmz-..tp>
g=1 (I3, l2,....1g) p=1(J1, X.....Jp

from which we seethat wy;, ., are contained in every summand with g > p. Thus, the
required terms are given by

S
j15] Jgtrt t
@ (T XX sk ot

g=p (I3, 12,....,1q) (J1,%2,---,Ip)

Inthisformula, (I, 12, ..., ) isapartitionof (i1, iz, ...,is),and (I, I, ..., Jp) isa
partition of (j1, jo,..., jg)-
Now we adopt thefollowing notation. If | = (i, iy, ..., is) isamulti-index, then the
symbol (I, I2,...,1p) ~ | meansthat (I1, I, ..., 1p) isapartition of the set {i4, i»,
s}

Asbefore, let | = (iq,io,...,is), and p befixed. Consider the expression

_t -
(35) ( > VYR vﬁ;) Wity
(I1,12,...,1p)

We wish to show that this expression is equal to (34), i.e.

. _t p
< Z ytljiytlzz T yli) wt1t2~~tp

(11120, 1p)

S
_ 142 gt 2 tp o
-(z S Y afalealtyiyh - pr) W

g=p (I3, 12,....1q) (J1,32,---, Ip)

(36)

Write formula (10) of Section 2.2 in the form

oK _ i14] ipy,K
oy X X el

p=1 (11,2l p)
(I, 1g, .y 1p) ~ 1.
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Using the same notation, we have

[la]

t 11,012 11¢11

y|l - a|11a|12 |1qu]11112 qul
q=1(11112,...11,g;)

(ly1, le2, oo lyg) ~ 1t
|12

—to j21 4122 gy to
y|2 - a|21a|22 |2q2y]21]22 JZqz

=1(l121,122,...,1
(38) Q=1 (l21,12,2,...,12.g5)
(g1, 122, ..., 12g) ~ 12

[1pl
p ipa Jp2 Ip.ap
= a, a --a
p Z Z Ip1 |p2 |pqpprlJp2 Jpqp
qp=1(lp1,1p2;--- |p,qp)

_t
Y

(lp,l, Ip,2,---, Ip,qp) ~ Ip,

where (14, I, ..., Ip) ~ 1. Thus,

ol1 gtz gtr 1.0
Z y|1y|2 e y|p wt1t2~--tp

— it1,012 qu1 ty
- Z Z a|11a|12 |1q1y~]1
Q=1(1111,2...l1,q)

(39) 2 i i 2, t

21,022 a2\ 2
Z a'zlalzz |2q2y32
Q2=1(l2,1,122,....12,q)

[1pl
ipaip2 Jpqp tp o
Z Z alplalpz |pqp pr wtltzmtp’

qp=1 ( p.1, | P,2s+es | p,qp)

Where ‘]1 = (jl,ls j1,29 LI ] jl,ql), ‘]2 = (j2,1, j2,2’ LI ] j2,q2), L] Jp = (jp,L jp,Z, RS |
Ip.gp)- This expression can be written in a different way. Notice that since

(R PR EI Rl FR A PE T PP PR R P!

(40)
’ (Ip,la Ip,2a s Ip’qP) ~ Ip,
then
(41) (Il,17 |1,25 ceey Il,ql, |2,1’ |2,25 N I2,an D) Ip,la Ip,29 N Ip,qp) ~ Ia
where [11] + [lo] +--- + [Ip] = ||| = sand if we define

(42) Q=01+ 0+ -+ Jp,
we get
(43) p=q=|la+Ilal+ -+l =][l|=s
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Now, having in mind the corresponding summation ranges,

t -
( Z yt|11yt|22 W;) Wity 1,

(I1,12,...,
“ =Za.’;;a:;s altalial ol alal ol
YSYE Y W,
Denoting
(51, %, ... S)
(45) = (o1 12 dra Jot oz J2ger o o dpae - dpap):

(Pl, PZ’-"a Pq)
= (ll,lv Il,25 ceey Il,qla |2‘lv |2,25 O] |2,C]25 ceey Ip,la |p,25 O] |p,Qp)9

weget (P, Po, ..., Py) ~ |, and

_t _t _t o

( Z Y|1ly|22 ce Y|F:)) Whyty-ty

(I1,1
(46) 1

S
t (o
(B % s,
4=P (P, P2,.... Pg) (31, 32,..,Ip)
This proves (36).
Returning to (32), and substituting from (36) we get a basic formula
S

(47) Z Z yﬁyf; e y:z(w(jfﬂz-"jp - w(J?ljZ'“J'p) =0.

p=1 (1, |2,...,|p)

—_ (o2
= Wi,k for al

Now it is easy to show that w9

k<s-—1 ‘
If s=1, weget y L (wS, — wS)) = 0, and since the matrix y! isregular, w] = wy.
If s =2, we have

WS, j,.js Provided w

jij2is = jaj2 ik

ylllz(w - wll) + yllylz(wjljz 1112) = y|1y|2 (wlllz 71]2) =0,

which implies, again using regularlty of the matrix yI ,that wf ;, = wS,

Now assume that w ;, ; = wS foral k < s— 1. Then (39) reducesto

(48) yilllyijz yljss( j1j2is T ializ---is) =0,

— o I
which gives us WSy = Wi = O asrequired.

(b) This assertion isimmediate.

JENERSY

The charts of the form (W®, w®) arereferred to as the adapted chartsto the canon-
ical group action of L}, onimmT!Y.
We can now easily prove the following result.
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Theorem 2. If Y is Hausdorff, then the canonical right action of L] defines on
immT!Y the structure of aright principal L} -bundle.

Proof. We have to show that the equivalence R “there exists A € L[, such that
P = Qo A” isaclosed submanifold of the product manifold immT]Y x immT!Y,
and that the group action (4) isfree.

But R is obviously a submanifold, by Theorem 1, (b). To prove that R is closed,
consider apoint (P, Q) e immT]Y x immT.Y such that (P, Q) # R. Then P # Q,
and we distinguish two possibilities: (1) 7%(P) = "°(Q), (2) 7/ °(P) # 7%(Q).

Inthe case (1), P, Q € V| for any chart (V, ) on'Y, Clearly, because Y is Haus-
dorff, in both cases the points P, Q can be separated by open sets. The product of these
open sets does not intersect R, proving that R is closed.

To show that the action (4) is free, we assumethat P = P o A for somer -velocity
P € immTY and some A € L;. Since P isregular, there exists Q € J(r oY, R"),
where y is the target of P, such that Q o P = J] idrn (see (2)), which implies A =
Jj idgrn.

2.4. Frames. Let X be a smooth n-dimensional manifold. An invertible n-velocity
of orderr atapointx € X iscalledanr-frameat x. Obvioudly, the set of r -frames at the
points of X coincides with the subset imm T} X of T; X formed by ther-jets P = Jj¢
with source 0 € R" and target in X, such that for any representative ¢ of P, and any
chart (U, ¢), ¢ = (X',

@ det (Di (x/¢)(0)) # O.
We denote
2 F'X =immT, X,

We have the canonical jet projectionst™%: F' X — FsX and " : F"' X — X, defined
as the restrictions of the canonical jet projections S : TI X — TSX and 70 : TI X —
X totheset F5X (Section 2.2, (2)). Note that Theorem 2 can be applied to F" X.

Theorem 3. (a) The set is an open, dense, L -invariant subset of T} X.
(b) The canonical right action (P, A) — P o Aof L], on F" X defines the structure
of aright principal L} -bundle over X.

Proof. (@) Thisfollows from the condition (1).

(b) We have to show that theright action (P, A) — P o Aisfree, and the orbit space
F" X/L}, hasasmooth structure such that the quotient projection of F" X onto F" X/L},
is asubmersion.

Let P e F'Xand A, B € L} besuchthat Po A= P o B. Since P isinvertible, we
have J idgn = P"1o Po A= P 1o PoBhence A= B.

It is clear that the L!-orbits in F' X coincide with the sets (z")"1(x) ¢ F'X. In
particular, the equivalence on F' X defined by the group action (P, A) — P o A coin-
cides with the equivalence associated with the jet projection t". Therefore, we may take
F'X/L, = X.

F" X, considered as aright principal L;-bundle over X, is referred to as the bundle
of r-frames over X.
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Let X (resp. Y) be an n-dimensiona (resp. m-dimensional) smooth manifold. We
wish to describe the manifold of r-jets J" (X, Y) as an associated fiber bundle.

Consider the manifold Ly, ., of r-jets with source at 0 € R" and target at 0 € R™
(Section 1.2, (13)). Ly, ,, is endowed with natural actions of the differential groups L,
and L7, defined by the composition of jets o, and of the product of differential groups
L}, x L},. Thegroup operationin L}, x L, isdefined by

(©)] (A,H)-(A,H)= (Ao A, Ho H,

Ly x Li, actstothelefton L, by

4) (A,G)-P=GoPoA™

L}, x L}, aso actsto the right on the product of ther-frame bundles F" X x F"Y by
5) (ST)-(A,H)=(So A, ToH).

We have the following assertion.

Theorem 4. (a) F' X x F"Y with the action (5) is a principal (L}, x L},)-bundle
withbase X x Y.

(b) The mappings
(6) FIXXFYxLL,32(ST),P)>ToPoStel(XY),
(7 F'XxT'Y> (SR — RoSteJ(X,Y),

are frame mappings.

Praoof. (a) The canonical projection of F' X x F'Y onto X x Y isobviously a sur-
jective submersion. To show that the action (5) is free, assumethat (S, T) - (A, H) =
(ST). ThenSoc A= S, T o H =T, and we useinvertibility of Sand T.

(b) Consider e.g. (7). 1f Q € J" (X, Y), thenforany Se F' X, equation Ro St = Q
hasasolution R = QoS. Thus, (7) issurjective. To verify invariance, choose an element
Aec L. Thenforany (S;R) € F"X x T!Y, (RoA)o(So A1 =RoAcA1oS 1=
Ro S71, proving L! -invariance.

Corollary 1. (6) defineson J" (X, Y) the structure of a fiber bundle with fiber L7, ..,
associated with the principal L}, x Lp,-bundle F* X x F"Y.

Coroallary 2. (7) defineson J' (X, Y) the structure of a fiber bundle with fiber T}Y,
associated with the principal Lj-bundle F" X.

Remark 4 (linear frames). Let X be an n-dimensional manifold. The principal L3-
bundle F1X, denoted by F X, is usually called the bundle of linear frames, or simply
the bundle of frames over X.

F X can aternatively be defined as follows. The elements of the set F X are bases,
or frames, of the tangent spaces Ty X, where x runs through X. We have the mapping
7 . FX — X, assigningtoabasis B = (§1,&,,...,&) a x € X the point x. If
(U, 9), ¢ = (X, isachart at x, then the associated chart (V, ¥), ¥ = (X', x}), is
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defined as follows. We take V = 7~1(U), and E € V. Then the coordinates x' (Z) are
takento be x' (7 (8)), and x'j (E) are defined by the decomposition

— ad
®  &=%@ (o)

in the tangent space Ty X. The associated charts are taken to define a smooth structure
on F X.

F X is endowed with aright action of the general linear group GL,(R) = L1 If
Ae GL,(R),A= (a'j), then E - A= (§ay, &a,, ..., &ay). In coordinates,

(9) x'(2-A) =X (8), X((E- A) = x5(2)a/.

This action defines on F X the structure of aprincipal GL,(R)-bundle.

An invertible 1-jet with source 0 € R" and target X € X is canonically identified
with alinear isomorphism from R" to Ty X, and also with the basis of Ty X, consisting
of the images of the vectors of the canonical basis of R" under this linear isomorphism.

3. Jet prolongations of smooth manifolds

3.1. Contact elements. Letr > 0, m, n > 1 beintegers, let X be a smooth manifold
of dimension n, and let Y be a smooth manifold of dimension n + m.

Denote by ng,y)(x, Y) the set of mappings of classC" f : W — Y, where W isa
neighborhood of X, such that f (x) = y (Section 1.2), and consider the set

@ Cxn= U .
X, y)exXxY

We say that two mappings f, g € C' (X, Y) have contact to order r at (Xq, X2), if f is
defined at x;, g isdefined at x,, and there exist charts (Uy, ¢1) at X; and (Uy, @) at X
such that

(2) ‘]Cr) ( f (pl_l tr_‘ﬂl(xl) ) = ‘](r) ( f wz_l tr—(ﬂz(Xz) )

The relation “ f and g have contact to order r at (X1, Xo)” is an equivalence on
C' (X, Y). Equivalence classes of this equivalence are called contact elements of order
r with target y, or simply contact elements. The contact element whose representative
isamapping f € ch’y)(x, Y) iscalled the contact element of f at x, and is denoted by
Gl f. The set of contact elements with target y is denoted by G| (X, Y).

The equivalenceon C' (X, Y) “ f and g have contact to order r at (X1, X2)” induces
an equivalence on the set of r-jets J' (X, Y) “there exist charts (U, ¢1) and (Uy, ¢0)
suchthat 35 (f oyt tr_yy00)) = I (Fos tr_pxp))” - When we express a contact el ement
asthe class of jets, we denote

3) Gl f =[J f].

Clearly, J; f, J,9 € J'(X,Y) are equivalent if and only if there exists a diffeo-
morphisma : U — V, where U is a neighborhood of x; and V is a neighborhood of
Xz sending x; to Xp, such that J; f = J7 g o J; . Indeed, we can take « in the form

-1
o= @y U _gy(xp) O gy xq) P1-
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3.2. Grassmann prolongations of amanifold. Letr > 0, m, n > 1 beintegers, and
let Y be a smooth manifold of dimension n 4+ m.

Lemmal. Let W be a neighborhood of theorigin 0 € R", andlet ¢, x : W — Y
be two C"-mappings. The following conditions are equivalent:

(&) ¢ and x have contact to order r at O.

(b) There exists an element Jj« € L, such that

@) Jo¢ = Jox o Jpe.
Proof. Thisisimmediate.

In this section, we consider contact elements of immersions with source0 € R" and
target in Y. Lemma 1 shows that such a contact element belongs to the quotient of the
manifold of regular n-velocities of order r withtargetinY, imm T Y, by the differential
group Ly, i.e, to the orbit space

(3) GrlY =immTY/L}

(Section 2.3, Theorem 2). Wedenote by =), : immT,Y — Gr[Y the canonical quotient
projection.

For every s,0 < s < r, we aso have the canonical projection of Gr|Y onto GrJY
defined by

4 or(Gpe) = Gi¢.

If z7° isthe canonical jet projection of immT]Y onto immTJY, we have the commu-
tative diagram

immT'Y — Gr'Y

®) ltﬁ’s lp{fs

immTSY —2 GrsY.

If Y = R™™M, we have the commutative diagram

. 7l
immT/R™M —» Gr/R™M

() | I

. 0
immTSRM™M —"» GrSR"™M,

In particular, if s = 0, we have

. h
immT/R™™ —s GrfR™M

(7) | IE%

idgn+m
RNM R . RN

Clearly, immL' = (z1:9)71(0) (see Section 1.2, (13)). We define

n,n4+m

(8) G nem = (o) 10) = immL}, /LT

n,n+m —
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Asfibers of surjective submersions, bothimmLy .. and Grf . ., are closed subman-
ifolds. We call Gry, ., the n-grassmannian of order r over R""™, or simply a higher
order grassmannian.

Note that Gry, ., is endowed with aleft action of the differential group L;

n+m:
9 Liem X Grinem 2 (A [PD) — [Ao P] € Gr{ .-
If F"Y is the bundle of r-frames over Y, the product F'Y x Grf ., is endowed with
theright actionof L, ,
Lhem X F'Y x Grp o2 (A, (F,[PD)

10
(19 — (Fo A, [A1oP]) e F'Y x Gr!

n,n+m*

We have the following result.

Theorem 1. (a) Let Y be Hausdorff. The orbit space Gr||Y has a unique smooth
structure such that the canonical quotient projection =\ of immT.Y onto GrY isa
submersion, and

n—+r
(12) dimGrY = m( : ) +n.

(b) The mapping
(120 F'YxGrlm> (F.[P) > [FoP]eGrlY
is a frame mapping.

Proof. (a) Thisisadirect reformulation of Theorem 2, Section 2.3.
(b) It is sufficient to prove that (10) is Ly, -invariant. Let Jya € L|, ,, be apoint.
Then (12) assigns to the point (Jju o Jja, [Jfa~t 0 I¢]) € Fy x Grl ., the point

n.n+m
[35(na) o Jf(a)] = [ o I5¢] € GrlY proving invariance.

The frame mapping (12) defineson Gr,Y the structure of afiber bundle over Y with
fiber Gry, ,, m, associated with the bundle or framesF"Y. With this structure, Gr{Y is
called the n-Grassmann prolongation of order r of Y, or smply the Grassmann prolon-
gation of Y.

Let¢ : U — Y beanimmersion of aneighborhood U of theorigin0 € R" into Y,
and let T} ¢ beitsr-prolongation (Section 2.2, 11). By the r-contact prolongation of ¢

we mean the mapping
(13) Ust— Glytt) == (T y() € GY.

An explicit description of the smooth structure of the Grassmann prolongation G| Y
follows immediately from the analysis of the canonical group action of the differential
group L onimmT; Y (Section 2.3, Lemma 2, Theorem 1, Theorem 2).

Consider achart (V, ¥), ¥ = (yX) onY, the associated chart (V,", y"), ¥ = (yX,

Yi1s Wiizs ++ - Yigip.i, ) ON IMMT,Y, an n-subsequence (i) of the sequence (1,2, ...,
n 4+ m), and the adapted chart (W, w®) w® = (y! R I
Whiys s Wy, )y Where

14  w' =y, wl = A ApALw,
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r—1 r—1 9
= Zis(P) (Z Z 0 Z < w|1l2 | ) y(:iqqus(P) (%)
P P

k=0 01 <O2<-=<0k 1=0 i1<iz<---<i aleCIZ"'Qk Wigig--iy
r

1) S % iy 9
+ Z Z (K—) yé(lqz---qks(P) (g)ys—l) )
P 100 P

k=0 g1 <02=<--<0k 1=0 i1<ip<--<i aquz--Qk

r—1 , 9 . ) 9
= Z wi1i2v--i|i (P) 8 o + Zi (P)yiliz...hs(P) K )
1=0 i1<ip<--<ij l1|2 A P 8y|1|2 p

thus,
— 9
i Z Z '1'2 i w?
1=0 i1<ip<--<ij igig-|
(16)
+ Z Z Z' y|1|2 I|Sa
=1 i1<ip<--<i y|1|2 -0y

Recall that acharton VY, (V, V), ¥ = (yX), induces the associated chart (V,', y),
vho= VY Y, e ), onimmTrY, and for any n-subsequence (i) of the
sequence{l1,2,...,n + m}, Whose complementary subsequence is denoted by (o), the
chart (W®, \1;('>) O — v, ypl’yplpz"" Vg W W WE o W i), ON

immT.Y, adapted to the canonical action of the group Lr (Section 2.3, Theorem 1);

|nth|schart,|,|1,|2,.. Jre(@)hh<ip<---<ik,m<p=<--<p=<n
Denoting
a7) Wéi):nrr](W(i)), \Il(') (y w? wll,w,llz,...,wf’liz_“ir),

we obtain the associated chart (WS, wl)) on Gr!Y.

Assume that we have another chart, (V, ¥), ¥ = (y¥),onY suchthatV NV # @,
and an n-subsequence (j) of the sequence {1, 2, ..., n + m}. Denote by (v) the com-
plementary subsequence. Then on W® N W

(18)  Aj =2Zds = Zds = Z362d, = ZyizPd, = ZYLA,

wherei e (i), ] € (j). Consider the factor z5 yI If P e WONWDand AeLl,we
have z (Po A)yS(P oA = (Sk and, in the canonlcal coordinates on the dlfferentlal
group L;, yS(P oA = yt(P)aS(A) This implies that z (Po A = (P)at(A b,
hencez (Po A)yS(P oA = zS(P)yS(P) In particular, thefunctlon

(19) "IJI' = Z'ys

defined on WO NW®, dependsonly on[P] € n! (W) Nz (WD) (infact, \IJ' depends
on prH([P]) only).

Now we discuss transformation properties of thefunctions w?, wf, wiy;,, - -
belonging to the associated charts on the Grassmann prolongation Gr Y of Y.

o
Wiigi
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( A) be two charts onyY

Theorem 2. Let (V,y), v = (y»), and (V,¥), ¥ =
w?, we, w’ ... ) and

such that VNV # ¢, let (w<'>,xp<'>) vl = (v, Wl W
W, o), O = (vl w wh wh L wh ) be the associated charts on
Gr;Y. Let thetransformatlon equations from (V, ¥) to (V, ¥) have the form

(20) y = F (Y% w"), w° = F7(y*, w").

Then
. . (OF" dF"
—V | L=V 1 o
(21) wh—\IJJlA,w —\I’M (a_yl+w| awd>,
and the functions wy’;,_;.i, ., 0bey the recurrent transformation formulas
+1
(22) WS e = \Ij}k+lAi WS jy-m i

Proof. (22) follows from (17) and (14). Then using (14), (19), and (20) we get
(23) WY = Ay, WY =w Ajw

J1l2- Ik Jk+1 JENERSY Jk+1 jijz ikt

proving (23).

3.3. Prolongations of a fibered manifold. In this section, Y is a fibered manifold
with base X and projection 7. We denoten = dim X, dimY = n+ m.

Letr > Obeaninteger. Let y € Y be apoint, let x = z(y), and let Sec;,yY
be the set of C" sections y of Y defined at X, such that y(x) = y. We say that two
sections y, 8 € Secl Y are tangent to order r at x, if there exists a fibered chart
V,¥), ¥ = (X, y9), aty whose associated chart on X isdenoted by (U, ¢), ¢ = (X'),
such that

(N Di, Di, - - Di,(¥7y¢ H(@(x)) = Di,Di, - - - Di (¥ 8¢~ H(p(x))

foradls=1,2 ...,randadliq, iy, ...,issuchthal<i; <i»<---<ig<n.

The binary relation “ y, § are tangent to order r at X” is obviously an equivalence
on the set Sec,, Y. The class, containing asection y € Sec, ,Y iscaled ther-jet of y
a x, andlsdenoted by J;y. The set of classes with respect to this equivalence relation

is denoted by J, Y. We define
) IV = HyY
(x.y)

The canonical jet projections are the mappings 7° : J'Y — J3Y,wherel <s <r,
79:JY - Yandr' :J'Y — X defined by

3 " y) = Iy, 7 y) =y, ' (I y) = X.

Let (V,¥), ¥ = (X', y%), beafibered chart on Y, and let (U, ¢), ¢ = (X') bethe
associated chart on X. We define the associated chart (V', ¢'), ' = (X', y°, Yo Yoy
o Y ipin)s 0N JY by the following condition:

@) V' = @0V,
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and, if Jiy € V', then
X'(Iy) =X, Yy =YW,
(5) Yy, (J1) = Dy, Dy, -+ Dy, (Y v H(9(X)),
1<ip<iz<---<ir=n
wherel<i<nl<o<ml<s<r,andl<ij<i<---<is<n.

Lemma 2. Thereexistsa unique smooth structureon J"Y such that for every fibered
chart (V,y)onY, (V",y")isacharton J'Y. Thedimensionof J'Y is

©6) dierY=n+m(n:r).

Proof. We want to show that if we have an atlas on Y, consisting of fibered charts
(V, ¥), then the associated charts (V', v") form an atlas on J"Y. To this purpose it
is obviously sufficient to verify smoothness of the transformations between two charts.
If (V,v) and (V, ) are two charts such that V NV = ¢, then writing y°yp~! =
vy toyye o ppt, we get, using the chain rule, the transformation formula
Yiizis = DiuDiz -+~ Diy (¥ ¥@ ) (@(X)

= D;,Di, -+~ Di, (Y ¥ o yye o g H(@(X)).

Thus, the transformation equations are polynomial hence smooth.
Now it is easy to compute the dimension. We get

- n+1 n+r—1
d|erY=n+m+mn+m< er )+~-+m( +r )

(")

=N+m .

r

Example 1. If r = 2, formula(7) gives

. ay’ ay° )\ axh
= (axh Y yh) ax't’

o (YY) X ax

(9) yi1i2 = (aleasz + ayUaXJZ yjl) 8Xi2 3Xi1
o0y” 3y ) 9k
axin + ay" ') axingsie’

()

®)

The concepts of ther-jet of a C" section of a fibered manifold Y, and of ther-jet
prolongation J'Y of Y, have been introduced in full analogy with the concepts of the
r-jet of an arbitrary C" mapping, and of the manifold of r-jets J" (X, Y).

J"Y can also be defined as a submanifold of J' (X, Y), and of the Grassmann pro-
longation Gr| Y. We denote

(10) imm,TY = {J{¢ € immT,Y|J§m o Jj¢ € F'X}.
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Theorem 3. (@) isa closed submanifold of J' (X, Y).
(b) immT.Y isan open, Ly-invariant set in immT}Y, J'X = (imm,T]Y)/L] is
anopen setin Gr Y, and the diagram

imm,T)Y —— immTY

w l

JY —— GrlyY

in which the horizontal arrows are the canonical inclusions, and the vertical arrows are
the quotient projections, commutes.

Proof. (a) Let (V, ), v = (x',y"), beafibered charton Y, (U, ¢), ¢ = (x'), the
associated chart on X. (V, ¢) and (U, ¢) define the associated chart (W', X;,w) on
J'(X,Y) (Section 3.1). Recall that

12 W =0p9UxV), =&y a0

wherel<k<rl<o<ml<ij<ir<---<ik<npP:3XY) - XxY
is the canonical jet projection, and x;%;,..;, are rea-valued functions on W' defined by

i _ _
Xibipei (3% F) = Di; Dy - - - Dy (¥ f(p—f)(go(x)), where | =i, 0. More precisely,
(13 Hiigeis = Otlyigeir Xiizei)-

Since every section y satisfiesx! o y = x', J'Y N W' is expressed by the equations
(14) Xiil = 8iil? Xii1i2 = 0’ e Xiiliz'--ir =0.

Now it isimmediate that J'Y isasubmanifold, and a closed subset of J" (X, Y).
(b) We have a smooth mapping

(15)  immTIY 5 3¢ — Fmo e = Jwor) e TIX.

Since the manifold of r-frames F' X is an open set in T, X, the preimage of F" X in
immT. Y by the mapping (15), i.e., the setimm T, Y, isopen. If Jjoe € L}, and J(¢ €
imm T, Y, then obviously, Jj¢ o Jgar = J) (L) € imm T} Y, thatis, imm, T Y isan
L, -invariant subset.

Since by definition, Gr[Y = immT]Y/L], thesetimm T} Y/L] isobviously open
in Gr]Y, and we have the commutative diagram

imm,T'Y —— immT]Y
a9 ! !
imm,T'Y/L, —— Gr|Y

in which the horizontal arrows are the canonical inclusions, and the vertical arrows are
the quotient projections. It remains to show that J"Y can be considered as the quotient
imm,TIY/LT.

If J5¢ € imm,T!Y, then the formula

1) y=¢o@p™
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defines a section of Y over aneighborhood of x = 7(¢£(0)). Thus, we have a mapping
(18)  imm,TiY 3 3¢ > Iy o @) H edV.

It is easily seen that this mapping is surjective, and its fibers coincide with L}, orbits.

Let J;y € J'Y beany element. If y isarepresentative of J; y, defined on aneigh-
borhood of x, then for any chart (U, ¢) at X, { = y o ¢ 1 tr_,« is an immersion of
aneighborhood of 0 € R" into Y, and n¢ = ¢ 1tr_,« isan immersion of a neigh-
borhood of 0 € R" into X. Thus, (U, ¢) defines an element J;¢ € imm,T. Y. The
mapping (18) obviously sends J; ¢ to J;y, proving surjectivity. Moreover, for every
Jyo € Ly,

Jrcaon (@0 @Ea)™) = I o) (o™ o () )
= Jreo(E o @)™,

Thus, (18) isconstant on L}, orbits. If I, o (¢ o (&)™) = L, o), (x o (T x) ™), then
e =3xo Jg((nx)—l o ¢) proving that any two elements of afiber of (18) belong
to the same orhit.

(19)

Let Y (resp. Y2) be a fibered manifold with base X; (resp. X;) and projection 1
(resp. o), and let o : Y1 — Y, be a morphism of fibered manifolds. Denote by «y :
X1 — X, the projection of «. If «g is a diffeomorphism, then for any section y of
Y1, ayagt isasection of Y. We define amapping J'e : J'Y; — J'Y, by

(20) Ja(dy) = J&O(X)ayao_l.
If a issmooth then J"« is also smooth. Obviousdly,
(22) 750 a=3aon", ' oda=ayon", Jidy =idyvy.

for every s, 0 < s < r, and every fibered manifold Y.
J'a iscalled ther -jet prolongation, or simply the prolongation, of «.

Lemma3. Ifa : Y — Yoand B : Yo — Yz are morphisms of fibered manifolds,
whose projections are diffeomor phisms, then

(22) J'(Boa)=J3Bola.

Proof. Thisis an immediate consequence of definitions.

Remark 1. One can easily determine the chart expression of J"«. Consider for sim-
plicity thecaser = 1 Let (V,y), ¢ = (X, y°), (resp. (V,¥), ¥ = (X, §7)) be

afibered chart on Y1 (resp. Y2), let (U, @), ¢ = (X') (resp. (U, ), ¢ = (X))) be the
associated chart on X, (resp. X;). Assumethat «(V) C V. Let usdenote

(23) Ko = f, o =F7, xKa™t = g~
Then we get
¥ o Ja(Xy) =¥ (I 0xveg?t)
= Dj(Yay o yye o pag ) (Gaop H (@(X)))
= Di((0) oy ™) (¥ (y () Dj (x g @) (P (0(X)))
+ Do (VP ay ) (v (y () ¢ (3¢y) Dj (X o 161 (@(eto(X)) ).

(24)
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Thus,

aFY agk N aFY agc _;adf
Xk axl oy Kozl T X g3
where di stands for the formal derivative operator.

(25) yJ‘J oJ'a=

’

Remark 2. A manifold X can naturally be viewed as a fibered manifold over X,
with projection idy. If y : U — X is smooth section of this fibered manifold over an
opensetU, theny (x) = xforevery x € U. Thus, y = idy. Inparticular, J;y = J; idy.
The mapping J'X > Jidy — X € X is a diffeomorphism called the canonical
identification. Using the canonical identification, we always identify J" X with X. If
a . X3 — Xy isamorphism viewed as fibered manifolds, then « is a diffeomorphism,
and J"« is canonically identified with .

Remark 3. A section y of afibered manifold Y over X, with projection rr, can nat-
urally be viewed as amorphism of fibered manifolds. Indeed, we have the commutative
diagrams

X —2 5y x 2, gy
(26) lidx ln lidx lnf
X —, x X 9 %

Remark 4. Note that, with the convention of Remark 2,
27) Jaodyoayt=dayeyt

Remark 5. Let (V, ¥) be afibered chart on afibered manifold Y with base X, and
let (U, ) be the associated chart on X. Then using the notation of Remark 1, and
applying (22) and (Section 3.2, (10)) to , we get "y (Jy) = I}, ¥yt i€,

(28  y'=J.

3.4. Prolongations of fibrations. Let Y be a fibration with base X, projection ,
and fiber Q, and consider ther -jet prolongation J'Y.

Lemma4. J"Y hasthe structure of afibration with base X, projection 7", and fiber
T Q.

Proof. Let (U, ¢) beacharton X, andlet & : 7 ~*(U) — U x Q beatrivialization.
Define ¢ by the condition ®(y) = (7 (y), ®(y)), and consider the morphism of fibered
manifolds @, : 771 (U) = o) x Q, defined by D, (y) = (p((y)), ®(y)). Ther-jet
prolongation J'®,, : (7")"1(U) — J"(p(U) x Q) of ®, isdefined by o) (Jyy) =
J(;(X)CD(/,]/(p’l, where Jly € (7")71(U). But @,y ¢t isof the form (®,yp 1) (X) =
X, Pypt(X)), ie,

D Dyye = (idyu), Prer),
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where &y ¢~ is amapping of ¢(U) into Q. Thus, identifying I 0 (Ppy ™) with the
point (g(X), 3§ (Py et tr_,x)) of p(U) x T!Q, and setting

) D (Jiy) = (X, J(@ye~totr_yw)),

we get the commutative diagram

(")) L UxT'Q

°

U — U
@}, isobviously atriviaization.

Note that to define trivializations of J"Y, we need not only trivializations of Y, but
also charts on the base X of Y. The trivialization CI>;) is said to be associated with the

pair (P, ¢).

Remark 6. Formula(2) can be applied to special cases of prolongations of principal
and associated fiber bundles.

3.5. Prolongationsof Liegroups. Let G beaLiegroup, andlet T G bethe manifold
of r-jetswith source O € R" andtargetinG. Let S T e TG, S=Jjf, T = Jjg, be
any elements. We define agroup operationin T G by

D S T=1J(f 0,

where (f - @)(xX) = f(X) - g(x) is defined by the group operation in G. The unity of
T, G isther-jet errc = Jjec, Where eg denotes the unity of G, and also the constant
mapping of R" with value eg. Theinverseof S= J; f isther-jet S = J{ f, where
f~1(x) = (f(x))~?, and theinversion is taken in the group G.

Denoting for a moment the group operationin G by ¥, we can write f - g = ¥ o
(f xg).ThenS- T = J ©.g0n Y © Jy (f x @) which shows that the group operation
(1) issmooth. In particular, T! G isaLie group.

Anelement A € L, definesamapping ¢(A) : TIG — T! G by theformula

2 P(A)(S) = So AL

Sinceforevery ST € TG, A, Be L, p(A(S- T)=(S- T)o Al =(So A Y.
(ToA™) = (A - p(A(T)and p(A-B)(S) = So(A-B) 1= (SoBHo Al =
P(A)(p(B)(S) = ¢(A) o p(B)(S), ¢(A) is an automorphism of the Lie group T, G,
and the mapping A — ¢(A) is a homomorphism of L], into the group aut TG of
automorphisms of T, G. The mapping (A, S) — ¢(A)(S) is obviously smooth. Thus,
(2) defines the exterior semi-direct product

3) G, =L xsT'G.
Recall that the group operation in G}, is given by
(4) (A9 (B, T)=(A-B,S-(ToA™).
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The Lie group G, is called the (r, n)-prolongation, or simply the prolongation of G.
Note that

©) es, = (er,erg), (A9 T=(A1LSToA).

3.6. Prolongations of Liegroup actions. Let G bealLiegroup, andlet Y bearight
G-manifold. Let pe TyY and (A, S) € G|,. If p= Jjr and A = Jja, S= Jjo, then
the representatives of these r -jets define the mapping X — 7(x(X)) - o (x(X)), whose
r-jetisdenoted by (p - S) o A. We define

D p-(A,S=(p-SoA.

We claim that the mapping T, Y x G|, 3 (p, (A, S) — p- (A, S) € T, Y isaright
action of G, on T!'Y. Indeed, using (1) and Section 3.5, (4), we get

p- (A9 (B,T)=p-(A-B,S- (ToA™)
=((p-S9oA)-(B,T)=(p- (A 9) (B T).

T.Y is therefore a right G| -manifold called the r-jet prolongation of the right G-
manifold Y.

Let G beaLiegroup, and let Y be aleft G-manifold. Writingy - g = g1 - y we
obtain the corresponding right action of G on Y. Prolonging this right action, using
formula (1), we obtain aright action of G|, on T, Y. Our aim now will be to determine
the corresponding formulafor the associated left action of G, on T, Y.

The inverse of an element (A, S) € G! isgivenby (A, 9! = (A1, S1o A
(Section 3.5, (5)), Thus, (A, S)-p = p-(A, S~ = (p-(StoA)oAL = (poA™YH).SL.
Therefore, if A = Jja, S = Jjo, and p = Jiz, then (A, S) - p is the r-jet of the
mapping X — (t(¢ (X)) - o ()™t = o (X) - (@ 1(x)) defined by the left action of G
onY. Passing tor -jets we get

)

3 (A,S)-p=S-(poA™.

T.Y endowed with this left action of G|, is called the r-jet prolongation of the left
G-manifold Y.

3.7. Prolongations of principal bundles. Now we investigate the structure of the
r-jet prolongation J'Y of afibration Y, endowed with the structure of a principal G-
bundle. We know that J"Y is afibration with base X, and with fiber T, G. Asusual, we
denote by 7" the canonical projection of J'Y onto X.

Our first aim in this section is to determine trivializations and the corresponding
transition functions of J"Y (Section 3.4).

Assume that we have two chartson X, (U, ¢) and (V, ¥), suchthaa U NV # @, and
Y istriviadizableover U and V. Let ® : 77 1(U) > U xGand ¥ : V — V x G be
G-equivariant trivializations. ® and W define smooth mappings ® : 7~1(U) — G and
U7 YV)—> Ghy

(1) (y) = (m(y), D(Y)), W) = (7(y), L(y).
Thetransition function x : U NV — G isdefined by

@) T(y) = x(X) - d(y),
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where x = m(y).
The associated trivializations @, : (z")"'(U) — U x Ty G, ¥}, : (z")"(V) —
V x TI'G of J'Y are expressed by

3 @7 (Jy) = (X DL(Iy)). wL(Jy) = (X, Wl ().
where
@ Py =R(PreTtotr ). PLdy) = KTy ot ye)

(see al'so Section 3.4 (2)). We have the following result.

Lemma 5. The transition function between the trivializations éfp and \fl{b is defined
by

(5 L (dy) = (A9 - @) (i),
where (A, S) € G,
(6) A = J(; (trw(x) OWgD_l O tr,(p(x) ), S = Jé (Xlﬂ_l (e} tr*‘ﬁ(x) )

Proof. Writing T = J5(®ye o tr_,n) and U = JJ(¥yy Lo tr_y ), we have
toshowthat R=(A,S) - T =S-(T o A™1). But
™ ToA™ = J(ye " otryi ) o Iy (trpeo opty ™ oty )
= J(; (&)yw_l o tr_w(x) ),

hence
S (To Ail) = Jé (X wil o tr_w(x)) . Jé (&))/lﬂil o tr_I/,(X) )
® = (¥ otryoo) - (Pyy Tt otr_yi))
= J(g ((X . &))/) o) w_l o tr—w(x)) = J(g (‘if)/w_l o tl’ﬂp(x)) =R

as required.

Remark 7. Formula (5) defines the transition function with values in the group
G, =L, xT.G,
(9) Xr UNVax— (Jé (tr¢(x) Olb(pil o tr_(p(x)), Jé (X wil o tr_w(x))) € Grn
The structure of (5) coincides with the prolongation of the left translation on the struc-
ture group G of Y (Section 3.6, (3)).

Consider the bundle of r-frames F' X, and the fiber product
(10) WY=FXglJy.

W'Y isafibration over X with fiber GJ,. The transition functions are easily determined
by means of Lemma 5, (5). If (Jju, Jyy) € W'Y, then n(0) = x, and if (U, ¢) isa
chart at x such that Y istrivializable over U, then we have atrividization

(Jou Ky) = (% (@ (Jgu). P (35y)))

(11) r & -1
= (X, (Jo (trga(x) oK), JO (Pyp o tr—(p(x))))7
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where the same notation asin (1) is applied to F" X. (11) is said to be associated with
(P, ). The corresponding transition function is expressed by the equations

12) Y (Fw=A-¢Fw,  Y(Xy) =S (PL(Iy)oAT).

(see (5)). Note that (12) corresponds with the left translation on the group Gj, (Sec-
tion 3.5, (4)).

Lemma6. If Y isaright principal G bundle, then there exists a unique structure
of a right principal Gj,-bundle on W'Y such that all induced trivializations are G-
equivariant.

Proof. Only existence needs proof. If (p, Z) € W'Y, (A, S) € G|, we define
(13)  (P.2)-(A9=(p AZ (Sop™).

It isdirectly verified that (13) isaright action of G}, on W'Y Indeed, if (B, T) € G|, is
another element, we have, using the group operation in G|, (Section 3.5, (4)),

(14) P, 2)-((AS-(B,T)=(p,2)-(A-B,S-(ToA™h)
=(p-AB,Z-(Sop™H: - (ToAHop™).

Thus,
((p,2)-(A/9)-(B,T)=(p-A Z-(Sop™hH)-(B,T)
(15) =(p-AB(Z-(Sop™) -To(p-AY
=(p,2) ((A,9 (B, T)).

Let X be the base, and let = be the projection of Y. Assume that we have a chart
(U, ¢) on X, and a trividization ® : 771(U) — U x G, and consider the asso-
ciated trivialization (11) of W"Y. This trivialization sends (p, Z) = (Jju, Jyy) to
(X, (35 trpe0 i, (@Yo otr_,x))), and the element
(P.2)- (AS) = (Jou. Ky) - (o, Jgo) = (p- A, Z- (So p™h)

(16)
= (I ue, K (y - (o)

issent to
A7) (X (Ftrpm ppa, (@ o (y - (op™) op totr_yx))).
The first component yields
(18) I o pra = Ity e o Jja = I§ tryx o o A.
Consider the second component. We have at a point t, because @ is G-equivariant,
bo(y-(ou™)op oty
(19) = O((re T tryx) () - (o ) (1)
= D(yo My (1) - (o o o) ().
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Consequently,

I(o(y-(ou™ogptotr_yy)
= (o try0) - (O )
= Py My (5o 0 (e )
= B Dyt r_,00 -(So K (o Hr_,m).
Altogether, (18) is expressed, with the help of the group operationin GrJ,, by

(20)

(X, (35 troe pria, Jp (Do (v - (ou™)) 0 g™ otr_y0)))
(21) = (X, (I trypo @i o A, Py e ™ tr_yi (So (o Hr_ym))))
= (X, (Jp trye0 1, Jp(Pyettr_y0)) - (A, 9).
Thus, the associated trivialization is G| -equivariant with respect to the group ac-
tion (13).

W'Y iscalled ther-th principal prolongation of the principal G-bundleY.

3.8. Principal prolongations of frame bundles. Consider the bundle of s-frames
FsX over an n-dimensional manifold X (Section 2.4). The principal prolongation
W' FSX (10) is aright principal (L3),-bundle, where (L});, = L}, xs TIL} isther-
the principal prolongation of L3. We show that W' FSX = F3X & J"FSX isreducible
to the bundle of frames F'*SX.

Letr, and s be positive integers, and consider an (r + s)-jet A € LIS, A = Jj*%a.
Therepresentative o : U — R" of A defines the morphism

(1) Uy 3t = ax(t) = (tryoa otr_,-14 ) (t) € R",

where Uy isaneighborhood of the origin 0 € R". Obvioudly, ay(0) = 0, which implies
that for every x e U,

@ @@ (x) = Jgax,
is an element of the differential group L;. Thus, formulas (1) and (2) define a mapping
U > x — a®(x) e LS. By thechainrule,
Day(t) = Dtry ((@ o tr_4-1050) (1)) 0 Dar((tr_y-1(x)) (1)) © D145 (t)
= (Dot @) tr_a—l(x) )(t),
D%y (t) = D% ((tr_y-100 (1)) 0 Dr_y-100(t) = (D% o tr_,-14 ) (1),

©)
D3 (t) = D(D¥ o o tr_g-104 ) (1) = D%t ((tr_y-10) (1)) © Dr g1 (1)
= (DSO[ o tr_a—l(x) )(t),
hence
@ Day(0) = Da (e (%)), Day(0) = D?x(a (%)), ...,

D3y (t) = D%(a~1(x)).
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Thus, we get a smooth mapping U > x — o®(x) € LS, whose coordinate expression
is determined by (4).

Analogously, let p € F'™X, 3™ € F'*SX. Therepresentative w of p definesthe
morphism

(5 Ux 3t — x(®) = (rotr_,109) () = u(t + 171 (0) € R,

where Uy isaneighborhood of the origin 0 € R". Obvioudly, ux(0) = x, whichimplies
that for every x e U,

©® 1900 = Fux.
isan s-frameat x € X. Thus, (5) and (6) defineamappingU > x — u®(x) € F5X.

Theorem 4. Let X be an n-dimensional manifold.

(a) The mapping
@) LIS 5 5% — (%) = (Fa, Ja®) e (L.
is a morphism of Lie groups, and an injective immersion. The set v(L}"®) is closed
in (LY.

(b) The mapping
8 FreX s J™u — vx (3 ™0) = (Ju, I oun®) € WFSX
isa v-morphism of principal bundles, and an injective immersion.

Proof. (a) If J3*5a, I € LIS, then
9) v (I 0 J3B) = v(35 ) = (Kab, I @h)®).
But

(aﬂ)(s) (X) = JS(O[ﬁ)X = JS(U’X OO{ﬂ @) tr_(aﬁ)—l(x) )
(10) = Jg(('[l'x o © tr_a—l(x))) o \]g(tra—l(x) IB (¢] tr_lg—l(a—l(x)) )
= Jgax © JgBa-10x = ¢ (X) 0 B (a1 (%)).

thus
(1) v(FPao JTB) = (FeB, Ka® o JF(BD oa™).

On the other hand, setting (A, S) = (3o, J5a®), (B, T) = (I8, I;®), and multi-
plying these elementsin (L});,, we get

(A,S)-(B,T)=(A-B,S- (ToA™h)

12
12 = (Fap, Ja® o (ISP o Fa™).

Since (11) and (12) coincide, we see that v is a group morphism. Since v is smooth, it
isamorphism of Lie groups.
We find the chart expression of v in the canonical coordinates. To this purpose we

use the second canonical coordinates b‘jl ipji ON L[*S (Section 2.1, Remark 1), and the
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second canonical coordinates b‘j oo
1J2: k. P1 P2+ PI

Ae LS, A= J"a, wehave

(13) b!

JENEREY

on (L3);, defined asfollows. Recall that if

(A) = a (A™) = Dj,Dj,--- Dj (@« H(0),

i
jai2jk

where aij1 o € the first canonical coordinates on L[,*$, and in components,

o= (@), @hH? ..., @M. If Se (LS, S= J'n, weset

bliljz~'-ik,p1p2~-p| (S = Dplez T Dpk (bljljz...jk o 77)(0),
l<k<sO<l<r.

Then by definition, for every A € L[S, A= Jj ™«

bijljz-»-jk,plpz»--n (”(A)) = Dplez e Dpk(‘](go‘(s))

(14)

(15) .

= Dplez ... Dpk(bljljzmjk o a(S))(O),
where
(16) a®(x) = 5oy, oy =ty o tr -1 .
Thus,

(17) (bijljZ"'jk © a(S))(X) = biiljz---jk(‘]osax) = aijijz-"jk(‘lgax_l)'
But a1 = tr-1 @ 1 tr_y, SO we have, computing the canonical coordinates a‘jl o ik
(I h,
Dy (e M) (1)
= Dp(try-100) (7 tr_x (1)) Dg(a™HP(tr_x(t)) D, (tr_)%(t)
= 81 Dg(a HP(tr_x(1)) 8, = (Dj, (@ b o tr_y ) (V).
ag  DnDie’® = DpDis(a () Dip(tr0°(t)
= (Dj,Dj (@™ o tr ) (1)
Dj,Dj, - - Djag t(t) = DpDj, Dj, (™)' (try () Dj (tr_,) P(t)
= (D},Dj,+ - Dis(e™' otr_y ) (1),
Settingt = 0, we obtain
(bt 0a®)(x) = (Dj,Dj, --- Dj (@D o tr_ )(0)

(19) JENERSY :
= Dleiz T Djk(ail)l (X).

Now we are in a position to determine (15). We have
(bljljzmjk-,plpz-"pl © V)(A) = Dplez e Dpk (bljljz...jk

= Dplez T DPijlDiz T Dik(a71)| 0 = bljliz~~-jk,plpz~~p|

)
oa™)(0)
(20) )
(A).
Thisisthe desired chart expression for v.

Now it is trivia to conclude that v is an injective immersion, and v(L[*®) is a
closed subset of T, L;. Replace the canonical coordinates on T, L7 by new coordinates
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i I I . . .
S%ljz~~‘jk,p1p2~~‘ﬂ ’_tj1j2"'l-k’plp2"'PI where Sj1jojk. prp2-p A€ defined by symmerization of

: : :
i1izjc.pupo-p 1N thesubscripts, and t; . o o ., aredefined by

i ol i
(21) bjljZ"'jk»F’lpZ"'pl - sjliz~~jk,p1p2~~p| + tle’ZmJ’k,plpzmpl'

Then (20) is equivalent with the equations

(22) s v = bl

i i
j1iz ik p1p2-p © j1j2 k. PLP2 P ? 5

itizik.pipe-p OV = 0,

and theset v(L;"%) C T, L; isexpressed by the equations
(23) tzljz---ik,plpz--pl =0,

so isobviously closed.
(b) If 3™ € FisX, and J) "« € LIS, we have

vx (3w - ") = (g (now), I oay ) (1 © a)(s))

(24
= (Jgu o Jga, I} o) (1 0 a)).

But by (6) and (5), (1 o @)® (x) = J§(u o a)x and

(Hoa)x =poaoll_ . -1x)

(25)

= Mo tr_M—l(X) ¢} trufl(x) o tr_afl(u—l(x)) = MUx O O[M—l(x),
o that
25 (00700 =Dl @) = om0 B

= u(X) - a® (),

where the dot is used for the group operation in L} (in fact, this is the composition of
jets). Thus, passing to r -jets, we get

oy oo 0 = I (1 - @ ou™)
( ) _ Jr (s) Jr ( (S —1) _ Jr (S) (Jr () Jr —1)
= JuoM " duo\® ol )= ol (D% O ol )

To summarize, denote A = Jo™%a, p = J;™°u. Then, v(A) = (Jpa, Jj'®), and,
vx(P) = (Jpi, Iy o). We have

(28)  wx(p-A) = (Jguo o, I ou® - (Jpa(s)o I gu™).
On the other hand,
vx(P) - v(A) = (Jgu. Jpou'®) - (e, Jpa'®)
= (Jon - Jo. Jou® - (a0 I guhH) =vx(p- A),

which proves (b).

(29)

Corollary 1. L"SisaLiesubgroup of (L3),.

3.9. Prolongations of associated bundles. Now we study the structure of r -jet pro-
longations of associated fiber bundles. To this purpose we construct a frame mapping
for the prolonged fiber bundles by means of aframe mapping ontheinitial fiber bundles.



84 D. Krupka and M. Krupka

Theorem 5. If Yq is a fiber bundle with fiber Q, associated with a principal G-
bundle Y, then the r -prolongation J"Yq has the structure of a fiber bundle with fiber
T, Q, associated to the principal GJ,-bundle W"Y.

Proof. Assume that we have a frame mapping p : Y x Q — Ygo. We want to
construct aframe mapping p" : W'Y x T'Q — J"Yo.

Let X be the base of Yg, and let xo € X beapoint. Let (p, Z) € W'Y, p = Jju,
Z=Jyadqe T'Q,q = Jy¢. Since W'Y = F'X & J'Y, we have 1(0) =
Xo. Let U be a neighborhood of xo. Assume that U is chosen in such a way that the
representatives i : u(U) — X,y :U — Y,and ¢ : u~1(U) — Q aredefined. These
representatives define asection § : U — Ygq by

(6h) §=po(yxeu™.

Then the r-jet J; & depends only on J; v, J;ou‘l, and Jj¢, i.e, on Z, p, and . We
defineamapping p' : W'Y x T'Q — J"Y by

@) pH((p.2).a) = K (oo (y x tu™).

We claim that p" is a frame mapping. If (A, S) € G, A = Jja, S = Jjo and
qeT'Q,q= J¢, wehave by Section3.7, (13), (p, Z)-(A, S) = (p-A, Z-(Sop™1)).
By Section 3.5, (5), (A, S = (A1, S 1o A) and by Section 3.6, (3), (A, S) - q =
S-(qoA™),and (A, 9 1. g=(ALSToA) -g=(STo A -goA).Thus,

P ((p.2)-(A.9),(A,97"-q)
=p"((p-AZ-(Sop™),(S*-aoA).
Butp-A= Jjua, Z-(Sop™) = J (y-(op™h),and (S t-q)o A= Jj((c ™) oa),
so that, using (2),
P ((p.2)- (A 9),(A,97"-q)
@ =p"((P-AZ-(Sop ™), (St -qoA)
= J(poy (™) x (@~ -)op™.

©)

But
(po(y-(u™) x (@5 on™)X

®) = p(y 00 -op (), 07 X) - )

= p((y (), ¢t ) = po(y x tu™H(X),
because p is the frame mapping for Yq. Therefore, we get finally,
P ((P.2)- (A, 9. (A9 -q)=J (poy xtu™)

= p"((p. 2), ).

This provesthat p" isaframe mapping.

(6)
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